Skip to main content
Log in

The Encoding of Meaning in Cerebral Activity

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The question of the nature of the relationship between mental processes and activity in the brain is not the prerogative of philosophers. All professional scientists involved in studying the human brain must, one way or another, decide this question for themselves. The dominant approach in the modern scientific worldview is reductionism, which holds that mental states can in principle be reduced to activity in the brain. Here I review some of the data obtained in recent years that shed light on the nature of the relationship between the content of mental processes and cerebral activity. These data on the encoding of sensory and semantic linguistic information, as well as more complex information related to the content of abstract concepts, show that the cerebral activity accompanying the extraction of meaning is widely distributed and probabilistic in nature and does not correspond to the nature of mental content, which is generally certain and holistic. Thus, currently available empirical data indicate that reductionism cannot reasonably be seen as a viable option and the only variant possible within the framework of materialism is that of recognizing mentality as an emergent entity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abnar, S., Ahmed, R., Mijnheer, M., and Zuidema, W., “Experiential, distributional and dependency-based word embeddings have complementary roles in decoding brain activity,” arXiv, 1711, 09285 (2017).

    Google Scholar 

  • Anderson, A. J., Kiela, D., Clark, S., and Poesio, M., “Visually grounded and textual semantic models differentially decode brain activity associated with concrete and abstract nouns,” Trans. Assoc. Comput. Linguistics, 5, 17–30 (2017).

    Article  Google Scholar 

  • Anderson, M. L. and Penner-Wilger, M., “Neural reuse in the evolution and development of the brain: Evidence for developmental homology?” Dev. Psychobiol., 55, 42–51 (2013).

    Article  PubMed  Google Scholar 

  • Barrett, L. F. and Russell, J. A., The Psychological Construction of Emotion, Guilford Press, New York (2015).

    Google Scholar 

  • Barsalou, L. W., “Grounded cognition,” Annu. Rev. Psychol., 59, 617–645 (2008).

    Article  PubMed  Google Scholar 

  • Barsalou, L. W., Simmons, W. K., Barbey, A. K., and Wilson, C. D., “Grounding conceptual knowledge in modality-specific systems,” Trends Cogn. Sci., 7, 84–91 (2003).

    Article  PubMed  Google Scholar 

  • Bauer, A. J. and Just, M. A., “Neural representations of concept knowledge,” in: The Oxford Handbook of Neurolinguistics (2019), pp. 1–21.

  • Bedau, M., Weak Emergence. Philosophical Perspectives, Mind, Causation, and World, Blackwell, Oxford (1997), pp. 375–399.

  • Bergen, B. K., “Louder than Words: The New Science of how the Mind makes Meaning, Basic Books, New York City, NY (2012).

  • Binder, J. R. and Desai, R. H., “The neurobiology of semantic memory,” Trends Cogn. Sci., 15, 527–536 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Block, N., “If perception is probabilistic, why does it not seem probabilistic?” Phil. Trans. R. Soc. B. Biol. Sci., 373, No. 1755, 20170341 (2018).

    Article  Google Scholar 

  • Block, N., “On a confusion about a function of consciousness,” Behav. Brain Sci., 18, 227–247 (1995).

    Article  Google Scholar 

  • Brigandt, I. and Love, A., “Reductionism in biology,” in: The Stanford Encyclopedia of Philosophy, Zalta, E. N. (ed.) (2017), https://plato.stanford.edu/archives/spr2017/entries/reduction-biology/.

  • Brysbaert, M., Warriner, A. B., and Kuperman, V., “Concreteness ratings for 40 thousand generally known English word lemmas,” Behav. Res. Meth., 46, No. 3, 904–911 (2014).

    Article  Google Scholar 

  • Burge, T., Origins of Objectivity, Oxford University Press, Oxford, UK (2010).

    Book  Google Scholar 

  • Casasanto, D., “The hierarchical structure of mental metaphors,” in: Metaphor: Embodied Cognition and Discourse, Hampe, B. (ed.), Cambridge University Press, Cambridge (2017).

    Google Scholar 

  • Chalmers, D. J., “Strong and weak emergence,” in: The Re-emergence of Emergence, Clayton, P. and Davies, P. (eds.) Oxford University Press (2006).

    Google Scholar 

  • Chalmers, D. J., The Conscious Mind, Oxford University Press (1996).

    Google Scholar 

  • Chang, K. K., Mitchell, T., and Just, M. A., “Quantitative modeling of the neural representation of objects: How semantic feature norms can account for fMRI activation,” NeuroImage, 56, No. 2, 716–727 (2011).

    Article  PubMed  Google Scholar 

  • Chang, L. and Tsao, D. Y., “The code for facial identity in the primate brain,” Cell, 169, 1013–1028 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao, L. L. and Martin, A., “Representation of manipulable man-made objects in the dorsal stream,” NeuroImage, 12, 478–484 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Churchland, P. S., Neurophilosophy: Toward a Unified Science of the Mind/Brain, The MIT Press, Cambridge, Massachusetts (1986).

    Google Scholar 

  • Conca, F., Borsa, V. M., Cappa, S. F., and Catricalà, E., “The multidimensionality of abstract concepts: A systematic review,” Neurosci. Biobehav. Rev., (2021), https://doi.org/10.1016/j.neubiorev.2021.05.004.

  • Coutanche, M. N. and Thompson-Schill, S. L., “Creating concepts from converging features in human cortex,” Cereb. Cortex, 25, 2584–2593 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Crick, F. and Koch, C., “A framework for consciousness,” Nat. Neurosci., 6, No. 2, 119–126 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Crick, F. and Koch, C., “Consciousness and neuroscience,” Cereb. Cortex, 8, No. 2, 97–107 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Crick, F. C. and Koch, C., “What is the function of the claustrum?” Philos. Trans. R. Soc. Lond. B, 380, No. 1458, 1271–1279 (2005).

    Article  Google Scholar 

  • Crick, F., The Astonishing Hypothesis: The Scientific Search for the Soul, Scribner (1994).

    Google Scholar 

  • Curby, K. M. and Moerel, D., “Behind the face of holistic perception: Holistic processing of Gestalt stimuli and faces recruit overlapping perceptual mechanisms,” Percept. Psychophys., 81, No. 8, 2873–2880 (2019).

    Article  Google Scholar 

  • Damarla, S. R. and Just, M. A., “Decoding the representation of numerical values from brain activation patterns,” Hum. Brain Mapp., 34, No. 10, 2624–2634 (2013).

    Article  PubMed  Google Scholar 

  • Damasio, A. R. and Damasio, H., “Cortical systems for retrieval of concrete knowledge: the convergence zone framework,” in: Large-Scale Neuronal Theories of the Brain, Koch, C. (ed.), MIT Press, Cambridge, MA (1994), pp. 61–74.

    Google Scholar 

  • Dennett, D., “Why you can’t make a computer that feels pain,” in: Brainstorms: Philosophical Essays on Mind and Psychology, MIT Press, Cambridge, MA (1978), pp. 190–229.

    Google Scholar 

  • Dennett, D., Consciousness Explained, The Penguin Press (1991).

  • Desai, R. H., Conant, L. L., Binder, J. R., et al., “A piece of the action: modulation of sensory-motor regions by action idioms and metaphors,” NeuroImage, 83, 862–869 (2013).

    Article  PubMed  Google Scholar 

  • di Oleggio Castello, M. V., Haxby, J. V., and Gobbini, M. I., “Shared neural codes for visual and semantic information about familiar faces in a common representational space,” Proc. Natl. Acad. Sci. USA, 118, No. 45 (2021).

  • Ding, S., Cueva, C. J., Tsodyks, M., and Qian, N., “Visual perception as retrospective Bayesian decoding from high-to low-level features,” Proc. Natl. Acad. Sci. USA, 114, No. 43, E9115–E9124 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dove, G., “The challenges of abstract concepts,” in: Handbook of Embodied Psychology (2021), pp. 171–195.

  • Dove, G., “Three symbol ungrounding problems: abstract concepts and the future of embodied cognition,” Psychon. Bull. Rev, 23, 1109–1121 (2016).

    Article  PubMed  Google Scholar 

  • Fecteau, S., Pascual-Leone, A., Zald, D. H., et al., “Activation of prefrontal cortex by transcranial direct current stimulation reduces appetite for risk during ambiguous decision making,” J. Neurosci., 27, No. 23, 6212–6218 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Firth, J. R., “A synopsis of linguistic theory 1930–1955,” Stud. Linguistic Anal., 1–32 (1957).

  • Frankish, K., “Illusionism as a theory of consciousness,” J. Consc. Studies, 23, 11–39 (2016).

    Google Scholar 

  • Friston, K., Kilner, J., and Harrison, L., “A free energy principle for the brain,” J. Physiol. Paris, 100(1–3, 70–87 (2006).

    Article  Google Scholar 

  • Galetzka, C., “The story so far: How embodied cognition advances our understanding of meaning-making,” Front. Psychol., 8, 1315 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gallistel, C. R. and King, A., Memory and the Computational Brain, Wiley-Blackwell, Malden (2009).

    Book  Google Scholar 

  • Grill-Spector, K., Knouf, N., and Kanwisher, N., “The fusiform face area subserves face perception, not generic within-category identification,” Nat. Neurosci., 7, No. 5, 555–562 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Gross, C., “Single neuron studies of inferior temporal cortex,” Neuropsychologia, 46, 841–852 (2008).

    Article  PubMed  Google Scholar 

  • Hacker, P. M. S., “The sad and sorry history of consciousness: being among other things a challenge to the ‘consciousness studies community,’” Roy. Inst. Philos., Supplementary volume, 70, 1–21 (2012).

  • Hart, J. and Kraut, M. A., “Neural hybrid model of semantic object Cambridge University Press, New York (2007), pp. 331–359., Hart. J. and Kraut, M. A. (eds.), Cambridge University Press, New York (2007), pp. 331–359.

  • Hauk, O. and Tschentscher, N., “The body of evidence: what can neuroscience tell us about embodied semantics?” Front. Psychol., 4, 50 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hawking, S. W., A Brief History of Time, Bantam Dell Publishing Group, NY (1988).

    Book  Google Scholar 

  • Hsu, N. S., Kraemer, D. J. M., Oliver, R. T., et al., “Color, context, and cognitive style: Variations in color knowledge retrieval as a function of task and subject variables,” J. Cogn. Neurosci., 23, 2554–2557 (2011).

    Article  Google Scholar 

  • Hsu, N. S., Schlichting, M. L., and Thompson-Schill, S. L., “Feature diagnosticity affects representations of novel and familiar objects,” J. Cogn. Neurosci., 26, 2735–2749 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Huth, A. G., de Heer, W. A., Griffiths, T. L., et al., “Natural speech reveals the semantic maps that tile human cerebral cortex,” Nature, 532, No. 7600, 453–458 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Huth, A. G., Nishimoto, S., Vu, A. T., and Gallant, J. L., “A continuous semantic space describes the representation of thousands of object and action categories across the human brain,” Neuron, 76, 1210–1224 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jazayeri, M. and Movshon, J. A., “Optimal representation of sensory information by neural populations,” Nat. Neurosci., 9, 690–696 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Jin, H., Oxner, M., Corballis, P. M., and Hayward, W. G., “Holistic face processing is influenced by non-conscious visual information,” Br. J. Psychol., (2021), https://doi.org/10.1111/bjop.12521.

  • Jones, M. N., Willits, J., Dennis, S., and Jones, M., “Models of semantic memory,” in: Oxford Handbook of Mathematical and Computational Psychology (2015), pp. 232–254.

  • Just, M. A., Cherkassky, V. L., Aryal, S., and Mitchell, T. M., “A neurosemantic theory of concrete noun representation based on the underlying brain codes,” PLoS One, 5, No. 1, e8622 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Just, M. A., Cherkassky, V. L., Buchweitz, A., et al., “Identifying autism from neural representations of social interactions: Neurocognitive markers of autism,” PLoS One, 9, No. 12, e113879 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanwisher, N., McDermott, J., and Chun, M. M., “The fusiform face area: a module in human extrastriate cortex specialized for face perception,” J. Neurosci., 17, No. 11, 4302–4311 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kassam, K. S., Markey, A. R., Cherkassky, V. L., et al., “Identifying emotions on the basis of neural activation,” PLoS One, 8, No. 6, e66032 (2013).

  • Kay, K. N., Naselaris, T., Prenger, R. J., and Gallant, J. L., “Identifying natural images from human brain activity,” Nature, 452, No. 7185, 352–355 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiefer, M., Sim, E.-J., Herrnberger, B., et al., “The sound of concepts: Four markers for a link between auditory and conceptual brain systems,” J. Neurosci., 28, No. 47, 12,224–12,230 (2008).

    Article  CAS  Google Scholar 

  • Knyazev, G. G., Slobodskoj-Plusnin, J. Y., and Bocharov, A. V., “Subject’s state modulates oscillatory responses to emotional facial expressions,” J. Psychophysiol., 26, 83–91 (2012).

    Article  Google Scholar 

  • Koch, C., “Reflections of a natural scientist on panpsychism,” J. Consc. Studies, 28, No. 9–10, 65–75 (2021).

    Google Scholar 

  • Lambon Ralph, M. A., Jefferies, E., Patterson, K., and Rogers, T. T., “The neural and computational bases of semantic cognition,” Nat. Rev. Neurosci., 18, 42–55 (2016).

    Article  Google Scholar 

  • Lee, J. and Maunsell, J. H. R., “A normalization model of attentional modulation of single unit responses,” PLoS One, 4, No. 2, e4651 (2009).

  • Li, H. H., Sprague, T. C., Yoo, A. H., et al., “Joint representation of working memory and uncertainty in human cortex,” Neuron, (2021), https://doi.org/10.1016/j.neuron.2021.08.022.

  • Lilienfeld, S., Lynn, S. J., Namy, L., and Woolf, N., Psychology: A Framework for Everyday Thinking, Pearson (2010).

    Google Scholar 

  • Lindquist, K. A., Wager, T. D., Kober, H., et al., “The brain basis of emotion: A meta-analytic review,” Behav. Brain Sci., 35, 121–143 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma, W. J., Beck, J. M., Latham, P. E., and Pouget, A., “Bayesian inference with probabilistic population codes,” Nat. Neurosci., 9, 1432–1438 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Mason, R. A. and Just, M. A., “Neural representations of physics concepts,” Psychol. Sci., 27, No. 6, 904–913 (2016).

    Article  PubMed  Google Scholar 

  • Mason, R. A., Schumacher, R. A., and Just, M. A., “The neuroscience of advanced scientific concepts,” NPJ Sci. Learn., 6, No. 1, 1–12 (2021).

    Google Scholar 

  • Metzinger, T., Neural Correlates of Consciousness: Empirical and Conceptual Questions, MIT Press, Cambridge, MA (2000).

    Book  Google Scholar 

  • Mitchell, T. M., Shinkareva, S., Carlson, A., et al., “Predicting human brain activity associated with the meanings of nouns,” Science, 320, 1191–1195 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Nagel, T., “What is it like to be a bat?” The Philosophical Review, 83, No. 4, 435–450 (1974).

    Article  Google Scholar 

  • Naselaris, T., Kay, K. N., Nishimoto, S., and Gallant, J. L., “Encoding and decoding in fMRI,” NeuroImage, 56, No. 2, 400–410 (2011).

    Article  PubMed  Google Scholar 

  • Naselaris, T., Prenger, R. J., Kay, K. N., et al., “Bayesian reconstruction of natural images from human brain activity,” Neuron, 63, No. 6, 902–915 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connor, T., “Emergent properties,” in: The Stanford Encyclopedia of Philosophy, Zalta, E. M. (ed.), https://plato.stanford.edu/archives/fall2020/entries/properties-emergent (2020).

  • Palacio, N. and Cardenas, F., “A systematic review of brain functional connectivity patterns involved in episodic and semantic memory,” Rev. Neurosci., 30, 889–902 (2019).

    Article  PubMed  Google Scholar 

  • Papeo, L., Lingnau, A., Agosta, S., et al., “The origin of word-related motor activity,” Cereb. Cortex, 25, 1668–1675 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Pereira, F., Botvinick, M., and Detre, G., “Using Wikipedia to learn semantic feature representations of concrete concepts in neuroimaging experiments,” Artif. Intell., 194, 240–252 (2013).

    Article  PubMed  Google Scholar 

  • Pereira, F., Lou, B., Pritchett, B., et al., “Toward a universal decoder of linguistic meaning from brain activation,” Nat. Commun., 9, No. 1, 1–13 (2018).

    Article  Google Scholar 

  • Peters, M. A. K., Thesen, T., Ko, Y. D., et al., “Perceptual confidence neglects decision-incongruent evidence in the brain,” Nat. Hum. Behav., 1, 0139 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Poltoratski, S., Kay, K., Finzi, D., and Grill-Spector, K., “Holistic face recognition is an emergent phenomenon of spatial processing in face-selective regions,” Nat. Commun., 12, No. 1, 1–13 (2021).

    Article  Google Scholar 

  • Potter, M. C., Staub, A., and O’Connor, D. H., “Pictorial and conceptual representation of glimpsed pictures,” J. Experim. Psychol. Hum. Percept. Perform., 30, 478–489 (2004).

    Article  Google Scholar 

  • Purves, D., Principles of Cognitive Neuroscience, Sinauer Associates, Sunderland, Mass. (2008).

    Google Scholar 

  • Qiao, K., Chen, J., Wang, L., et al., “Category decoding of visual stimuli from human brain activity using a bidirectional recurrent neural network to simulate bidirectional information flows in human visual cortices,” Front. Neurosci., 13, 692 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Quian Quiroga, R. and Kreiman, G., “Measuring sparseness in the brain: comment on Bowers (2009),” Psychol. Rev., 117, 291–299 (2010).

    Article  PubMed  Google Scholar 

  • Quian Quiroga, R., “Neuronal codes for visual perception and memory,” Neuropsychologia, 83, 227–241 (2016).

    Article  PubMed  Google Scholar 

  • Quian Quiroga, R., “No pattern separation in the human hippocampus,” Trends Cogn. Sci., 24, 994–1007 (2020).

    Article  PubMed  Google Scholar 

  • Ramsey, W., “Eliminative Materialism,” in: The Stanford Encyclopedia of Philosophy, Zalta, E. N. (ed.) (2020), https://plato.stanford.edu/archives/sum2020/entries/materialism-eliminative/.

  • Reppert, V., “Eliminative materialism, cognitive suicide, and begging the question,” Metaphilosophy, 23, 378–92 (1992).

    Article  Google Scholar 

  • Rescorla, M., “Bayesian perceptual psychology,” in: The Oxford Handbook of Philosophy of Perception, Mohan, M (ed.), Oxford University Press, Oxford (2015), pp. 694–716.

  • Rey, H. G., Gori, B., Chaure, F. J., et al., “Single neuron coding of identity in the human hippocampal formation,” Curr. Biol., 30, 1152–1159 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards, B. A. and Frankland, P. W., “The conjunctive trace,” Hippocampus, 23, 207–212 (2013).

    Article  PubMed  Google Scholar 

  • Robinson, H., “Dualism,” in: The Stanford Encyclopedia of Philosophy, Zalta, E. N. (ed.) (2020), https://plato.stanford.edu/archives/fall2020/entries/dualism/.

  • Rugg, M. D. and Thompson-Schill, S. L., “Moving forward with fMRI data,” Perspect. Psychol. Sci., 8, No. 1, 84–87 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaffer, J., “Monism,” in: The Stanford Encyclopedia of Philosophy, Zalta, E. N. (ed.) (2018), https://plato.stanford.edu/archives/win2018/entries/monism/.

  • Searle, J., The Mystery of Consciousness, The New York Review of Books, New York (1997).

    Google Scholar 

  • Seymour, K., Clifford, C. W. G., Logothetis, N. K., and Bartels, A., “The coding of color, motion, and their conjunction in the human visual cortex,” Curr. Biol., 19, No. 3, 177–183 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Shapiro, L., Embodied cognition, Routledge (2019).

    Book  Google Scholar 

  • Simonite, T., “Facebook creates software that matches faces almost as well as you do,” MIT Technol. Rev., (2014), https://www.technologyreview.com/2014/03/17/13822/facebook-creates-software-that-matches-faces-almost-as-well-as-you-do.

  • Smart, J. J. C., “Materialism,” in: Encyclopedia Britannica (2016), https://www.britannica.com/topic/materialism-philosophy.

  • Stubenberg, L., “Neutral Monism,” in: The Stanford Encyclopedia of Philosophy, Zalta, E. N. (ed.) (2018), https://plato.stanford.edu/archives/fall2018/entries/neutral-monism/.

  • Tsao, D. Y., Freiwald, W. A., Tootell, R. B., and Livingstone, M., “A cortical region consisting entirely of face-selective cells,” Science, 311, 670–674 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tschentscher, N., “Embodied semantics: Embodied cognition in neuroscience,” German Life and Letters, 70, No. 4, 423–429 (2017).

    Article  Google Scholar 

  • van Bergen, R. S., Ma, W. J., Pratte, M. S., and Jehee, J. F., “Sensory uncertainty decoded from visual cortex predicts behavior,” Nat. Neurosci., 18, 1728–1730 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • van Riel, R. and Van Gulick, R., “Scientific reduction,” in: The Stanford Encyclopedia of Philosophy, Zalta, E. N. (ed.) (2019), https://plato.stanford.edu/archives/spr2019/entries/scientific-reduction/.

  • Varela, F. J., “Neurophenomenology: A methodological remedy for the hard problem,” J. Consc. Studies, 3, 330–335 (1996).

    Google Scholar 

  • Varela, F., “Upward and downward causation in the brain: Case studies on the emergence and efficacy of consciousness,” in: No Matter, Never Mind, Yasue, K., Jibu, K., and Della Senta, T. (eds.), John Benjamins Publishing Co., Amsterdam, Philadelphia (2002).

  • Vargas, R. and Just, M. A., “Neural representations of abstract concepts: Identifying underlying neurosemantic dimensions,” Cereb. Cortex, 30, No. 4, 2157–2166 (2019).

    Article  Google Scholar 

  • Vargas, R. and Just, M. A., “Neural representations of abstract concepts: Identifying underlying neurosemantic dimensions,” Cereb. Cortex, 30, No. 4, 2157–2166 (2020).

    Article  PubMed  Google Scholar 

  • Vukovic, N., Feurra, M., Shpektor, A., et al., “Primary motor cortex functionally contributes to language comprehension: an online rTMS study,” Neuropsychologia, 96, 222–229 (2017).

    Article  PubMed  Google Scholar 

  • Wang, J., Baucom, L. B., and Shinkareva, S. V., “Decoding abstract and concrete concept representations based on single-trial fMRI data,” Hum. Brain Mapp., 34, No. 5, 1133–1147 (2013a).

    Article  PubMed  Google Scholar 

  • Wang, J., Conder, J. A., Blitzer, D. N., and Shinkareva, S. V., “Neural representation of abstract and concrete concepts: A meta-analysis of neuroimaging studies,” Hum. Brain Mapp., 31, No. 10, 1459–1468 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, L., Li, M., Yang, T., and Zhou, X., “Mathematics meets science in the brain,” Cereb. Cortex, (2021), https://doi.org/10.1093/cercor/bhab198.

  • Wang, Z., Busemeyer, J. R., Atmanspacher, H., and Pothos, E. M., “The potential of using quantum theory to build models of cognition,” Top. Cogn. Sci., 5, 672–688 (2013b).

    PubMed  Google Scholar 

  • Wen, H., Shi, J., Zhang, Y., et al., “Neural encoding and decoding with deep learning for dynamic natural vision,” Cereb. Cortex, 28, 4136–4160 (2018).

    Article  PubMed  Google Scholar 

  • Wu, M. C., David, S. V., and Gallant, J. L., “Complete functional characterization of sensory neurons by system identification,” Annu. Rev. Neurosci., 29, 477–505 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Wurtz, R. H., “Recounting the impact of Hubel and Wiesel,” J. Physiol., 587, No. 12, 2817–2823 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yee, E., Chrysikou, E. G., and Thompson-Schill, S. L., “Semantic memory,” in: The Oxford Handbook of Cognitive Neuroscience, Ochsner, K. and Kosslyn, S. (eds.), Oxford University Press (2013), Vol. 1, Core Topics, pp. 353–374.

  • Zihl, J., Von Cramon, D., and Mai, N., “Selective disturbance of movement vision after bilateral brain damage,” Brain, 106, No. 2, 313–340 (1983).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Knyazev.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 72, No. 6, pp. 800–825, November–December, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knyazev, G.G. The Encoding of Meaning in Cerebral Activity. Neurosci Behav Physi 53, 554–571 (2023). https://doi.org/10.1007/s11055-023-01454-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01454-0

Keywords

Navigation