Skip to main content
Log in

PI3K/Akt/mTOR-immunoreactive neurons in the rat mediobasal hypothalamus during aging

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

The hypothalamus is the regulatory hub controlling homeostasis, reproduction, circadian rhythms and endocrine system. It is also involved in the regulation of senescence. The location of neurons containing phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), protein kinase B (AKT), phosphorylated forms AKT (pAKT) and mTOR (pmTOR) was examined by immunohistochemistry in 2-, 6-, 12-, and 24-month-old male rats in the arcuate (ARN), dorsomedial (DMN) and ventromedial (VMN) hypothalamic nuclei. Results have shown that the components of PI3K-AKT-mTOR signaling changes differentially in the rat mediobasal hypothalamic nuclei with aging. There were no changes of PI3K expression during senescence. However, the percentage of pmTOR-immunoreactive (IR) neurons decreased in the ARN and DMN but not in the VMN with aging. Nevertheless, the percentage of AKT-IR hypothalamic cells significantly increased in the ARN, DMN and VMN, and the proportion of pAKT-IR neurons increased in the DMN and VMN with aging. Thus, in spite of some differences of the expression of PI3K-AKT-mTOR signaling components in separate mediobasal hypothalamic nuclei, AKT expression is upregulated and pmTOR is downregulated with aging. These findings confirm an importance of AKT and mTOR of key signaling components that are often impaired with senescence. The data obtained will also serve as a basis for future studies investigating mechanisms of the age-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Hermida MA, Dinesh Kumar J, Leslie NR (2017) GSK3 and its interactions with the PI3K/AKT/mTOR signalling network. Adv Biol Regul 65:5-15. https://doi.org/10.1016/j.jbior.2017.06.003.

    Article  PubMed  CAS  Google Scholar 

  2. Kumar M, Bansal N (2022) Implications of Phosphoinositide 3-Kinase-Akt (PI3K-Akt) Pathway in the Pathogenesis of Alzheimer's Disease. Mol Neurobiol 59:354-385. https://doi.org/10.1007/s12035-021-02611-7.

    Article  PubMed  CAS  Google Scholar 

  3. Varela L, Horvath TL (2012) Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis. EMBO Rep 13:1079-1086. https://doi.org/10.1038/embor.2012.174.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7:606-619. https://doi.org/10.1038/nrg1879.

    Article  PubMed  CAS  Google Scholar 

  5. Dibble CC, Cantley LC (2015) Regulation of mTORC1 by PI3K signaling. Trends Cell Biol 25:545-555. https://doi.org/10.1016/j.tcb.2015.06.002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Whiteman EL, Cho H, Birnbaum MJ (2002) Role of Akt/protein kinase B in metabolism. Trends Endocrinol Metab 13:444-451. https://doi.org/10.1016/s1043-2760(02)00662-8.

    Article  PubMed  CAS  Google Scholar 

  7. Kennedy BK, Lamming DW (2016) The Mechanistic Target of Rapamycin: The Grand ConducTOR of Metabolism and Aging. Cell Metab 23:990-1003. https://doi.org/10.1016/j.cmet.2016.05.009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Chen YR, Li YH, Hsieh TC, Wang CM, Cheng KC, Wang L, Lin TY, Cheung CHA, Wu CL, Chiang H (2019) Aging-induced Akt activation involves in aging-related pathologies and Aβ-induced toxicity. Aging Cell. 18, e12989. https://doi.org/10.1111/acel.12989.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Hua Y, Zhang Y, Ceylan-Isik AF, Wold LE, Nunn JM, Ren J (2011) Chronic Akt activation accentuates aging-induced cardiac hypertrophy and myocardial contractile dysfunction: role of autophagy. Basic Res Cardiol 106:1173-1191. https://doi.org/10.1007/s00395-011-0222-8.

    Article  PubMed  CAS  Google Scholar 

  10. Yang S, Pascual-Guiral S, Ponce R, Giménez-Llort L, Baltrons MA, Arancio O, Palacio JR, Clos VM, Yuste VJ, Bayascas JR (2018) Reducing the Levels of Akt Activation by PDK1 Knock-in Mutation Protects Neuronal Cultures against Synthetic Amyloid-Beta Peptides. Front Aging Neurosci 9:435. https://doi.org/10.3389/fnagi.2017.00435.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Chen Y, Zhang Y, Chen Q, Liu Y, Wei X, Wu M, Zhang K, Liu Y, Wei W (2023) Inhibition of mGluR5/PI3K-AKT Pathway Alleviates Alzheimer's Disease-Like Pathology Through the Activation of Autophagy in 5XFAD Mice. J Alzheimers Dis 91:1197-1214. https://doi.org/10.3233/JAD-221058.

    Article  PubMed  CAS  Google Scholar 

  12. Jhanwar-Uniyal M, Gellerson O, Bree J, Das M, Kleinman G, Gandhi CD (2022) Defining the role of mTOR pathway in the regulation of stem cells of glioblastoma. Adv Biol Regul 100946. https://doi.org/10.1016/j.jbior.2022.100946.

  13. Kim K, Choe HK (2019) Role of hypothalamus in aging and its underlying cellular mechanisms. Mech Ageing Dev 177:74-79. https://doi.org/10.1016/j.mad.2018.04.008.

    Article  PubMed  CAS  Google Scholar 

  14. Masliukov PM, Nozdrachev AD (2021) Hypothalamic Regulatory Mechanisms of Aging. J Evol Biochem Phys. 57:473–491. https://doi.org/10.1134/S0022093021030030.

    Article  CAS  Google Scholar 

  15. Seoane-Collazo P, Fernø J, Gonzalez F, Diéguez C, Leis R, Nogueiras R, López M (2015) Hypothalamic-autonomic control of energy homeostasis. Endocrine 50, 276-291. https://doi.org/10.1007/s12020-015-0658-y.

    Article  PubMed  CAS  Google Scholar 

  16. Tran LT, Park S, Kim SK, Lee JS, Kim KW, Kwon O (2022) Hypothalamic control of energy expenditure and thermogenesis. Exp Mol Med 54:358-369. https://doi.org/10.1038/s12276-022-00741-z.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Anfimova PA, Moiseev KYu, Porseva VV, Pankrasheva LG, Masliukov PM (2022a) mTOR Expression in Neurons of the Rat Tuberal Hypothalamus in Aging. J Evol Biochem Phys 58:1464–1470. https://doi.org/10.1134/S0022093022050167.

    Article  CAS  Google Scholar 

  18. Anfimova PA, Pankrasheva LG, Moiseev KY, Shirina ES, Porseva VV, Masliukov PM (2022b) Ontogenetic Changes in the Expression of the Lin28 Protein in the Rat Hypothalamic Tuberal Nuclei. Int J Mol Sci 23:13468. https://doi.org/10.3390/ijms232113468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Moiseev KY, Vishnyakova PA, Porseva VV, Masliukov AP, Spirichev AA, Emanuilov AI, Masliukov PM (2020) Changes of nNOS expression in the tuberal hypothalamic nuclei during ageing. Nitric Oxide 100-101:1-6. https://doi.org/10.1016/j.niox.2020.04.002.

    Article  PubMed  CAS  Google Scholar 

  20. Paxinos G, Watson C (2005) The Rat Brain in Stereotaxic Coordinates. 5th Edition. Elsevier Academic Press.

  21. Quinn B, Toga AW, Motamed S, Merlic CA (1995) Fluoro nissl green: a novel fluorescent counterstain for neuroanatomy. Neurosci Lett 184:169-172. https://doi.org/10.1016/0304-3940(94)11198-r. 6392.2003.

    Article  PubMed  CAS  Google Scholar 

  22. Liu T, Xu Y, Yi CX, Tong Q, Cai D (2022) The hypothalamus for whole-body physiology: from metabolism to aging. Protein Cell. 13:394-421. https://doi.org/10.1007/s13238-021-00834-x.

    Article  PubMed  Google Scholar 

  23. Vinnikov IA, Hajdukiewicz K, Reymann J, Beneke J, Czajkowski R, Roth LC, Novak M, Roller A, Dörner N, Starkuviene V, Theis FJ, Erfle H, Schütz G, Grinevich V, Konopka W (2014) Hypothalamic miR-103 protects from hyperphagic obesity in mice. J Neurosc. 34:10659-10674. https://doi.org/10.1523/JNEUROSCI.4251-13.2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Plum L, Ma X, Hampel B, Balthasar N, Coppari R, Münzberg H, Shanabrough M, Burdakov D, Rother E, Janoschek R, Alber J, Belgardt BF, Koch L, Seibler J, Schwenk F, Fekete C, Suzuki A, Mak TW, Krone W, Horvath TL, Ashcroft FM, Brüning JC (2006) Enhanced PIP3 signaling in POMC neurons causes KATP channel activation and leads to diet-sensitive obesity. J Clin Invest 116:1886-1901. https://doi.org/10.1172/JCI27123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Moiseev KY, Spirichev AA, Vishnyakova PA, Pankrasheva LG, Masliukov PM (2021) Changes of discharge properties of neurons from dorsomedial hypothalamic nuclei during aging in rats. Neurosci Lett. 762:136168. https://doi.org/10.1016/j.neulet.2021.136168.

    Article  PubMed  CAS  Google Scholar 

  26. Bharill P, Ayyadevara S, Alla R, Shmookler Reis RJ (2013) Extreme Depletion of PIP3 Accompanies the Increased Life Span and Stress Tolerance of PI3K-null C. elegans Mutants. Front Genet 4:34. https://doi.org/10.3389/fgene.2013.00034.

  27. Ortega-Molina A, Efeyan A, Lopez-Guadamillas E, Muñoz-Martin M, Gómez-López G, Cañamero M, Mulero F, Pastor J, Martinez S, Romanos E, Mar Gonzalez-Barroso M, Rial E, Valverde AM, Bischoff JR, Serrano M (2012) Pten positively regulates brown adipose function, energy expenditure, and longevity. Cell Metab. 15:382–394. https://doi.org/10.1016/j.cmet.2012.02.001.

    Article  PubMed  CAS  Google Scholar 

  28. Salminen A, Kaarniranta K, Kauppinen A (2021) Insulin/IGF-1 signaling promotes immunosuppression via the STAT3 pathway: impact on the aging process and age-related diseases. Inflamm Res 70:1043-1061. https://doi.org/10.1007/s00011-021-01498-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Wu M, Wang B, Fei J, Santanam N, Blough ER (2010) Important roles of Akt/PKB signaling in the aging process. Front Biosci (Schol Ed) 2:1169-1188. https://doi.org/10.2741/s125.

    Article  PubMed  Google Scholar 

  30. Caron A, Labbé SM, Lanfray D, Blanchard PG, Villot R, Roy C, Sabatini DM, Richard D, Laplante M (2015) Mediobasal hypothalamic overexpression of DEPTOR protects against high-fat diet-induced obesity. Mol Metab 5:102-112. https://doi.org/10.1016/j.molmet.2015.11.005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Chrienova Z, Nepovimova E, Kuca K (2021) The role of mTOR in age-related diseases. J Enzyme Inhib Med Chem 36:1679-1693. https://doi.org/10.1080/14756366.2021.1955873.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Papadopoli D, Boulay K, Kazak L, Pollak M, Mallette F, Topisirovic I, Hulea L (2019) mTOR as a central regulator of lifespan and aging. F1000Res. 8:F1000 Faculty Rev-998. https://doi.org/10.12688/f1000research.17196.1.

  33. Yang SB, Tien AC, Boddupalli G, Xu AW, Jan YN, Jan LY (2012) Rapamycin ameliorates age-dependent obesity associated with increased mTOR signaling in hypothalamic POMC neurons. Neuron 75:425-436. https://doi.org/10.1016/j.neuron.2012.03.043.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Saoudaoui S, Bernard M, Cardin GB, Malaquin N, Christopoulos A, Rodier F (2021) mTOR as a senescence manipulation target: A forked road. Adv Cancer Res 150:335-363. https://doi.org/10.1016/bs.acr.2021.02.002.

    Article  PubMed  CAS  Google Scholar 

  35. Wang G, Chen L, Qin S, Zhang T, Yao J, Yi Y, Deng L (2022) Mechanistic Target of Rapamycin Complex 1: From a Nutrient Sensor to a Key Regulator of Metabolism and Health Adv Nutr 13:1882–1900. https://doi.org/10.1093/advances/nmac055.

  36. Vaughan KL, Mattison JA (2016) Obesity and Aging in Humans and Nonhuman Primates: A Mini-Review. Gerontology 62:611-617. https://doi.org/10.1159/000445800.

    Article  PubMed  Google Scholar 

  37. Wen X, Zhang B, Wu B, Xiao H, Li Z, Li R, Xu X, Li T (2022) Signaling pathways in obesity: mechanisms and therapeutic interventions. Signal Transduct Target Ther 7: 298. https://doi.org/10.1038/s41392-022-01149-x

    Article  PubMed  PubMed Central  Google Scholar 

  38. Duarte AI, Santos P, Oliveira CR, Santos MS, Rego AC (2008) Insulin neuroprotection against oxidative stress is mediated by Akt and GSK-3beta signaling pathways and changes in protein expression. Biochim Biophys Acta 1783:994-1002. https://doi.org/10.1016/j.bbamcr.2008.02.016.

    Article  PubMed  CAS  Google Scholar 

  39. Zakharova IO, Sokolova TV, Bayunova LV, Zorina II, Rychkova MP, Shpakov AO, Avrova NF (2019) The Protective Effect of Insulin on Rat Cortical Neurons in Oxidative Stress and Its Dependence on the Modulation of Akt, GSK-3beta, ERK1/2, and AMPK Activities. Int J Mol Sci. 20:3702. https://doi.org/10.3390/ijms20153702.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wu K, Ahmad T, Eri R (2022) LIN28A: A multifunctional versatile molecule with future therapeutic potential. World J Biol Chem 13:35–46. https://doi.org/10.4331/wjbc.v13.i2.35.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang Y, Zhao J, Chen S, Li D, Yang J, Zhao X, Qin M, Guo M, Chen C, He Z, Zhou Y, Xu L (2022) Let-7 as a Promising Target in Aging and Aging-Related Diseases: A Promise or a Pledge. Biomolecules 12:1070. https://doi.org/10.3390/biom12081070.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements and funding

This work was supported by Russian Science Foundation (Project No. 19–15-00039).

Author information

Authors and Affiliations

Authors

Contributions

Methodology, software, validation, E.S.S.; formal analysis, investigation, P.A.A.; resources, data curation, L.G.P.; writing—original draft preparation, writing—review and editing, visualization, K.Y.M.; conceptualization, supervision, project administration, funding acquisition, P.M.M. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Petr M. Masliukov.

Ethics declarations

Ethics approval

The current study was approved by the Yaroslavl State Medical University. All procedures involving animals were conducted in accordance with the ethical standards of the institution.

Data transparency

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Conflicts of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pankrasheva, L.G., Anfimova, P.A., Moiseev, K.Y. et al. PI3K/Akt/mTOR-immunoreactive neurons in the rat mediobasal hypothalamus during aging. Neurosci Behav Physi 53, 1319–1329 (2023). https://doi.org/10.1007/s11055-023-01504-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01504-7

Keywords

Navigation