Skip to main content

Advertisement

Log in

Neurophysiology of the Flickering Light Perception

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The visual analyzer is the dominant sense organ in many mammals, including humans. Aggressive types of visual stimulation, such as rhythmic light stimulation (flashing light) can provoke large-scale malfunctions in the central nervous system. Photosensitivity is an abnormal form of sensitivity to such visual stimulation and is detected on the electroencephalogram in the form of photoparoxysmal responses. This article reviews these phenomena and the proposed mechanisms underlying them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Bondarko, M. V. Danilova, N. N. Krasil’nikov, et al., Spatial Vision, Nauka, St. Petersburg (1999), ISBN: 5-02-026120-X.

  2. N. S. Merkul’eva, “Conducting channels of the visual system. Basic Classification,” Zh. Vyssh. Nerv. Deyat., 69, No. 5, 541 (2019).

  3. N. S. Merkul’eva, “Conducting channels of the visual system. A third conducting channel,” Zh. Vyssh. Nerv. Deyat., 71, No. 6, 782 (2021).

  4. N. S. Merkul’eva, R. S. Ivanov, and I. V. Bondar’, “Development of cortical columns in field 18 in conditions of rhythmic light stimulation,” Sens. Sistemy, 27, No. 4, 306 (2013).

  5. N. S. Merkul’eva, R. S. Ivanov, and I. V. Bondar’, “Development of systems of functional modules in the visual cortex of kittens in conditions of binocular rhythmic light stimulation of different durations,” Zh. Vyssh. Nerv. Deyat., 65, No. 1, 14 (2015).

  6. N. S. Merkul’eva, and F. N. Makarova, “Effects of short-term and long-term stimulation with flashing light on the cytochrome oxidase module system of layer IV of the primary visual cortex in kittens,” Zh. Vyssh. Nerv. Deyat., 94, No. 5, 557 (2008).

  7. N. S. Merkul’eva, A. A. Mikhalkin, N. I. Nikitina, and F. N. Makarova, “Development of connections between the primary visual cortex and the movement analysis center: the role of the visual environment,” Morfologiya, 140, No. 6, 24 (2011).

  8. N. S. Merkul’eva, A. A. Mikhalkin, N. I. Nikitina, et al., “Changes in the formation of Y neurons in the visual system of a cat in early postnatal ontogenesis under the influence of binocular rhythmic light stimulation,” Morfologiya, 145, No. 1, 13 (2014).

  9. A. R. Simakova, and I. L. Suleimanova, “A current approach to the diagnosis of normal pressure glaucoma, taking into account the characteristics of its pathogenesis “ Oftalm. Vedom., 13, No. 1, 53–64 (2020).

  10. Yu. E. Shelepin, Introduction to Neuroscience, Troitskii Most, St. Petersburg (2017), ISBN: 9785604032718.

  11. W. C. Abraham, “How long will long-term potentiation last?” Philos. Trans. R. Soc. Lond. B Biol. Sci., 358, No. 1432, 735 (2003).

  12. E. D. Adrian and B. H. C. Matthews, “The Berger rhythm: potential changes from the occipital lobes in man,” Brain, 57, No. 1, 355 (1934).

  13. G. M. Anlezark, D. H. Blackwood, B. S. Meldrum, et al., “Comparative assessment of dopamine agonist aporphines as anticonvulsants in two models of reflex epilepsy,” Psychopharmacology (Berlin), 81, No. 2, 135 (1983).

  14. E. Anyanwu, G. F. Harding, and A. Edson, “The involvement of serotonin (5-hydroxytryptamine) in photosensitive epilepsy,” J. Basic Clin. Physiol. Pharmacol., 5, No. 3–4, 179 (1994).

  15. R. Appleton, M. Beirne, and B. Acomb, “Photosensitivity in juvenile myoclonic epilepsy,” Seizure, 9, No. 2, 108 (2000).

  16. J. Artieda and J. A. Obeso, “The pathophysiology and pharmacology of photic cortical reflex myoclonus,” Ann. Neurol., 34, No. 2, 175 (1993).

  17. E. Balzamo, J. Bert, C. Ménini, and R. Naquet, “Excessive light sensitivity in Papio papio: its variation with age, sex, and geographic origin,” Epilepsia, 16, No. 2, 269 (1975).

  18. E. Başar, C. Başar-Eroğlu, B. Güntekin, and G. G. Yener, “Brain’s alpha, beta, gamma, delta, and theta oscillations in neuropsychiatric diseases: proposal for biomarker strategies,” Suppl. Clin. Neurophysiol., 62, 9 (2013).

    Google Scholar 

  19. A. C. Bender, R. P. Morse, R. C. Scott, et al., “SCN1A mutations in Dravet syndrome: impact of interneuron dysfunction on neural networks and cognitive outcome,” Epilepsy Behav., 23, No. 3, 177 (2012).

  20. H. Berger, ”Ueber das Elektroenkephalogramm des Menschen,” Archiv Psychiatr. Nervenkrankh., 87, 527 (1929).

    Article  Google Scholar 

  21. A. Berthoz, M. Jeannerod, F. Vital-Durand, and J. L. Oliveras, “Development of vestibulo-ocular responses in visually deprived kittens,” Exp. Brain Res., 23, No. 4, 425 (1975).

  22. R. G. Bickford, D. Daily, and H. M. Keith, “Convulsive effects of light stimulation in children,” AMA Am. J. Dis. Child., 86, No. 2, 170 (1953).

  23. C. D. Binnie, C. E. Darby, and R. A. de Korte, and A. J. Wilkins, “Self-induction of epileptic seizures by eye closure: incidence and recognition,” J. Neurol. Neurosurg. Psych., 43, No. 5, 386 (1980).

  24. C. D. Binnie, O. Estevez, D. G. Kasteleijn-Nolst Trenité, and A. Peters, “Colour and photosensitive epilepsy,” Electroencephalogr. Clin. Neurophysiol., 58, No. 5, 387 (1984).

  25. C. Blakemore and D. J. Price, “Effects of dark-rearing on the development of area 18 of the cat’s visual cortex,” J. Physiol., 384, 293 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. S. Brailowsky, C. Silva-Barrat, C. Ménini, et al., “Effects of localized, chronic GABA infusions into different cortical areas of the photosensitive baboon, Papio papio,” Electroencephalogr. Clin. Neurophysiol., 72, No. 2, 147 (1989).

  27. H. Brandt, S. Brandt, and K. Vollmond, “EEG response to photic stimulation in 120 normal children,” Epilepsia, 2, 313 (1961).

    CAS  PubMed  Google Scholar 

  28. F. Brigo, L. G. Bongiovanni, R. Nardone, et al., “Visual cortex hyperexcitability in idiopathic generalized epilepsies with photosensitivity: a TMS pilot study,” Epilepsy Behav., 27, No. 2, 301 (2013).

  29. P. Buisseret and M. Imbert, “Visual cortical cells: their developmental properties in normal and dark reared kittens,” J. Physiol., 255, No. 2, 511 (1976).

  30. G. Capovilla, F. Beccaria, A. Romeo, et al., “Effectiveness of a particular blue lens on photoparoxysmal response in photosensitive epileptic patients,” Ital. J. Neurol. Sci, 20, No. 3, 161 (1999).

  31. A. N. Carlsen, P. M. Kennedy, K. G. Anderson, et al., “Identifying visual-vestibular contributions during target-directed locomotion,” Neurosci. Lett., 384, No. 3, 217 (2005).

  32. V. A. Casagrande, “A third parallel visual pathway to primate area VI,” Trends Neurosci., 17, No. 7, 305 (1994).

  33. C. Cepeda, P. Worms, K. G. Lloyd, and R. Naquet, “Action of progabide in the photosensitive baboon, Papio papio,” Epilepsia, 23, No. 5, 463 (1982).

  34. L. M. Chalupa and R. W. Rhoades, “Modification of visual response properties in the superior colliculus of the golden hamster following stroboscopic rearing,” J. Physiol., 274, 571 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. B. Chen, X. J. Hu, and R. G. Pourcho, “Morphological diversity in terminals of W-type retinal ganglion cells at projection sites in cat brain,” Vis. Neurosci., 13, No. 3, 449 (1996).

  36. K. H. Chiappa, R. A. Hill, F. Huang-Hellinger, and B. G. Jenkins, “Photosensitive epilepsy studied by functional magnetic resonance imaging and magnetic resonance spectroscopy,” Epilepsia, 40, No. 4, 3 (1999).

  37. L. Claes, J. Del-Favero, B. Ceulemans, et al., “De Novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy,” Am. J. Hum. Genet., 68, No. 6, 1327 (2001).

  38. S. Coelli, E. Visani, G. Tacchino, et al., “Central alpha bicoherence is reduced in photosensitive subjects,” in: XV Mediterranean Conference on Medical and Biological Engineering and Computing – Medicon 2019, J. Henriques et al. (eds.), IFMBE Proceedings, Springer, Champaign (2019), Vol. 76, https://doi.org/https://doi.org/10.1007/978-3-030-31635-8_136.

  39. M. S. Costa and L. R. Britto, “Calbindin immunoreactivity delineates the circadian visual centers of the brain of the common marmoset (Callithrix jacchus),” Brain Res. Bull., 43, No. 4, 369 (1997).

  40. J. Cremieux, G. A. Orban, J. Duysens, and B. Amblard, “Response properties of area 17 neurons in cats reared in stroboscopic illumination,” J. Neurophysiol., 57, No. 5, 1511 (1987).

  41. L. Croll, C. A. Szabo, N. Abou-Madi, and O. Devinsky, “Epilepsy in nonhuman primates,” Epilepsia, 60, No. 8, 1526 (2019).

  42. J. M. Crook, B. Lange-Malecki, B. B. Lee, and A. Valberg, “Visual resolution of macaque retinal ganglion cells,” J. Physiol., 396, 205 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. M. Cynader, N. Berman, and A. Hein, “Cats reared in stroboscopic illumination: effects on receptive fields in visual cortex,” Proc. Natl. Acad. Sci. USA, 70, No. 5, 1353 (1973).

  44. M. Cynader, N. Berman, and A. Hein, “Recovery of function in cat visual cortex following prolonged deprivation,” Exp. Brain Res., 25, No. 2, 139 (1976).

  45. E. A. da Silva, R. A. Müller, D. C. Chugani, et al., “Brain activation during intermittent photic stimulation: a [15O]-water PET study on photosensitive epilepsy,” Epilepsia, 40, No. 4, 17 (1999).

  46. D. M. Dacey and B. B. Lee, “The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type,” Nature, 367, No. 6465, 731 (1994).

  47. M. A. Danesi, “Photoparoxysmal discharges among patients investigated after a single seizure,” Electroencephalogr. Clin. Neurophysiol., 67, No. 6, 588 (1987).

  48. P. R. M. de Bittencourt, “Photosensitivity: the magnitude of the problem,” Epilepsia, 45, No. 1, 1 (2004).

  49. G. J. de Haan, D. K. Trenité, H. Stroink, et al., “Monozygous twin brothers discordant for photosensitive epilepsy: first report of possible visual priming in humans,” Epilepsia, 46, No. 9, 1545 (2005).

  50. C. G. F. de Kovel, D. Pinto, U. Tauer, et al., “Whole-genome linkage scan for epilepsy-related photosensitivity: a mega-analysis,” Epilepsy Res., 89, No. 2–3, 286 (2010).

  51. F. M. de Monasterio and P. Gouras, “Functional properties of ganglion cells of the rhesus monkey retina,” J. Physiol., 251, No. 1, 167 (1975).

  52. A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol., 357, 241 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. H. Doose, “Genetic EEG traits in the pathogenesis of the epilepsies,” J. Epilepsy, 10, 97 (1997).

    Article  Google Scholar 

  54. H. Doose, K. Giesler, and E. Volzke, “Observations in photosensitive children with and without epilepsy,” Z. Kinderheilk., 107, No. 1, 26 (1969).

  55. H. Doose and S. Waltz, “Photosensitivity – genetics and clinical significance,” Neuropediatrics, 24, No. 5, 249 (1993).

  56. O. Eeg-Olofsson, “The development of the electroencephalogram in normal adolescents from the age of 16 through 21 years,” Neuropadiatrie, 3, No. 1, 11 (1971).

  57. Y. Feltrer, T. Strike, E. Flach, and A. Routh, “Epilepsy in Bolivian black-capped squirrel monkeys Saimiri boliviensis at ZSL London Zoo: management and implications for captive-breeding program,” Int. Zoo Yb., 47, 200 (2013).

    Article  Google Scholar 

  58. M. Fischer-Williams, M. Poncet, D. Riche, and R. Naquet, “Lightinduced epilepsy in the baboon, Papio papio: cortical and depth recordings,” Electroencephalogr. Clin. Neurophysiol., 25, No. 6, 557 (1968).

  59. R. S. Fisher, G. Harding, G. Erba, et al., “Photic- and pattern-induced seizures: a review for the Epilepsy Foundation of America Working Group,” Epilepsia, 46, No. 9, 1426 (2005).

  60. J. M. Flandrin, H. Kennedy, and B. Ambland, “Effects of stroboscopic rearing on the binocularity and directionality of cat superior colliculus neurons,” Brain Res., 101, No. 3, 576 (1976).

  61. M. Funatsuka, M. Fujita, S. Shirakawa, et al., “Analysis of photo- pattern sensitivity in patients with pokemon-related symptoms,” Pediatr. Neurol., 28, No. 1, 28 (2003).

  62. E. C. Galizia, C. T. Myers, C. Leu, et al., “CHD2 variants are a risk factor for photosensitivity in epilepsy,” Brain, 138, No. 5, 1198 (2015).

  63. H. Gastaut and J. Hunter, “An experimental study of the mechanism of photic activation in idiopathic epilepsy,” Electroencephalogr. Clin. Neurophysiol, 2, No. 3, 263 (1950).

  64. H. Gastaut, H. Regis, and F. Bostem, “Attacks provoked by television, and their mechanism,” Epilepsia, 3, 438 (1962).

    Article  Google Scholar 

  65. K. K. Ghosh and U. Grünert, “Synaptic input to small bistratified (blue-ON) ganglion cells in the retina of a new world monkey, the marmoset Callithrix jacchus,” J. Comp. Neurol., 413, No. 3, 417 (1999).

  66. G. V. Goddard, D. C. McIntyre, and C. K. Leech, “A permanent change in brain function resulting from daily electrical stimulation,” Exp. Neurol., 25, No. 3, 295 (1969).

  67. C. M. Gray, P. König, A. K. Engel, and W. Singer, “Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties,” Nature, 338, No. 6213, 334 (1989).

  68. C. M. Gray and W. Singer, “Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex,” Proc. Natl. Acad. Sci. USA, 86, No. 5, 1698 (1989).

  69. R. Guerrini, P. Bonanni, L. Parmeggiani, et al., “Induction of partial seizures by visual stimulation. Clinical and electroencephalographic features and evoked potential studies,” Adv. Neurol., 75, 159 (1998).

    CAS  PubMed  Google Scholar 

  70. M. D. Gyurkó, P. Csermely, C. Sőti, and A. Steták, “Distinct roles of the RasGAP family proteins in C elegans associative learning and memory,” Sci. Rep., 5, 15084 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  71. G. Harding, “Photosensitivity: A vestigial echo? The first Grey Walter lecture,” Int. J. Psychophysiol., 16, No. 2–3, 273 (1994).

  72. G. Harding, P. Harding, and A. Wilkins, “Wind turbines, flicker, and photosensitive epilepsy: Characterizing the flashing that may precipitate seizures and optimizing guidelines to prevent them,” Epilepsia, 49, No. 6, 1095 (2008).

  73. G. F. Harding and F. Fylan, “Two visual mechanisms of photosensitivity,” Epilepsia, 40, No. 10, 1446 (1999).

  74. G. F. Harding and P. F. Harding, “Televised material and photosensitive epilepsy,” Epilepsia, 40, No. 4, 65 (1999).

  75. G. F. A. Harding and P. M. Jeavons, Photosensitive Epilepsy, MacKeith Press, London (1994).

  76. L. R. Harris and M. Cynader, “The eye movements of the darkreared cat,” Exp. Brain Res., 44, No. 1, 41 (1981).

  77. S. H. C. Hendry and R. C. Reid, “The koniocellular pathway in primate vision,” Annu. Rev. Neurosci., 23, 127 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. S. H. C. Hendry and T. Yoshioka, “A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus,” Science, 264, No. 5158, 575 (1994).

  79. D. Hermes, D. G. A. Kasteleijn-Nolst Trenité, and J. Winawer, “Gamma oscillations and photosensitive epilepsy,” Curr. Biol., 27, No. 9, R336 (2017).

  80. K. M. Herrlin, “EEG with photic stimulation: a study of children with manifest or suspected epilepsy,” Electroencephalogr. Clin. Neurophysiol., 6, No. 4, 573 (1954).

  81. C. S. Herrmann, “Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena,” Exp. Brain Res., 137, No. 3–4, 346 (2001).

  82. Y. Hishikawa, J. Yamamoto, E. Furuya, et al., “Photosensitive epilepsy: relationships between the visual evoked responses and the epileptiform discharges induced by intermittent photic stimulation,” Electroencephalogr. Clin. Neurophysiol., 23, No. 4, 320 (1967).

  83. A. L. Humphrey and A. B. Saul, “Strobe rearing reduces direction selectivity in area 17 by altering spatiotemporal receptive-field structure,” J. Neurophysiol., 80, No. 6, 2991 (1998).

  84. S. Ishida, Y. Yamashita, T. Matsuishi, et al., “Photosensitive seizures provoked while viewing “pocket monsters,” a made-for-television animation program in Japan,” Epilepsia, 39, No. 12, 1340 (1998).

  85. E. Kaplan, K. Purpura, and R. M. Shapley, “Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus,” J. Physiol., 391, 267 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. E. Kaplan and R. M. Shapley, “The primate retina contains two types of ganglion cells, with high and low contrast sensitivity,” Proc. Natl. Acad. Sci. USA, 83, No. 8, 2755 (1986).

  87. O. Kaplan, M. Pekmez, Y. Akıncı, et al., “The relationship between DIRAS1 gene and idiopathic generalized epilepsy in the Turkish population,” Gene Rep., 23, 101177 (2021).

    Article  CAS  Google Scholar 

  88. The Importance of Photosensitivity for Epilepsy, D. G. Kasteleijn- Nolst Trenité (ed.), Springer (2021), ISBN: 9783319050799, https://link.springer.com/book/10.1007/978-3-319-05080-5.

  89. D. G. Kasteleijn-Nolst Trenité, “Photosensitivity and Epilepsy,” in: Clinical Electroencephalography, O. Mecarelli (ed.) (2019), 1st ed., ISBN: 978-3-030-04573-9.

  90. D. G. Kasteleijn-Nolst Trenité, A. M. da Silva, S. Ricci, et al., “Videogame epilepsy: a European study,” Epilepsia, 40, No. 4, 70 (1999).

  91. D. G. Kasteleijn-Nolst Trenité, R. Guerrini, C. D. Binnie, and P. Genton, “Visual sensitivity and epilepsy: a proposed terminology and classification for clinical and EEG phenomenology,” Epilepsia, 42, No. 5, 692 (2001).

  92. H. Kennedy and G. A. Orban, “Response properties of visual cortical neurons in cats reared in stroboscopic illumination,” J. Neurophysiol., 49, No. 3, 686 (1983).

  93. E. K. Killam, L. G. Stark, and K. F. Killam, “Photic stimulation in three species of baboons,” Life Sci., 6, No. 15, 1569 (1967).

  94. K. F. Killam, E. K. Killam, and R. Naquet, “An animal model of light sensitive epilepsy,” Electroencephalogr. Clin. Neurophysiol., 22, No. 6, 497 (1967).

  95. K. F. Killam, R. Naquet, and J. Bert, “Paroxysmal responses to intermittent light stimulation in a population of baboons (Papio papio),” Epilepsia, 7, No. 3, 215 (1966).

  96. W. Klimesch, P. Sauseng, and S. Hanslmayr, “EEG alpha oscillations: the inhibition-timing hypothesis,” Brain Res. Rev., 53, No. 1, 63 (2007).

  97. M. A. Koontz, R. W. Rodieck, and S. G. Farmer, “The retinal projection to the cat pretectum,” J. Comp. Neurol., 236, No. 1, 42 (1985).

  98. K. E. Kratz, S. M. Sherman, and R. Kalil, “Lateral geniculate nucleus in dark-reared cats: loss of Y cells without changes in cell size,” Science, 2, No. 4387, 1353 (1979).

  99. J. Kremers, “Spatial and temporal response properties of the major retino-geniculate pathways of Old and New World monkeys,” Doc. Ophthalmol., 95, No. 3–4, 229 (1998).

  100. P. Lakatos, J. Gross, and G. Thut, “A new unifying account of the roles of neuronal entrainment,” Curr. Biol., 29, No. 18, 890-R905 (2019).

    Article  Google Scholar 

  101. B. B. Lee, H. Sun, and A. Valberg, “Segregation of chromatic and luminance signals using a novel grating stimulus,” J. Physiol., 589, No. 1, 59 (2011).

  102. P. Lennie, “Parallel visual pathways: a review,” Vision Res., 20, No. 7, 561 (1980).

  103. M. Livingstone and D. Hubel, “Segregation of form, color, movement, and depth: anatomy, physiology, and perception,” Science, 240, No. 4853, 740 (1988).

  104. C. Lo, S. Shorvona, M. Davis, H. Houlden, V. Gibbons, et al., “Genetic linkage analysis of a large family with photoparoxysmal response,” Epilepsy Res., 99, No. 1–2, 38 (2012).

  105. R. C. Malenka and M. F. Bear, “LTP and LTD: an embarrassment of riches,” Neuron, 44, No. 1, 5 (2004).

  106. G. Mandl, G. Melvill Jones, and M. Cynader, “Adaptability of the vestibulo-ocular reflex to vision reversal in strobe reared cats,” Brain Res., 209, No. 1, 35 (1981).

  107. P. R. Martin and S. G. Solomon, “The koniocellular whiteboard,” J. Comp. Neurol., 527, No. 3, 505 (2018).

  108. A. Martins da Silva and B. Leal, “Photosensitivity and epilepsy: Current concepts and perspectives-A narrative review,” Seizure, 50, 209 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. B. Meldrum and R. Horton, “Blockade of epileptic responses in the photosensitive baboon, Papio papio, by two irreversible inhibitors of GABA-transaminase, gamma-acetylenic GABA (4-amino-hex-5-ynoic acid) and gamma-vinyl GABA (4-amino-hex-5-enoic acid),” Psychopharmacology (Berlin), 59, No. 1, 47–50 (1978).

    Article  CAS  Google Scholar 

  110. G. Melvill Jones, G. Mandl, M. Cynader, and J. S. Outerbridge, “Eye oscillations in strobe reared cats,” Brain Res., 209, No. 1, 47 (1981).

  111. W. H. Merigan, “Chromatic and achromatic vision of macaques: role of the P pathway,” J. Neurosci., 9, No. 3, 776 (1989).

  112. W. H. Merigan and L. M. Katz, “Spatial resolution across the macaque retina,” Vision Res., 30, No. 7, 985 (1990).

  113. W. H. Merigan and J. H. Maunsell, “How parallel are the primate visual pathways?” Annu. Rev. Neurosci., 16, 369 (1993).

    Article  CAS  PubMed  Google Scholar 

  114. N. Merkulyeva, A. Mikhalkin, and I. Bondar, “Influence of rhythmic light stimulation on orientation signal within visual cortex columns in the cat,” Acta Neurobiol. Exp. (Wars.), 79, No. 3, 225 (2019).

  115. E. Mervaala, F. Andermann, L. F. Quesney, and M. Krelina, “Common dopaminergic mechanism for epileptic photosensitivity in progressive myoclonus epilepsies,” Neurology, 40, No. 1, 53 (1990).

  116. A. Miyamoto, M. Itoh, K. Hayashi, et al., “Diurnal secretion profile of melatonin in epileptic children with or without photosensitivity and an observation of altered circadian rhythm in a case of completely under dark living condition,” No To Hattatsu. 25, No. 5, 405 (1993).

  117. F. Moeller, H. R. Siebner, S. Wolff, et al., “Mapping brain activity on the verge of a photically induced generalized tonic-clonic seizure,” Epilepsia, 50, No. 6, 1632 (2009).

  118. G. D. Mower, J. L. Burchfiel, and F. H. Duffy, “The effects of darkrearing on the development and plasticity of the lateral geniculate nucleus,” Brain Res., 227, No. 3, 418 (1981).

  119. R. P. Najjar and J. M. Zeitzer, “Temporal integration of light flashes by the human circadian system,” J. Clin. Invest., 126, No. 3, 938 (2016).

  120. R. Naquet, L. Fegersten, and J. Bert, “Seizure discharges localized to the posterior cerebral regions in man provoked by intermittent photic stimulation,” Electroencephalogr. Clin. Neurophysiol., 12, 305 (1960).

    Article  CAS  PubMed  Google Scholar 

  121. R. Naquet, K. F. Killam, and J. M. Rhodes, “Flicker stimulation with chimpanzees,” Life Sci., 6, No. 15, 1575 (1967).

  122. R. Naquet, C. Menini, D. Riche, et al., “Photic epilepsy problems raised in man and animals,” Ital. J. Neurol. Sci, 8, No. 5, 437 (1987).

  123. J. J. Nassi and E. M. Callaway, “Parallel processing strategies of the primate visual system,” Nat. Rev. Neurosci., 10, No. 5, 360 (2009).

  124. M. I. Nekhorocheff, “La stimulation lumineuse inttermitente chez l’énfant normal,” Rev. Neurol. (Paris), 83, No. 6, 601 (1950).

  125. C. R. Olson and J. D. Pettigrew, “Single units in visual cortex of kittens reared in stroboscopic illumination,” Brain Res., 70, No. 2, 189 (1974).

  126. J. Parra, S. N. Kalitzin, J. Iriarte, et al., “Gamma-band phase clustering and photosensitivity: is there an underlying mechanism common to photosensitive epilepsy and visual perception?” Brain, 126, No. 5, 1164 (2003).

  127. T. Pasternak and L. J. Leinen, “Pattern and motion vision in cats with selective loss of cortical directional selectivity,” J. Neurosci., 6, No. 4, 938 (1986).

  128. T. Pasternak, J. Movshon, and W. H. Merigan, “Creation of direction selectivity in adult strobe-reared cats,” Nature, 292, No. 5826, 834 (1981).

  129. T. Pasternak, R. A. Schumer, M. S. Gizzi, and J. Movshon, “Abolition of visual cortical direction selectivity affects visual behavior in cats,” Exp. Brain Res., 61, No. 1, 214 (1985).

  130. M. A. Pastor, J. Artieda, J. Arbizu, et al., “Human cerebral activation during steady-state visual-evoked responses,” J. Neurosci., 23, No. 37, 11621 (2003).

  131. E. Paul and C. Paul, Psychological Healing: A Historical and Clinical Study by Pierre Janet, Translated by Eden and Cedar Paul, George Allen & Unwin, Ltd., London; The Macmillan Company, New York (1925).

  132. H. E. Pearson, “Frequency specific effects of stroboscopic rearing in the visual cortex of the rabbit,” Brain Res., 283, No. 2–3, 187 (1983).

  133. H. E. Pearson and E. H. Murphy, “Effects of stroboscopic rearing on the response properties and laminar distribution of single units in the rabbit superior colliculus,” Brain Res., 285, No. 3, 241 (1983).

  134. G. Perry, L. M. Brindley, S. D. Muthukumaraswamy, et al., “Evidence for increased visual gamma responses in photosensitive epilepsy,” Epilepsy Res., 108, No. 6, 1076 (2014).

  135. D. Pinto, B. Westland, G.-J. de Haan, et al., “Genome-wide linkage scan of epilepsy-related photoparoxysmal electroencephalographic response: evidence for linkage on chromosomes 7q32 and 16p13,” Hum. Mol. Genet., 14, No. 1, 171 (2005).

  136. M. Pu, “Dendritic morphology of cat retinal ganglion cells projecting to suprachiasmatic nucleus,” J. Comp. Neurol., 414, No. 2, 267 (1999).

  137. K. Purpura, E. Kaplan, and R. M. Shapley, “Background light and the contrast gain of primate P and M retinal ganglion cells,” Proc. Natl. Acad. Sci. USA, 85, No. 12, 4534 (1988).

  138. L. F. Quesney, “Pathophysiology of generalized photosensitive epilepsy in the cat,” Epilepsia, 25, No. 1, 61 (1984).

  139. L. F. Quesney, F. Andermann, and P. Gloor, “Dopaminergic mechanism in generalized photosensitive epilepsy,” Neurology, 31, No. 12, 1542 (1981).

  140. M. Quigg, “Circadian rhythms: interactions with seizures and epilepsy,” Epilepsy Res., 42, No. 1, 43 (2000).

  141. J. A. Quirk, D. R. Fish, S. J. Smith, et al., “Incidence of photosensitive epilepsy: a prospective national study,” Electroencephalogr. Clin. Neurophysiol., 95, No. 4, 260 (1995).

  142. G. Rager and W. Singer, “The response of cat visual cortex to flicker stimuli of variable frequency,” Eur. J. Neurosci., 10, No. 5, 1856 (1998).

  143. R. J. Reiter, “The melatonin rhythm: both a clock and a calendar,” Experientia, 49, No. 8, 654 (1993).

  144. C. E. Riva, B. Falsini, and E. Logean, “Flicker-evoked responses of human optic nerve head blood flow: luminance versus chromatic modulation,” Invest. Ophthalmol. Vis. Sci., 42, No. 3, 756 (2001).

  145. C. E. Riva, S. Harino, R. D. Shonat, and B. L. Petrig, “Flicker evoked increase in optic nerve head blood flow in anesthetized cats,” Neurosci. Lett., 128, No. 2, 291 (1991).

  146. S. Sakai, H. Baba, M. Sato, and J. A. Wada, “Effect of DN-1417 on photosensitivity and cortically kindled seizure in Senegalese baboons, Papio papio,” Epilepsia, 32, No. 1, 16 (1991).

  147. P. H. Schiller and N. K. Logothetis, “The color-opponent and broadband channels of the primate visual system,” Trends Neurosci., 13, No. 10, 392 (1990).

  148. P. H. Schiller and J. G. Malpeli, “Properties and tectal projections of monkey retinal ganglion cells,” J. Neurophysiol., 40, No. 2, 428 (1977).

  149. K. E. Schmidt, W. Singer, and S. Lowel, “Binocular phasic coactivation does not prevent ocular dominance segregation,” Front. Biosci., 13, 3381 (2008).

    Article  PubMed  Google Scholar 

  150. K. R. Sherman and E. L. Keller, “Vestibulo-ocular reflexes of adventitiously and congenitally blind adults,” Invest. Ophthalmol. Vis. Sci., 27, No. 7, 1154 (1986).

  151. H. Shibasaki and R. Neshige, “Photic cortical reflex myoclonus,” Ann. Neurol., 22, No. 2, 252 (1987).

  152. S. Shirakawa, M. Funatsuka, M. Osawa, et al., “Study of the effect of color photostimulation from a cathode-ray tube (CRT) display on photosensitive patients: The effect of alternating red–cyan flicker stimulation,” Epilepsia, 42, No. 7, 922 (2001).

  153. M. N. Shouse and W. Ryan, “Thalamic kindling: electrical stimulation of the lateral geniculate nucleus produces photosensitive grand mal seizures,” Exp. Neurol., 86, No. 1, 18 (1984).

  154. L. C. Silveira, C. A. Saito, B. B. Lee, et al., “Morphology and physiology of primate M- and P-cells,” Prog. Brain Res., 144, 21 (2004).

    Article  PubMed  Google Scholar 

  155. M. Siniatchkin, F. Moeller, A. Shepherd, et al., “Altered cortical visual processing in individuals with a spreading photoparoxysmal EEG response,” Eur. J. Neurosci., 26, No. 2, 529 (2007).

  156. R. Sokoliuk and R. VanRullen, “The flickering wheel illusion: when α rhythms make a static wheel flicker,” J. Neurosci., 33, No. 33, 13498 (2013).

  157. P. D. Spear, L. Tong, M. A. McCall, and T. Pasternak, “Developmentally induced loss of direction-selective neurons in the cat’s lateral suprasylvian visual cortex,” Brain Res., 352, No. 2, 281 (1985).

  158. R. G. Stevens and M. S. Rea, “Light in the built environment: potential role of circadian disruption in endocrine disruption and breast cancer,” Cancer Causes Control, 12, No. 3, 279 (2001).

  159. H. Sun, Y. Zhang, X. Liu, et al., “Analysis of SCN1A mutation and parental origin in patients with Dravet syndrome,” J. Hum. Genet., 55, No. 7, 421 (2010).

  160. A. C. Szabó, K. D. Knapea, M. M. Lelandb, and J. T. Williams, “Electroclinical phenotypes in a pedigreed baboon colony,” Epilepsy Res., 105, No. 1–2, 77 (2013).

  161. C. A. Szabó and F. S. Salinas, “The baboon in epilepsy research: Revelations and challenges,” Epilepsy Behav., 121, No. A, 108012 (2021).

  162. C. Á. Szabó, F. S. Salinas, M. M. Leland, et al., “Baboon model of generalized epilepsy: continuous intracranial video-EEG monitoring with subdural electrodes,” Epilepsy Res., 101, No. 1–2, 46 (2012).

  163. T. Takahashi, K. Kamijo, Y. Takaki, and T. Yamazaki, “Suppressive efficacies by adaptive temporal filtering system on photoparoxysmal response elicited by flickering pattern stimulation,” Epilepsia, 43, No. 5, 530 (2002).

  164. T. Takahashi, N. Nakasato, H. Yokoyama, and Y. Tsukahara, “Lowluminance visual stimuli compared with stroboscopic IPS in eliciting PPR in photosensitive patients,” Epilepsia, 40, No. 4, 44 (1999).

  165. T. Takahashi and Y. Tsukahara, “Pocket Monster incident and low luminance visual stimuli: special reference to deep red flicker stimulation,” Acta Paediatr. Jpn., 40, No. 6, 631 (1998).

  166. Y. Takahashi, T. Sato, K. Goto, et al., “Optical filters inhibiting television induced photosensitive seizures,” Neurology, 57, No. 10, 1767 (2001).

  167. C. Tallon-Baudry, O. Bertrand, C. Delpuech, and J. Permier, “Oscillatory gamma-band (30–70 Hz) activity induced by a visual search task in humans,” J. Neurosci., 17, No. 2, 722 (1997).

  168. U. Tauer, S. Lorenz, K. P. Lenzen, et al., “Genetic dissection of photosensitivity and its relation to idiopathic generalized epilepsy,” Ann. Neurol., 57, No. 6, 866 (2005).

  169. I. Taylor, S. F. Berkovic, and I. E. Scheffer, “Genetics of epilepsy syndromes in families with photosensitivity,” Neurology, 80, No. 14, 1322 (2013).

  170. K. Topalkara, G. Alarcon, and C. D. Binnie, “Effects of flash frequency and repetition of intermittent photic stimulation on photoparoxysmal responses,” Seizure, 7, No. 3, 249 (1998).

  171. J. B. Troy and T. Shou, “The receptive fields of cat retinal ganglion cells in physiological and pathological states: where we are after half a century of research,” Prog. Retin. Eye Res., 21, No. 3, 263 (2002).

  172. A. H. Tsang, M. Astiz, M. Friedrichs, and H. Oster, “Endocrine regulation of circadian physiology,” J. Endocrinol., 230, No. 1, R1 (2016).

  173. D. J. Uhlrich, K. A. Manning, L. O. O’Laughlin, and W. W. Lytton, “Photic-induced sensitization: acquisition of an augmenting spikewave response in the adult rat through repeated strobe exposure,” J. Neurophysiol., 94, No. 6, 3925 (2005).

  174. W. M. Usrey and R. C. Reid, “Visual physiology of the lateral geniculate nucleus in two species of new world monkey: Saimiri sciureus and Aotus trivirgatis,” J. Physiol., 523, No. 3, 755 (2000).

  175. N. M. van Gelder, “Antagonism by taurine of cobalt-induced epilepsy in cat and mouse,” Brain Res., 47, No. 1, 157 (1972).

  176. V. Van Toi and C. E. Riva, “Variations of blood flow at optic nerve head induced by sinusoidal flicker stimulation in cats,” J. Physiol., 482, No. 1, 189 (1995).

  177. G. Varotto, E. Visani, L. Canafoglia, et al., “Enhanced frontocentral EEG connectivity in photosensitive generalized epilepsies: a partial directed coherence study,” Epilepsia, 53, No. 2, 359 (2012).

  178. A. E. Vaudano, A. Ruggieri, P. Avanzini, et al., “Photosensitive epilepsy is associated with reduced inhibition of alpha rhythm generating networks,” Brain, 140, No. 4, 981 (2017).

  179. A. Verrotti, F. Beccaria, F. Fiori, et al., “Photosensitivity: epidemiology, genetics, clinical manifestations, assessment, and management,” Epileptic Disord., 14, No. 4, 349 (2012).

  180. E. Visani, G. Varotto, S. Binelli, et al., “Photosensitive epilepsy: spectral and coherence analyses of EEG using 14 Hz intermittent photic stimulation,” Clin. Neurophysiol., 121, No. 3, 318 (2010).

  181. A. von Stein and J. Sarnthein, “Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization,” Int. J. Psychophysiol., 38, No. 34, 301 (2000).

  182. J. A. Wada, E. Balzamo, B. S. Meldrum, and R. Naquet, “Behavioural and electrographic effects of L-5-hydroxytryptophan and D,L-parachlorophenyl-alanine on epileptic senegalese baboon (Papio papio),” Electroencephalogr. Clin. Neurophysiol., 33, No. 5, 520 (1972).

  183. J. A. Wada, T. Osawa, A. Wake, and M. E. Corcoran, “Effects of taurine on kindled amygdaloid seizures in rats, cats, and photosensitive baboons,” Epilepsia, 16, No. 2, 229 (1975).

  184. Y. Wada, H. Hasegawa, M. Nakamura, and N. Yamaguchi, “Behavioral and electroencephalographic effects of a serotonin receptor agonist (5-methoxy-N,N-dimethyltryptamine) in a feline model of photosensitive epilepsy,” Neurosci. Lett., 138, No. 1, 115 (1992).

  185. Y. Wada, H. Hasegawa, M. Nakamura, and N. Yamaguchi, “Suppressive effects of L-5-hydroxytryptophan in a feline model of photosensitive epilepsy,” Brain Res., 552, No. 1, 8 (1991).

  186. Y. Wada, Y. Minabe, H. Okuda, et al., “Lateral geniculate kindling and long-lasting photosensitivity in cats,” Exp. Neurol., 91, No. 2, 343 (1986).

  187. V. J. Walter and W. G. Walter, “The central effects of rhythmic sensory stimulation,” Electroencephalogr. Clin. Neurophysiol, 1, No. 1, 57 (1949).

  188. W. G. Walter, V. J. Dowey, and H. Shipton, “Analysis of the electrical response of the human cortex to photic stimulation,” Nature, 158, No. 4016, 540 (1946).

  189. S. Waltz, H. J. Christen, and H. Doose, “The different patterns of the photoparoxysmal response – a genetic study,” Electroencephalogr. Clin. Neurophysiol., 83, No. 2, 138 (1992).

  190. D. G. Wastell, A. J. Wilkins, and C. E. Darby, “Self-induction of epileptic seizures by eye closure: spectral analysis of concomitant EEG,” J. Neurol. Neurosurg. Psych., 45, No. 12, 1151 (1982).

  191. F. Wielaender, R. Sarviaho, F. James, et al., “Generalized myoclonic epilepsy with photosensitivity in juvenile dogs caused by a defective DIRAS family GTPase 1,” Proc. Natl. Acad. Sci. USA, 114, No. 10, 2669 (2017).

  192. A. Wilkins, P. Bonanni, V. Porciatti, and R. Guerrini, “Physiology of human photosensitivity,” Epilepsia, 45, No. 1, 7 (2004).

  193. A. Wilkins, J. Emmett, and G. Harding, “Characterizing the patterned images that precipitate seizures and optimizing guidelines to prevent them,” Epilepsia, 46, No. 8, 1212 (2005).

  194. A. J. Wilkins, C. E. Darby, and C. D. Binnie, “Neurophysiological aspects of pattern-sensitive epilepsy,” Brain, 102, No. 1, 1 (1979).

  195. A. J. Wilkins and P. Wilkinson, “A tint to reduce eye-strain from fluorescent lighting? Preliminary observations,” Ophthalmic Physiol. Opt., 11, No. 2, 172 (1991).

  196. J. C. Wingert and B. A. Sorg, “Impact of perineuronal nets on electrophysiology of parvalbumin interneurons, principal neurons, and brain oscillations: a review,” Front. Synaptic Neurosci., 13, 673210 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. J. Xue, P. Gong, H. Yang, et al., “Genetic (idiopathic) epilepsy with photosensitive seizures includes features of both focal and generalized seizures,” Sci. Rep., 8, No. 1, 6254 (2018).

  198. O. Yalýn, F. Arman, F. Erdoğan, and M. Kula, “A comparison of the circadian rhythms and the levels of melatonin in patients with diurnal and nocturnal complex partial seizures,” Epilepsy Behav., 8, No. 3, 542 (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Merkulyeva.

Additional information

Translated from Uspekhi Fiziologicheskikh Nauk, Vol. 53, No. 4, pp. 91–104, October–December, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merkulyeva, N.S. Neurophysiology of the Flickering Light Perception. Neurosci Behav Physi 53, 432–442 (2023). https://doi.org/10.1007/s11055-023-01441-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01441-5

Keywords

Navigation