Skip to main content

Advertisement

Log in

Weak Static Magnetic Field: Actions on the Nervous System

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The continuously changing magnetic field of the Earth and its constant influence on the vital activity of all living organisms makes studies of magnetobiological effects important and in demand. The effects of weak magnetic fields, especially weak static magnetic fields, on living objects remains inappropriately understudied. The biological effects of weak magnetic fields result from chemical processes involving radicals, radical ions, and paramagnetic particles. As attenuation of the magnetic field is a stress factor for the body and given that the nervous system performs the most important regulatory functions in forming the body’s stress response, this review addresses the influences of weak static magnetic fields on the functioning of the nervous system. Our own and published data are summarized; these indicate that weak static magnetic fields affect key biological processes, such as gene expression, cell proliferation and differentiation, and apoptosis, as well as behavior. Special attention is paid to the therapeutic potential of weak magnetic fields for clinical use in neurological pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adair, R. K., “Criticism of Lednev’s mechanism for the influence of weak magnetic fields on biological systems,” Bioelectromagnetics, 13, No. 3, 231–5 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Adamenko, V. G., Vilenskaya, R. L., Golant, M. B., et al., “Effects of millimeter waves on the indoor air microflora,” Elektron. Tekhn. Ser. 1. Elektron. SVCh, 12, 132–136 (1966).

    Google Scholar 

  • Astakhova, L. A., Rotov, A. Yu., Kavokin, K. V., et al., “Relationship between the magnetic compass and photoreception in birds: hypotheses and unresolved issues,” Zh. Obsh. Biol, 80, No. 2, 83–94 (2019).

    Google Scholar 

  • Baker, R. R., Human Navigation and Magnetoreception, Manchester University Press (1989).

    Google Scholar 

  • Baker, R. R., Mather, J. G., and Kennaugh, J. H., “Magnetic bones in human sinuses,” Nature, 301, 78–80 (1983).

    Article  CAS  Google Scholar 

  • Bauréus Koch, C. L., Sommarin, M., Persson, B. R., et al., “Interaction between weak low frequency magnetic fields and cell membranes,” Bioelectromagnetics, 24, No. 6, 395–402 (2003).

    Article  PubMed  Google Scholar 

  • Ben Yakir-Blumkin, M., Loboda, Y., Schächter, L., and Finberg, J. P. M., “Neuroprotective effect of weak static magnetic fields in primary neuronal cultures,” Neuroscience, 278, 313–326 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Ben Zablah, Y., Zhang, H., Gugustea, R., and Jia, Z., “LIM-kinases in synaptic plasticity, memory, and brain diseases,” Cells, 10, No. 8, 2079 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Betskii, O. V. and Lebedeva, N. N., “Current concepts of the mechanisms of the impact of low-intensity waves on biological objects,” Millimetr. Volny Biol. Med., 3, No. 24, 5–19 (2001).

    Google Scholar 

  • Betskii, O. V., and Lebedeva, N. N., “Unusual properties of water in weak electromagnetic fields,” Biomed. Tekhnol. Radioelektron., 1, 37–44 (2003).

    Google Scholar 

  • Binhi, V. N. and Prato, F. S., “Biological effects of the hypomagnetic field: An analytical review of experiments and theories,” PLoS One, 12, No. 6, e0179340 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Binhi, V. N. and Rubin, A. B., “Theoretical concepts in magnetobiology after 40 years of research,” Cells, 11, No. 2, 274 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Binhi, V. N. and Sarimov, R. M., “Zero magnetic field effect observed in human cognitive processes,” Electromagn. Biol. Med., 28, No. 3, 310–315 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Binhi, V. N., “Interference of ion quantum states within a protein explains weak magnetic field’s effect on biosystems,” Electro. Magnetobiol., 16, 203–214 (1997).

    Article  Google Scholar 

  • Binhi, V. N., Milyaev, V. A., Sarimov, R. M., and Zarutskii, A. A., “ The influence of electrostatic and zero magnetic fields on he psychophysiological state in humans,” Biomed. Tekhnol. Radioelektron., No. 8–9, 49–57 (2006).

  • Binhi, V. N., Principles of Electromagnetic Biophysics, Fizmatlit, Moscow (2011).

    Google Scholar 

  • Blakemore, R. P., “Magnetotactic bacteria,” Science, 190, No. 4212, 377–379 (1975).

    Article  CAS  PubMed  Google Scholar 

  • Blanchard, J. P. and Blackman, C. F., “Clarification and application of an ion parametric resonance model for magnetic field interactions with biological systems,” Bioelectromagnetics, 15, 217–238 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Buchachenko, A. L. and Kuznetsov, D. A., “The magnetic isotope effect – the key to the functioning of molecular machines,” Mol. Biol., 40, No. 1, 12–19 (2006).

    Article  CAS  Google Scholar 

  • Buchachenko, A. L., “Magnetically dependent molecular and chemical processes in biochemistry, genetics and medicine,” Usp. Khim., 83, No. 1, 1–12 (2014).

    Article  Google Scholar 

  • Buchachenko, A. L., Bukhvostov, A. A., Ermakov, K. V., and Kuznetsov, D. A., “A specific role of magnetic isotopes in biological and ecological systems. Physics and biophysics beyond,” Prog. Biophys. Mol. Biol., 155, 1–19 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Buchachenko, A. L., Kouznetsov, D. A., Breslavskaya, N. N., and Orlova, M. A., “Magnesium isotope effects in enzymatic phosphorylation,” J. Phys. Chem. B, 112, 2548–2556 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Chakeres, D. W. and de Vocht, F., “Static magnetic field effects on human subjects related to magnetic resonance imaging systems,” Prog. Biophys. Mol. Biol, 87, No. 2–3, 255 (2005).

    Article  PubMed  Google Scholar 

  • Chen, Q., Gimple, R. C., Li, G., et al., “LIM kinase 1 acts as a profibrotic mediator in permanent atrial fibrillation patients with valvular heart disease,” J. Biosci., 44, No. 1, 16 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Deng, S., Liu, S., Mo, X., et al., “Polar drift in the 1990s explained by terrestrial water storage changes,” Geophys. Res. Lett., 48, No. 7, e2020GL092114 (2021).

    Article  Google Scholar 

  • Dileone, M., Carrasco-López, M. C., Segundo-Rodriguez, J. C., et al., “Dopamine-dependent changes of cortical excitability induced by transcranial static magnetic field stimulation in Parkinson’s disease,” Sci. Rep., 7, No. 1, 4329 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinčić, M., Krstić, D. Z., Čolović, M. B., et al., “Modulation of rat synaptosomal ATPases and acetylcholinesterase activities induced by chronic exposure to the static magnetic field,” Int. J. Radiat. Biol., 94, No. 11, 1062–1071 (2018).

    Article  PubMed  Google Scholar 

  • Ding, H. M., Wang, X., Mo, W. C., et al., “Hypomagnetic fields cause anxiety in adult male mice,” Bioelectromagnetics, 40, No. 1, 27–32 (2019).

    Article  PubMed  Google Scholar 

  • Dreyer, D., Frost, B., Mouritsen, H., et al., “The Earth’s magnetic field and visual landmarks steer migratory flight behaviour in the nocturnal Australian Bogong moth,” Curr. Biol., 28, No. 13, 2160–2166.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Driessen, S., Bodewein, L., Dechent, D., et al., “Biological and health-related effects of weak static magnetic fields (1 mT) in humans and vertebrates: A systematic review,” PLoS One, 15, No. 6, e0230038 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleischmann, P. N., Grob, R., Muller, V. L., et al., “The geomagnetic field is a compass cue in Cataglyphis ant navigation,” Curr. Biol., 28, No. 9, 1440–1444 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Foley, L. E., Gegear, R. J., and Reppert, S. M., “Human cryptochrome exhibits light-dependent magnetosensitivity,” Nat. Commun., 2,356 (2011).

    Article  PubMed  Google Scholar 

  • Furukawa, S., Nagamatsu, A., Nenoi, M., et al., “Space radiation biology for ‘living in space,’” Biomed. Res. Int., 2020, 4703286 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gegear, R. J., Casselman, A., Waddell, S., and Reppert, S. M., “Cryptochrome mediates light-dependent magnetosensitivity in Drosophila,” Nature, 454, 1014–1018 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenebaum, B. and Barnes, F. (eds.), Biological and Medical Aspects of Electromagnetic Fields, CRC Press, Boca Raton (2019), 4th ed.

    Google Scholar 

  • Harrison, C. S., Luo, J. Y., Putman, N. F., et al., “Identifying global favourable habitat for early juvenile loggerhead sea turtles,” J. R. Soc. Interface, 18, No. 175, 20200799 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsu, C. Y., and Weng, Y. T., “Long-term inhibition of ferritin2 synthesis in trophocytes and oenocytes by ferritin2 double-stranded RNA ingestion to investigate the mechanisms of magnetoreception in honey bees (Apis mellifera),” PLoS One, 16, No. 8, e0256341 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa, T., Matsumoto, A., Kato, T., Jr., et al., “DCRY is a Drosophila photoreceptor protein implicated in light entrainment of circadian rhythm,” Genes Cells, 4, No. 1, 57–65 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Ivanova, P. N., Surma, S. V., Shchegolev, B. F., et al., “Influence of a weak static magnetic field on the development of rat tissue organotypic cultures,” Dokl. Akad. Nauk, 481, No. 4, 459–461 (2018).

    Google Scholar 

  • Jalilian, H., Najafi, K., Reza, M., et al., “Assessment of static and extremely low-frequency magnetic fields in the electric-powered trains,” Int. J. Occupat. Hyg., 9, No. 2, 105–112 (2017).

    Google Scholar 

  • Kaminskaya, A. N., Nikitina, E. A., Payalina, T. L., et al., “Effect of LIMK1 isoform ratio on courtship behavior in Drosophila melanogaster: a complex approach,” Ekol. Genetika, 9, No. 4, 3–14 (2011).

    Google Scholar 

  • Karabetsos, E., Kalampaliki, E., and Koutounidis, D., “Testing hybrid technology cars: Static and extremely low-frequency magnetic field measurements,” IEEE Vehic. Technol. Mag., 9, No. 4, 34–39 (2014).

    Article  Google Scholar 

  • Karki, N., Vergish, S., and Zoltovski, B. D., “Cryptochromes: photochemical and structural insight into magnetoreception,” Protein Sci., 30, No. 8, 1521–1534 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kholodov, Yu. A., Kozlov, A. N., and Gorbach, A. M., The Magnetic Fields of Biological Objects, Nauka, Moscow (1987).

    Google Scholar 

  • Kirshvink, J., Jones, D., and MacFadden, B. (eds.), Magnetite Biomineralization and Magnetoreception in Organisms [Russian translation], Mir, Moscow (1989).

    Google Scholar 

  • Kislovskii, L. D., The Universe in a Drop of Water, Belye Al’vy, Moscow (2005).

    Google Scholar 

  • Lednev, V. V., “Possible mechanism for the influence of weak magnetic fields on biological systems,” Bioelectromagnetics, 12, 71–75 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Levina, A. S., Zakharov, G. A., Shiryaeva, N. V., and Vaido, A. I., “Comparative characteristics of the behavior of rats of two strains with different thresholds of nervous system arousability in a model of spatial learning in the Morris water maze,” Zh. Vyssh. Nerv. Deyat., 68, No. 3, 366–377 (2018).

    Google Scholar 

  • Lin, W., Kirschvink, J. L., Paterson, G. A., Bazylinski, D. A., and Pan, Y., “On the origin of microbial magnetoreception,” Natl. Sci. Rev., 7, No. 2, 472–479 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Lindecke, O., Holland, R. A., Pētersons, G., and Voigt, C. C., “Corneal sensitivity is required for orientation in free-flying migratory bats,” Commun. Biol., 4, No. 1, 522 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopatina, N. G., Zachepilo, T. G., Dyuzhikova, N. A., et al., “Effects of changes in electromagnetic fields on the feeding and cognitive activity of the honey bee,” Integr. Fiziol., 1, No. 3, 231–241 (2020).

    Google Scholar 

  • Lowenstam, H. A., “Magnetite in denticle capping in recent chitons (Polyplacophora),” Geol. Soc. Am. Bull., 73, No. 4, 435–438 (1962).

    Article  CAS  Google Scholar 

  • Lozano-Soto, E., Soto-León, V., Sabbarese, S., et al., “Transcranial static magnetic field stimulation (tSMS) of the visual cortex decreases experimental photophobia,” Cephalalgia, 38, No. 8, 1493–1497 (2018).

    Article  PubMed  Google Scholar 

  • Malewski, S., Begall, S., and Burda, H., “Learned and spontaneous magnetosensitive behaviour in the Roborovski hamster (Phodopus roborovskii),” Ethology, 28, No. 6, 423–431 (2018).

    Article  Google Scholar 

  • Mamon, L. A., Bondarenko, L. V., Tret’yakova, I. V., et al., “Consequences of cellular stress in impaired synthesis of heat shock proteins in Drosophila,” Vestn. St. Peters. Gos. Univ., 24, No. 4, 94–107 (1999).

    Google Scholar 

  • McCausland, H. C. and Komeili, A., “Magnetic genes: Studying the genetics of biomineralization in magnetotactic bacteria,” PLoS Genetics, 16, No. 2, e1008499 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Medvedeva, A. V., Molotkov, D. A., Nikitina, E. A., et al., “Regulation of genetic and cytogenetic processes by the actin remodeling signaling cascade: structure of the LIMK1 gene, chromosome architecture, and learning ability in spontaneous and mutant variants of the Drosophila agnostic locus,” Genetika, 44, No. 6, 669–681 (2008).

    CAS  Google Scholar 

  • Medvedeva, A. V., Rebrova, A. V., Zalomaeva, E. S., et al., “The role of LIMK1 in dopamine and serotonin neurons in genome stability, learning, and memory in Drosophila during stress responses to geomagnetic field weakening,” Zh. Evol. Biokhim. Fiziol., 58, No. 1, 34–42 (2022).

    Google Scholar 

  • Mo, W. C., Fu, J. P., Ding, H. M., et al., “Hypomagnetic field alters circadian rhythm and increases algesia in adult male mice,” Prog. Biochem. Biophys., 42, 639–646 (2015).

    Google Scholar 

  • Mo, W. C., Zhang, Z. J., Wang, D. L., et al., “Shielding of the geomagnetic field alters actin assembly and inhibits cell motility in human neuroblastoma cells,” Sci. Rep., 6, 22624 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newton, K. C. and Kajiura, S. M., “Magnetic field discrimination, learning, and memory in the yellow stingray (Urobatis jamaicensis),” Anim. Cogn., 20, No. 4, 603–614 (2017).

    Article  PubMed  Google Scholar 

  • Nikitina, E. A., Medvedeva, A. V., Gerasimenko, M. S., et al., “Attenuation of the Earth’;s magnetic field: effects on genome transcriptional activity, learning, and memory in Drosophila melanogaster,” Zh. Vyssh. Nerv. Deyat., 67, No. 2, 246–256 (2017).

    Google Scholar 

  • Novikov, S. M., Studies of the Effects of Attenuated Magnetic Fields on Nerve Cell Functioning: PhD Disserat. Abstr., 01.04.11, Moscow (2007).

  • Novikov, V. V., Yablokova, E. V., and Fesenko, E. E., “The role of water in the effect of weak combined magnetic fields on production of reactive oxygen species (ROS) by neutrophils,” Appl. Sci, 10, 3326 (2020).

    Article  CAS  Google Scholar 

  • Okano, H., “Effects of static magnetic fields in biology: role of free radicals,” Front. Biosci., 13, 6106–25 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Patent No. 2006121842/28(023712), A Composite Material for Protection against Electromagnetic Radiation, Russian patent No. 2324989, Kuznetsov, P. A., Farmakovskii, B. V., Askinazi, A. Yu., et al., (2008).

  • Patent No. 2014125121/14, May 20, 2015, A Means for the Treatment of Trigeminal Neuralgia and Neuritis, Russian Patent No. 2551228, Lazarenko, N. N., Gerasimenko, M. Yu., Amkhadova, M. A., et al., (2015).

  • Presman, A. S., Electromagnetic Fields and Living Nature, Nauka, Moscow (1968).

    Google Scholar 

  • Qin, S., Yin, H., Yang, C., et al., “A magnetic protein biocompass,” Nat. Mater., 15, 217–226 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Ritz, T., Adem, S., and Schulten, K., “A model for photoreceptor-based magnetoreception in birds,” Biophys. J., 78, No. 2, 707–718 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roulette, J., “Russian film crew wraps space station shoot and returns to Earth,” The New York Times, October 17. 2021.

  • Saliev, T., Begimbetova, D., Masoud, A.-R., and Matkarimov, B., “Biological effects of non-ionizing electromagnetic fields: Two sides of a coin,” Prog. Biophys. Mol. Biol., 141, 25–36 (2018).

    Article  PubMed  Google Scholar 

  • Sandyk, R., “Alzheimer’s disease: improvement of visual memory and visuoconstructive performance by treatment with picotesla range magnetic fields,” Int. J. Neurosci., 76, No. 3–4, 185–225 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Sandyk, R., “Long term beneficial effects of weak electromagnetic fields in multiple sclerosis,” Int. J. Neurosci., 83, No. 1–2, 45–57 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Sandyk, R., “The influence of the pineal gland on migraine and cluster headaches and effects of treatment with picoTesla magnetic fields,” Int. J. Neurosci., 67, No. 1–4, 145–171 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Sandyk, R., Anninos, P. A., Tsagas, N., and Derpapas, K., “Magnetic fields in the treatment of Parkinson’s disease,” Int. J. Neurosci., 63, No. 1–2, 141–150 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Sarimov, R. M., Binhi, V. N., and Milyaev, V. A., “Influence of geomagnetic field compensations on human cognitive processes,” Biofizika, 53, No. 5, 856–866 (2008).

    CAS  PubMed  Google Scholar 

  • Savvateeva-Popova, E. V., Nikitina, E. A., and Medvedeva, A. V., “From neurogenetics to neuroepigenetics,” Genetika, 51, No. 5, 1–12 (2015).

    Google Scholar 

  • Savvateeva-Popova, E. V., Zhuravlev, A. V., Brázda, V., et al., “Drosophila model for the analysis of genesis of LIM-kinase 1-dependent Williams-Beuren syndrome cognitive phenotypes: INDELs, transposable elements of the Tc1/Mariner superfamily and microRNAs,” Front. Genet., 8, 123 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Scanlan, M. M., Putman, N. F., Pollock, A. M., and Noakes, D. L. G., “Magnetic map in nonanadromous Atlantic salmon,” Proc. Natl. Acad. Sci. USA, 115, No. 43, 10995–10999 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultheiss-Grassi, P. P., and Dobson, J., “Magnetic analysis of human brain tissue,” Biometals, 12, No. 1, 67–72 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Shakhparonov, V. V. and Ogurtsov, S. V., “Marsh frogs, Pelophylax ridibundus, determine migratory direction by magnetic field,” J. Comp. Physiol. A, 203, No. 1, 35–43 (2017).

    Article  Google Scholar 

  • Shiryaeva, N. V., Vaido, A. I., Pavlova, M. B., et al., “Effects of electromagnetic radiation on orientational-exploratory activity and cognitive functions in rats with contrasting nervous system arousability,” Integr. Fiziol., 1, No. 2, 126–136 (2020).

    Google Scholar 

  • Smith, K. A., Waypa, G. B., and Schumacker, P. T., “Redox signaling during hypoxia in mammalian cells,” Redox Biol., 13, 228–234 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surma, S., Stefanov, V., and Shchegolev, B., “Relief of peripheral neurogenic chronic pain by exposure to weak magnetic field,” J. Phys. Med. Rehabil. Res., 2, No. 1, 13–19 (2020).

    Google Scholar 

  • Taoka, A., Kiyokawa, A., Uesugi, C., et al., “Tethered magnets are the key to magnetotaxis: direct observations of Magnetospirillum magneticum AMB-1 show that MamK distributes magnetosome organelles equally to daughter cells,” mBio, 8, No. 4, e00679-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Temur’yants, N. A., Vladimirskii, B. M., and Tishkin, O. G., Microwave Electromagnetic Signals in the Biological World, Nauk. Dumka, Kiev (1992).

  • Tenuzzo, B., Chionna, A., Panzarini, E., et al., “Biological effects of 6 mT static magnetic fields: a comparative study in different cell types,” Bioelectromagnetics, 27, 560–577 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Ukhtomskii, A. A., Collected Works, Vol. 1, Studies of Dominant, Leningrad State University, Leningrad (1950).

  • Vadalà, M., Vallelunga, A., Palmieri, L., et al., “Mechanisms and therapeutic applications of electromagnetic therapy in Parkinson’s disease,” Behav. Brain Funct., 11, 26 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Huizen, A. V., Morton, J. M., Kinsey, L. J., et al., “Weak magnetic fields alter stem cell-mediated growth,” Sci. Adv., 5, No. 1, eaau7201 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Vasilieva, S. A., Tokmacheva, E. V., Medvedeva, A. V., et al., “The role of parental origin of chromosomes in the instability of the somatic genome in Drosophila brain cells and memory trace formation in norm and stress,” Cell Tiss. Biol., 14, No. 3, 178–189 (2020).

    Article  Google Scholar 

  • Vernadskii, V. I., The Biosphere and Noosphere, Rol’f, Could (2002).

  • Vidotto, A. A., “The evolution of the solar wind,” Living Rev. Sol. Phys., 18, No. 1, 3 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Viudes-Sarrion, N., Velasco, E., Delicado-Miralles, M., and Lillo-Navarro, C., “Static magnetic stimulation in the central nervous system: a systematic review,” Neurol. Sci., 42, No. 5, 1733–1749 (2021).

    Article  PubMed  Google Scholar 

  • Voeikov, V. L., Fundamental Role of Water in Bioenergetics. Biophotonic and Coherent Systems in Biology, Springer, New York (2006), pp. 89–104.

    Google Scholar 

  • Walcott, C., Gould, J. L., and Kirschvink, J. L., “Pigeons have magnets,” Science, 205, No. 4410, 1027–1029 (1979).

    Article  CAS  PubMed  Google Scholar 

  • Wan, G. J., Jiang, S. L., Zhang, M., et al., “Geomagnetic field absence reduces adult body weight of amigratory insect by disrupting feeding behavior and appetite regulation,” Insect Sci., 28, 251–260 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Wang, C. X., Hilburn, I. A., Wu, D. A., et al., “Transduction of the geomagnetic field as evidenced from alpha-band activity in the human brain,” eNeuro, 6, No. 2, ENEURO.0483-18.2019 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, Z., Che, P. L., Du, J., et al., “Static magnetic field exposure reproduces cellular effects of the Parkinson’s disease drug candidate ZM241385,” PLoS One, 5, No. 11, e13883 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiltschko, R. and Wiltschko, W., “Magnetoreception in birds,” J. R. Soc. Interface, 16, No. 158, 20190295 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiltschko, R. and Wiltschko, W., Magnetic Orientation in Animals, Springer (1995).

    Book  Google Scholar 

  • Xue, X., Ali, Y. F., Luo, W., et al., “Biological effects of space hypomagnetic environment on circadian rhythm,” Front. Physiol., 12, 643943 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yost, M. G. and Liburdy, R. P., “Time-varying and static magnetic fields act in combination to alter calcium signal transduction in the lymphocyte,” FEBS Lett., 296, No. 2, 117–122 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Zalomaeva, E. S., Ivanova, P. N., Chalisova, N. I., et al., “Effects of a weak static magnetic field and oligopeptides on cell proliferation and cognitive functions in organisms of various species,” Zh. Tekhn. Fiz., 90, No. 10, 1656–1662 (2020).

    Google Scholar 

  • Zamoshchina, T. A., Krivova, N. A., Khodanovich, M. Yu., et al., “Influence of simulation of the hypomagnetic conditions of deep space flight on the rhythmic organization of behavioral activity in rats,” Aviakosm. Ekolog. Med., 46, No. 1, 17–23 (2012).

    CAS  PubMed  Google Scholar 

  • Zhadin, M. N., “Review of Russian literature on biological action of DC and low-frequency AC magnetic fields,” Bioelectromagnetics, 22, 27–45 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, B. and Tian, L., “Reactive oxygen species: Potential regulatory molecules in response to hypomagnetic field exposure,” Bioelectromagnetics, 41, No. 8, 573–580 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, B., Lu, H., Xi, W., et al., “Exposure to hypomagnetic field space for multiple generations causes amnesia in Drosophila melanogaster,” Neurosci. Lett., 371, 190–195 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, B., Wang, L., Zhan, A., et al., “Long-term exposure to a hypomagnetic field attenuates adult hippocampal neurogenesis and cognition,” Nat. Commun., 12, 1174 (2021a).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, H. T., Zhang, Z. J., Mo, W. C., et al., “Shielding of the geomagnetic field reduces hydrogen peroxide production in human neuroblastoma cell and inhibits the activity of CuZn superoxide dismutase,” Protein Cell, 8, 527–537 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., Yarema, K. J., and Xu, A., Biological Effects of Static Magnetic Fields, Springer Nature (2019), 1st ed.

    Google Scholar 

  • Zhang, Z., Xue, Y., Yang, J., et al., “Biological effects of hypomagnetic field: Ground-based data for space exploration,” Bioelectromagnetics, 42, 516–531 (2021b).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Nikitina.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 72, No. 6, pp. 783–799, November–December, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitina, E.A., Vasileva, S.A., Shchegolev, B.F. et al. Weak Static Magnetic Field: Actions on the Nervous System. Neurosci Behav Physi 53, 542–553 (2023). https://doi.org/10.1007/s11055-023-01453-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01453-1

Keywords

Navigation