Skip to main content

Psychophysiology and Electrophysiology of the Visual System

  • Protocol
  • First Online:
Psychophysiology Methods

Part of the book series: Neuromethods ((NM,volume 206))

  • 278 Accesses

Abstract

The organization of the human afferent visual system is complex and visual processing requires enormous computational challenges and energy consumption at each stage of the visual pathway. Once the eye receives visual information, the signal is relayed by the retina, optic nerve, chiasm, tracts, lateral geniculate nucleus, and optic radiations to the striate and extra-striate association cortical areas for final visual processing. In the retina, photoreceptors convert light photons to electrochemical signals that are relayed to retinal ganglion cells via intermediate neurons. Ganglion cell axons run through the optic nerve, and after their partial decussation at the level of the optic chiasm, they reach the lateral geniculate nucleus where corresponding inputs from each hemiretina overlap. A minority of optic nerve axons target subthalamic nuclei that mediate pupil light reflexes and circadian rhythms. Axons originating from the lateral geniculate nucleus relay visual information through the optic radiations to the striate cortex. Feedback mechanisms from higher cortical areas shape the neuronal responses in early visual areas, supporting coherent visual perception. Detailed knowledge of the anatomy of the afferent visual system, in combination with skilled examination, allows precise localization of neuropathological processes and guides effective diagnosis and management of neuro-ophthalmic disorders. Assessment of all stages of visual system processing is allowed by a set of psychophysical and electrophysiological tests that is crucial in the clinical practice. This chapter encompasses the psychophysical basis and electrophysiological correlates of vision in the normal and pathological human visual system. It is our hope that this approach will facilitate the understanding and the interest in visual system investigation and assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Charman VN (ed.) (1990): Optic of the human eye. In: J Cronly-Dillon (General Ed.) Visual optics and instrumentation, vision and visual dysfunction, vol 1. CRC Press, Boca Raton, pp 1–28

    Google Scholar 

  2. Celesia GG (2005) Anatomy and physiology of the visual pathways and cortex. In: Celesia GG (ed) Disorders of visual processing handbook of clinical neurophysiology, vol 5. Elsevier B.V, pp 45–63

    Chapter  Google Scholar 

  3. Dowling JE (1987) The retina: an approachable part of the brain. The Belkna Press of Harward University Press, Cambridge

    Google Scholar 

  4. Cajal SR (1893) La rètine des vertebrals. Cellule 9:119–255

    Google Scholar 

  5. Acheson JF, Sanders MD (1997) Common problems in neuro-ophthalmology. WB Saunders Company Ltd, London

    Google Scholar 

  6. Dacheux RF (2005) Morphology and physiology of the retina. In: Celesia GG (ed) Disorders of visual processing. Handbook of clinical neurophysiology, vol 5. Elsevier B.V, pp 3–43

    Chapter  Google Scholar 

  7. Calkins DJ, Schein SJ, Tsukamoto Y, Sterling P (1994) Mand L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses. Natura 371:70–72

    Article  CAS  Google Scholar 

  8. Dacey DM, Lee BB (1994) The blue-on opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 367:731–735

    Article  CAS  PubMed  Google Scholar 

  9. Croner LJ, Kaplan E (1995) Receptive field of P and M ganglion cell across the primate retina. Vis Res 35:7–24

    Article  CAS  PubMed  Google Scholar 

  10. Porciatti V, Sartucci F (1996) Retinal and cortical evoked responses to chromatic contrast stimuli: specific losses in both eyes of patients with multiple sclerosis and unilateral optic neuritis. Brain 119:723–740

    Article  PubMed  Google Scholar 

  11. Sartucci F, Murri L, Orsini C, Porciatti V (2001) Equiluminant red-green and blue-yellow VEPs in multiple sclerosis. J Clin Neurophysiol 18(6):583–591

    Article  CAS  PubMed  Google Scholar 

  12. Shipp DS (2006) Parallel visual pathways. Adv Clin Neurosci Rehab 6(1):21–23

    Google Scholar 

  13. Kupfer C, de Chumbley L, Downer J (1967) Quantitative histology of optic nerve, optic tract and lateral geniculate nucleus of man. J Anat 101:393–401

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Underleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, pp 549–586

    Google Scholar 

  15. Livingstone M, Hubel D (1988) Segregation of form, color, movement and depth: anatomy, physiology and perception. Science 240:740–749

    Article  CAS  PubMed  Google Scholar 

  16. Holmes G (1931) A contribution to the cortical representation of vision. Brain 54:470–479

    Article  Google Scholar 

  17. Holmes G (1945) The organization of the visual cortex in man. Proc R Soc Lond Biol 132:348–361

    Article  Google Scholar 

  18. Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15(1):20–25. https://doi.org/10.1016/0166-2236(92)90344-8

    Article  CAS  PubMed  Google Scholar 

  19. Corbetta M, Miezin FM, Dobmeyer S, Shulman GL, Petersen SE (1991) Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. J Neurosci 11:2383–2402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fellman DJ, van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    Article  Google Scholar 

  21. Zeki S (1993) A vision of the brain. Blackwell Scientific Publications, Oxford

    Google Scholar 

  22. Celesia GG, De Marco P (1994) Anatomy and physiology of the visual system. J Clin Neurophysiol 11:482–492

    Article  CAS  PubMed  Google Scholar 

  23. Tobimatsu S, Tomoda H, Kato M (1995) Parvocellular and magnocellular contributions to visual evoked potentials in humans: stimulation with chromatic and achromatic gratings and apparent motion. J Neuro Sci 134:73–82

    Article  CAS  Google Scholar 

  24. Tovee MJ (1996) An introduction to the visual system. University Press, Cambridge

    Google Scholar 

  25. Celesia GG, Brigell M (1999) Cortical blindness and visual processing. In: Barber C, Celesia GG, Hashimoto I, Kakigi R (eds) Functional neuroscience: evoked potentials and magnetic field (EEG Suppl. 49). Elsevier, Amsterdam, pp 133–141

    Google Scholar 

  26. Bonfiglio L, Bocci T, Crecchi A, Barloscio D, Spina DM, Rossi B, Sartucci F (2017) Defective chromatic and achromatic visual pathways in developmental dyslexia: cues for an integrated intervention program. Restor Neurol Neurosci 35(1):11–24

    CAS  PubMed  Google Scholar 

  27. Shapley R, Perry VH (1986) Cat and monkey retinal ganglion cells and their visual functional roles. Trends Neurosci 9:229–235

    Article  Google Scholar 

  28. Burr DC, Ross J (1986) Visual processing of motion. Trends in Neuroscience 9:304–306

    Article  Google Scholar 

  29. Bailey IL, Lovie JE (1976) New design principles for visual-acuity letter charts. Am J Optom Phys Opt 53:740–745

    Article  CAS  Google Scholar 

  30. Ricci F, Cedrone C, Cerulli L (2009) Standardized measurement of visual acuity. Ophthalmic Epidemiol 5:41–53

    Article  Google Scholar 

  31. Bach M (1996) The Freiburg visual acuity test–automatic measurement of visual acuity. Optom Vis Sci 73:49–53

    Article  CAS  PubMed  Google Scholar 

  32. Bach M (2007) The Freiburg visual acuity test-variability unchanged by post-hoc re-analysis. Graefes Arch Clin Exp Ophthalmol 245(7):965–971. https://doi.org/10.1007/s00417-006-0474-4

    Article  PubMed  Google Scholar 

  33. Incesu AI, Sobaci G (2011) Malingering or simulation in ophthalmology visual acuity. Int Ophthalmol 4:558–566

    Google Scholar 

  34. Zheng X, Xu G, Wang Y, Han C, Du C, Yan W, Zhang S, Liang R (2019) Objective and quantitative assessment of visual acuity and contrast sensitivity based on steady-state motion visual evoked potentials using concentric-ring paradigm. Doc Ophthalmol 139(9):123–136

    Article  PubMed  Google Scholar 

  35. Regan D (1973) Rapid objective refraction using evoked brain potentials. Investig Ophthalmol 12:669–679

    CAS  Google Scholar 

  36. Towle VL, Harter MR (1977) Objective determination of human visual acuity pattern evoked-potentials. Invest Ophthalmol Vis Sci 16:1073–1076

    CAS  PubMed  Google Scholar 

  37. Towle VL, Harter MR (1979) Objective determination of human visual acuity from the visual evoked potential. Percept Psychophys 25:497–500

    Article  CAS  PubMed  Google Scholar 

  38. Peterson J (1984) Objective determination of visual acuity by visual evoked potentials. Optimized procedure and clinical value. Dev Ophthalmol 9:108–114

    Article  Google Scholar 

  39. Norcia AM, Tyler CW (1985) Infant VEP acuity measurements – analysis of individual differences and measurement error. Electroencephalogr Clin Neurophysiol 61:359–369

    Article  CAS  PubMed  Google Scholar 

  40. Norcia AM, Tyler CW (1985) Spatial frequency sweep VEP: visual acuity during the first year of life. Vis Res 25:1399–1408

    Article  CAS  PubMed  Google Scholar 

  41. Almoqbel F, Leat SJ, Irving E (2008) The technique, validity and clinical use of the sweep VEP. Ophthalmic Physiol Opt 28:393–403

    Article  PubMed  Google Scholar 

  42. Norcia AM, Appelbaum LG, Ales JM, Cottereau BR, Rossion B (2015) The steady-state visual evoked potential in vision research: a review. J Vis 15:4. https://doi.org/10.1167/15.6.4

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zheng X, Xu G, Zhang K, Liang R, Yan W, Tian P, Jia Y, Zhang S, Du C (2020) Assessment of human visual acuity using visual evoked potential: a review. Sensors 20:5542. https://doi.org/10.3390/s20195542

    Article  PubMed  PubMed Central  Google Scholar 

  44. Caton R (1875) The electroic currents of the brain. Br Med J 2:278

    Google Scholar 

  45. Pagni CA, Naddeo M, Mascari C (1988) History of evoked potential recording in humans. In: Grundy BL, Villani RM (eds) Evoked potentials intraoperative and ICU monitoring. Springer, Vienna, pp 17–44. https://doi.org/10.1007/978-3-7091-4431-2_3

    Chapter  Google Scholar 

  46. Berger H (1929) Über das elektrenkephalogram des Menschen. Arch Psychiatr Nervenkr 85:527

    Article  Google Scholar 

  47. Adrian ED, Matthews BHC (1934) The Berger rhythm: potential changes from the occipital lobes in man. Brain 57:355–385

    Article  Google Scholar 

  48. Dawson DG (1951) A summation technique for detecting small signals in a large irregular background. J Physiol 494:251–262

    Google Scholar 

  49. Brazier MAB (1999) The emergence of electrophysiology as an aid to neurology. In: Aminoff MJ (ed) Electroadiagnosis in clinical neurology, 4th edn. Churchill Livingstone

    Google Scholar 

  50. Kumar UR, Ramkumar HL, McAnany JJ, Ramkumar HL, Epley KD, Shah VA, Kumar UR, Tripathy K, Hyde RA, Lim JI, Karth PA (2021) Electroretinogram. Eye wiki. https://eyewiki.aao.org

  51. Porciatti V, Falsini B (1993) Inner retina contribution to the flicker electroretinogram. Clin Vision Sci 8:435–447

    Google Scholar 

  52. Gouras P, Niemeyer G (2005) Electroretinography. In: Celesia GG (ed) Disorders of visual processing, Handbook of clinical neurophysiology, vol 5. Elsevier B.V, pp 87–97

    Google Scholar 

  53. Arden GB, Bankes JLK (1966) Foveal electroretinogram as a clinical test. Br J Ophthalmol 50:740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Biersdorf WF, Diller DA (1969) Local electroretinogram in macular degeneration. Am J Ophtahlmol 68:296

    Article  CAS  Google Scholar 

  55. McCulloch DL, Marmor MF, Brigell MG, Hamilton R, Holder GE, Tzekov R, Bach M (2015) ISCEV standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol 130:1–12

    Article  PubMed  Google Scholar 

  56. Maffei L, Fiorentini A (1981) Electroretinographic responses to alternate gratings before and after section of optic nerve. Science 21:953–955

    Article  Google Scholar 

  57. Sartucci F, Murri L, Filippi A, Origlia N, Domenici L, Orsini C, Porciatti V (2005–2006) Pattern electroretinograms (PERGs) in response to equiluminant red-green and blue-yellow gratings as diagnostic tool to investigate retinal ganglion cell subsystem involvement. Inter Med 13:4–7

    Google Scholar 

  58. Bach M, Brigell MG, Hawlina M, Holder GE, Johnson MA, McCulloch DL, Meigen T, Viswanathan S (2013) ISCEV standard for clinical pattern electroretinography (PERG) – 2013 update. Doc Ophthalmol 126:1–7

    Article  PubMed  Google Scholar 

  59. Porciatti V, Bosse B, Parekh PK, Shif OA, Feuer WJ, Ventura LM (2014) Adaptation of the Steady-state PERG in Early Glaucoma. J Glaucoma 23(8):494–500. https://doi.org/10.1097/IJG.0b013e318285fd95

    Article  PubMed  PubMed Central  Google Scholar 

  60. Holder GE (2001b) Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog Retin Eye Res 20:531–561

    Article  CAS  PubMed  Google Scholar 

  61. Biersdorf WR, Malone JI, Pavan PR, Lowitt S (1988) Cone electroretinograms and visual acuities of diabetic patients on sorbitol treatment. Doc Ophthalmol 69:247–254

    Article  CAS  PubMed  Google Scholar 

  62. Park JC, Moss HE, McAnany JJ (2018) Electroretinography in idiopathic intracranial hypertension: comparison of the pattern ERG and the photopic negative response. Doc Ophthalmol 136(1):45–55. https://doi.org/10.1007/s10633-017-9620-z

  63. Blumhardt LD, Barrett G, Halliday AM (1977) The asymmetrical visual evoked potential to pattern reversal in one half field and its significance for the analysis of visual field defects. Br J Ophthalmol 61:454-461

    Google Scholar 

  64. Regan D (1989) Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine. Elsevier Science Ltd, New York, p 1989

    Google Scholar 

  65. Regan D (2008) Some early use of evoked brain responses in studies of the human visual system. Vis Res 47(6):v–vii

    Article  Google Scholar 

  66. Creel DJ (2015) Visually evoked potentials. Web Vision

    Google Scholar 

  67. Odom JV, Bach M, Brigell M, Holder GE, McCulloch DL, Mizota A, Tormene AP (2016) International Society for Clinical Electrophysiology of Vision. ISCEV standard for clinical visual evoked potentials (2016 update). Doc Ophthalmol 133:1–9

    Article  PubMed  Google Scholar 

  68. Michelson A (1927) Studies in optics. University of Chicago Press, Chicago

    Google Scholar 

  69. Odom JV, Hobson R, Coldren JT, Chao GM, Weinsten GW (1987) 10-Hz flash visual evoked-potentials predict post-cataract extraction visual-acuity. Doc Ophthalmo 133:1–9

    Article  Google Scholar 

  70. Vadrevu VL, Cavendez S, Odom JV (1992) Use of 10-Hz flash visual evoked potentials in prediction of final visual acuity in diabetic eyes with vitreous hemorrhage. Doc Ophthalmol 79:371–382

    Article  CAS  PubMed  Google Scholar 

  71. Lenassi E, Likar K, Stim-Kranjc B, Brecelj J (2008) VEP maturation and visual acuity in infants and preschool children. Doc Ophthalmol 117:111–120

    Article  PubMed  Google Scholar 

  72. Appelle S (1972) Perception and discrimination as a function of stimulus orientation: the “oblique effect” in man and animals. Psychol Bull 78:266–278

    Article  CAS  PubMed  Google Scholar 

  73. Reisbeck TE, Gegenfurtner KR (1998) Effects of contrast and temporal frequency on orientation discrimination for luminance and isoluminant stimuli. Vis Res 38:1105–1117

    Article  CAS  PubMed  Google Scholar 

  74. Camisa JM, Blake R, Lema S (2016) The effects of temporal modulation on the oblique effect in humans. Perception 6:165–171

    Article  Google Scholar 

  75. Logi F, Pellegrinetti A, Bonfiglio L, Siciliano G, Iudice F, Baglini O, Sartucci F (2001) Effects of grating spatial orientation on visual evoked potentials and contrast sensitivity in multiple sclerosis. Acta Neurol Scand 103:97–104

    Article  CAS  PubMed  Google Scholar 

  76. Maffei L, Campbell FW (1970) Neurophysiological localization of the vertical and horizontal visual coordinates in man. Science 167:386–387

    Article  CAS  PubMed  Google Scholar 

  77. Moskovitz A, Sokol S (1985) Effect of stimulus orientation on the latency and amplitude of the VEP. Investig Ophthalmol Vis Sci 26:246–248

    Google Scholar 

  78. Bodis-Wollner I, Ghilardi MF, Mylin LH (1986) The importance of stimulus selection in VEP practice: the clinical relevance of visual physiology. In: Cracco RQ, Bodis-Wollner I (eds) Evoked potentials. Alan R Liss, Inc, New York, pp 15–27

    Google Scholar 

  79. Celesia GG (2005) Visual evoked potentials (VEPs). In: Celesia GG (ed) Disorders of visual processing, Handbook of clinical neurophysiology, vol 5. Elsevier B.V, pp 117–130

    Google Scholar 

  80. Regan D (1978) Assessment of visual acuity by evoked potential recording: ambiguity caused by temporal dependence of spatial frequency selectivity. Vis Res 18:439–443

    Article  CAS  PubMed  Google Scholar 

  81. Spinelli D, Pirchio M, Sandini G (1983) Visual-acuity in the young infant is highest in a small retinal area. Vis Res 23:1133–1136

    Article  CAS  PubMed  Google Scholar 

  82. Katsumi O, Hirose T, Tsukada T (1988) Effect of number of elements and size of stimulus field on recordability of pattern reversal visual evoked-response. Investig Ophthalmol Vis Sci 29:922–927

    CAS  Google Scholar 

  83. Zhou P, Zhao MW, Li XX, Hu XF, Wu X, Niu LJ, Yu WZ, Xu XL (2008) A new method of extrapolating the sweep pattern visual evoked potential acuity. Doc Ophthalmol 117:85–91

    Article  PubMed  Google Scholar 

  84. Katsumi O, Denno S, Arai M, De Lopes FJ, Hirose T (1997) Comparison of preferential looking acuity and pattern reversal visual evoked response acuity in pediatric patients. Graefes Arch Clin Exp Ophthalmol 235:684–690

    Article  CAS  PubMed  Google Scholar 

  85. Norcia AM, Tyler CW, Hamer RD (1990) Development of contrast sensitivity in the human infant. Vis Res 30:1475–1486

    Article  CAS  PubMed  Google Scholar 

  86. Tobimatsu S, Kurita-Tashima S, Nakayama-Hiromatsu M, Kato M (1993) Effect of spatial frequency on transient and steady-state VEPs: stimulation with checkerboard, square-wave grating and sinusoidal grating patterns. J Neurol Sci 118:17–24

    Article  CAS  PubMed  Google Scholar 

  87. Sutter EE (2010) Noninvasive testing methods: multifocal electrophysiology. In: Dartt DA (ed) Encyclopedia of the eye, vol 3. Academic, Oxford, pp 142–160

    Chapter  Google Scholar 

  88. Porciatti V, Sartucci F (1999) Normative data for onset VEPs to chromatic contrast. Clin Neurophysiol 110:772–781

    Google Scholar 

  89. Porciatti V, Sartucci F (1995) Pattern electroretinogram and visual evoked potentials to chromatic contrast: changes in optic neuritis [abstract]. Invest Ophthalmol Vis Sci 36(Suppl):S453

    Google Scholar 

  90. Porciatti V, Fanti J (1999) The PERG to red-green and blue-yellow chromatic contrast. Invest Ophthalmol Vis Sci 40:s13

    Google Scholar 

  91. Crognale MA, Duncan CS, Shoenhard H, Peterson DJ, Berryhill ME (2013) The locus of color sensation: cortical color loss and the chromatic visual evoked potential. J Vis 13:15. https://doi.org/10.1167/13.10.15

    Article  PubMed  PubMed Central  Google Scholar 

  92. Pompe MT, Perovšek D, Šuštar M (2020) Chromatic visual evoked potentials indicate early dysfunction of color processing in young patients with demyelinating disease. Doc Ophthalm 141:157–168

    Article  Google Scholar 

  93. Majander A, Robson AG, João C, Holder GE, Chinnery PF, Moore AT et al (2017) The pattern of retinal ganglion cell dysfunction in Leber hereditary optic neuropathy. Mitochondrion 36:138–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fuest M, Kieckhoefel J, Mazinani B, Kuerten D, Koutsonas A, Koch E et al (2015) Blue-yellow and standard pattern visual evoked potentials in phakic and pseudophakic glaucoma patients and controls. Graefes Arch Clin Exp Ophthalmol 253:2255–2261

    Article  PubMed  Google Scholar 

  95. Sartucci F, Orlandi G, Lucetti C, Bonuccelli U, Murri L, Orsini C, Porciatti V (2003) Changes in pattern electroretinograms to equiluminant red-green and-blue yellow gratings in patients with early parkinsons disease. J Clin Neurophysiol 20(5):375–381

    Article  PubMed  Google Scholar 

  96. Sartucci F, Porciatti V (2006) VEPs to onset of chromatic red-green and blue-yellow gratings in Parkinson’s disesase never treated with L-Dopa. J Clin Neurophysiol 23(5):431–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Risuenho BBO, Miquilini L, Eliza EM, Silveira LCL, Souza GS (2015) Cortical responses elicited by luminance and compound stimuli modulated by pseudo-random sequences: comparison between normal trichromats and congenital red-green color blinds. Front Psychol 6:53

    Article  PubMed  PubMed Central  Google Scholar 

  98. Pojda-Wilczek D, Maruszczyk W, Sirek S (2019) Flash visual evoked potentials (FVEP) in various stimulation conditions. Doc Ophthalmol 138(1):35–42. https://doi.org/10.1007/s10633-018-9663-9

    Article  PubMed  Google Scholar 

  99. Benedičič M, Bošnjak R (2011) Optic nerve potentials and cortical potentials after stimulation of the anterior visual pathway during neurosurgery. Doc Ophthalmol 122(2):115–125. https://doi.org/10.1007/s10633-011-9265-2

    Article  PubMed  Google Scholar 

  100. Luo Y, Regli L, Bozinov O, Sarnthein J (2015) Clinical utility and limitations of intraoperative monitoring of visual evoked potentials. PLoS One. https://doi.org/10.1145/2818302

  101. Chayasirisobhon S, Gurbani S, Chai EE, Spurgeon B, Yu L, Bosu S, Gurbani S (2012) Evaluation of maturation and function of visual pathways in neonates: role of flash visual-evoked potentials revisited. Clin EEG Neurosci 43(1):18–22. https://doi.org/10.1177/1550059411429529

    Article  PubMed  Google Scholar 

  102. Klebermass-Schrehof K, Rona Z, Waldhör T, Czaba C, Beke A, Weninger M, Olischar M (2013) Can neurophysiological assessment improve timing of intervention in posthaemorrhagic ventricular dilatation? Arch Dis Child Fetal Neonatal Ed 98:F291–F297. https://doi.org/10.1136/archdischild-2012-302323

    Article  PubMed  Google Scholar 

  103. Feng JJ, Wang WP, Guo SJ, Liu ZW, Xu X (2013) Flash visual evoked potentials in preterm infants. Ophthalmology 120(3):489–494. https://doi.org/10.1016/j.ophtha.2012.08.025

    Article  PubMed  Google Scholar 

  104. Jethani J, Jethani M (2013) Flash visual evoked potentials in patients with periventricular leucomalacia in children less than 1 year of age. Indian J Ophthalmol 61(11):634–635. https://doi.org/10.4103/0301-4738.123146

    Article  PubMed  PubMed Central  Google Scholar 

  105. Shepherd AJ, Saunders KJ, McCulloch DL, Dutton GN (1999) Prognostic value of flash visual evoked potentials in preterm infants. Dev Med Child Neurol 41:9–15. https://doi.org/10.1017/S0012162299000031

    Article  CAS  PubMed  Google Scholar 

  106. Tartaglione A, Bandini F, Maculotti M, Marogna M, Spadavecchia L, Favale E (1995) Eye closure affects flash VEP latency in dementia. Electroencephalogr Clin Neurophysiol 96:197–205. https://doi.org/10.1016/0168-5597(94)00333-A

    Article  CAS  PubMed  Google Scholar 

  107. Fishman GA (2001) The electro-oculogram. In: Bich DG FGA, Holder GE (eds) Electrophysiologic testing in disorders of retina, optic nerve and visual pathway, Ophthalmology monographs 2 of American Academy of Ophthalmology, 2nd edn. The Foundation of the American Academy of Ophthalmology, San Francisco, pp 157–175

    Google Scholar 

  108. Marmor MF, Zrenner E (1993) Standard for clinical electro-oculography. International Society for Clinical Electrophysiology of Vision. Arch Ophthalmol 111(5):601–604. https://doi.org/10.1001/archopht.1993.01090050035023

    Article  CAS  PubMed  Google Scholar 

  109. Taumer R (1976) Electro-oculography- its clinical importance. Bibl Ophthalmol 82:25

    Google Scholar 

  110. De Tommaso M, Betti V, Bocci T, Bolognini M, Di Russo F, Fattapposta F, Ferri R, Invitto S, Koch G, Miniussi C, Piccione F, Ragazzoni A, Sartucci F, Rossi S, Arcara G, Berchicci M, Bianco V, Delussi M, Gentile E, Giovannelli F, Mannarelli D, Marino M, Mussini E, Pauletti C, Pellicciari MC, Pisoni A, Raggi A, Valeriani M (2020) Pearl and pitfalls in brain functional analysis by event–related potentials: position statement of Italian Psychophysiology and Cognitive Neuroscience Society on methodological limits and clinical reliability- part I. Neurol Sci 41(10):2711–2735. https://doi.org/10.1007/s10072-020-04527-x

    Article  PubMed  Google Scholar 

  111. Morrison C, Rabipour S, Taler V, Sheppard C, Knoefel F (2019) Visual event-related potentials in mild cognitive impairment and Alzheimer’s disease: a literature review. Curr Alzheimer Res 16:67–89

    Article  CAS  PubMed  Google Scholar 

  112. Ragazzoni A, Di Russo F, Fabbri S, Pesaresi I, Di Rollo A, Perri RL, Barloscio D, Bocci T, Cosottini M, Sartucci F (2019) Hit the missing stimulus”: a simultaneous EEG-fMRI study to localize the generators of endogenous ERPs in an omitted target paradigm. Sci Rep 9(1):3684–3699

    Article  PubMed  PubMed Central  Google Scholar 

  113. Allison T, Puce A, Spencer DD, McCarthy G (1999) Electrophysiological studies on human face perception. I: potentials generated in occipitotemporal cortex by face and non-face stimuli. Cereb Cortex 9:415–430

    Article  CAS  PubMed  Google Scholar 

  114. Cellerino A, Borghetti D, Sartucci F (2004) Sex differences in face gender recognition in humans. Brain Res Bull 63:443–449

    Article  PubMed  Google Scholar 

  115. Alexander KR, Briegel MG (2005) Psychophysical techniques. In: Celesia GG (ed) Disorders of visual processing, Handbook of clinical neurophysiology, vol 5. Elsevier B.V, pp 167–188

    Google Scholar 

  116. Cohen D (1968) Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm currents. Science 161:784–786

    Article  CAS  PubMed  Google Scholar 

  117. Nakamura A, Yamada T, Abe Y et al (2001) Age – related changes in brain neuromagnetic responses to face perception in humans. Neurosci Lett 312:13–16

    Article  CAS  PubMed  Google Scholar 

  118. Tobimatsu S (2005) Visual evoked magnetic fields and magnetic stimulation of visual cortex. In: Celesia GG (ed) Disorders of visual processing. Handbook of clinical neurophysiology, vol 5. Elsevier B.V, pp 143–166

    Chapter  Google Scholar 

  119. Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1:1106–1107

    Article  CAS  PubMed  Google Scholar 

  120. Merton PA, Morton HB (1980) Stimulation of the cerebral cortex in the intact human subject. Nature 285:227

    Article  CAS  PubMed  Google Scholar 

  121. Berger MS, Kincaid J, Ojemann GA, Lettich BA (1989) Brain mapping techniques to maximize resection, safety and seizure control in children with brain tumors. Neurosurgery 25:786–792. https://doi.org/10.1097/00006123-198911000-00015

    Article  CAS  PubMed  Google Scholar 

  122. Aurora SK, Ahmad BK, Welch KMA, Bhardhwaj P, Ramadan NM (1998) Transcranial magnetic stimulation hyper excitability of occipital cortex in migraine. Neurology 50:1111–1114

    Article  CAS  PubMed  Google Scholar 

  123. Battelli L, Black KL, Wray SH (2002) Transcranial magnetic stimulation of visual area V5 in migraine. Neurology 58:1066–1069

    Article  PubMed  Google Scholar 

  124. Bocci T, Caleo M, Tognazzi S, Francini N, Briscese L, Maffei L, Rossi S, Priori A, Sartucci F (2014) Evidence for metaplasticity in the human visual cortex. J Neural Transm 121(3):221–231

    Article  PubMed  Google Scholar 

  125. Bocci T, Pietrasanta M, Cerri C, Restani L, Caleo M, Sartucci F (2014) Visual callosal connections: role in visual processing. Rev Neurosci 25(1):113–127

    Article  PubMed  Google Scholar 

  126. Sabel BA, Thut G, Haueisen J, Henrich-Noack P, Herrmann CS, Hunold A, Kammer T, Matteo B, Sergeeva EG, Waleszczyk W, Antal A (2020) Vision modulation, plasticity and restoration using non-invasive brain stimulation – an IFCN-sponsored review. Clin Neurophysiol 131(4):887–911. https://doi.org/10.1016/j.clinph.2020.01.008. Review

    Article  PubMed  Google Scholar 

  127. Bocci T, Nasini F, Caleo M, Restani L, Barloscio D, Ardolino G, Priori A, Maffei L, Nardi M, Sartucci F (2018) Unilateral application of cathodal tDCS reduce transcallosal inhibition and improves visual acuity in amblyopic patients. Front Behav Neurosci 29; 12:109

    Article  Google Scholar 

  128. Tuna AR, Pinto N, Brardo FM, Fernandes A, Nunes AF, Pato MV (2020) Transcranial magnetic stimulation in adults with amblyopia. J Neuroophthalmol 40(2):185–192. https://doi.org/10.1097/WNO.0000000000000828

    Article  PubMed  Google Scholar 

  129. Mahayana IT, Angsana NC, Sakti DH (2020) Potential employment of transcranial magnetic stimulation as a beneficial intervention in children with amblyopia: a brief overview. J Med Sci 52(4):357–364. https://doi.org/10.19106/JMedSci005204202009

    Article  Google Scholar 

  130. Sam MS (2013) Visual threshold 1. In PsychologyDictionary.org, https://psychologydictionary.org/visual-threshold-1/

  131. Fechner GT (1860) Elemente der Psychophysik. Breitkopf and Hartel, Leipzig

    Google Scholar 

  132. Frisén L (1980) The neurology of visual acuity. Brain 103(3):639–670. https://doi.org/10.1093/brain/103.3.639

    Article  PubMed  Google Scholar 

  133. Trobe JD (2001) The neurology of vision. Oxford University Press, Oxford, p 451

    Google Scholar 

  134. Carlson NB, Kurtz D (2004) Clinical procedures of ocular examination. McGraw Hill, New York, p 10. ISBN 978-0-07-137078-3.

    Google Scholar 

  135. Bailey IL, Lovie JE (2013) Visual acuity testing. From the laboratory to the clinic. Vis Res 90:2–9. https://doi.org/10.1016/j.visres.2013.05.004

    Article  PubMed  Google Scholar 

  136. Bodis-Wollner I, Camisa JM (1980) Contrast sensitivity measurement in clinical diagnosis. In: Lessel S, van Dalen JTW (eds) Neuro-ophthalmology. Exerpta Medica, Amsterdam, pp 373–401

    Google Scholar 

  137. Sartucci F, Domenici L (1993) Contrast sensitivity measurements in clinical neurology. It J Clin Neurophysiol 2(2):57–76

    Google Scholar 

  138. Owsley C (2003) Contrast sensitivity. Ophthalmol Clin N Am 16(2):171–177. https://doi.org/10.1016/S0896-1549(03)00003-8

    Article  Google Scholar 

  139. Bodis-Wollner I, Diamond S (1976) The measurement of spatial contrast sensitivity in cases of blurred vision associated with cerebral lesions. Brain 99:695–710

    Article  CAS  PubMed  Google Scholar 

  140. Sartucci F, Massetani R, Galli R, Bonanni E, Tognoni G, Milani S, Iudice A, Murri L (1997) Visual contrast sensitivity in carbamazepine-resistant epileptic patients receiving Vigabatrin as add-on therapy. J Epilepsy 10:7–11

    Article  Google Scholar 

  141. Balcer LJ, Baier ML, Pelak VS et al (2000) New low contrast vision charts: reliability and test characteristic in patients with multiple sclerosis. Mult Scler 6:163–171

    Article  CAS  PubMed  Google Scholar 

  142. Doris N, Hart PM, Chakravarthy U et al (2001) Relation between macula morphology and visual function in patients with choroidal neovascularisation of age related macular degeneration. Br J Ophthalmol 85:184–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Long DT, Bexk RW, Moke PS et al (2001) The SKILL card test in optic neuritis: experience of the optic neuritis treatment trial. Smith Kettlewell Institute Low Luminance. Optic Neuritis Study Group. J Neuro Opthalmol 21:124–131

    Article  CAS  Google Scholar 

  144. Regan D, Neima D (1983) Low-contrast letter charts as a test of visual function. Ophthalmology 90:1192–1200

    Article  CAS  PubMed  Google Scholar 

  145. Martinelli M, Lacerenza M, Merenda M, Meschi F, Somazzi L, Comi G (1988) The objective assessment of visual contrast sensitivity by pattern reversal visual evoked potentials in diabetes. J Diabet Complicat 2(1:44–46

    Article  Google Scholar 

  146. Celesia GG, Brigell M, Gunnink R, Dang H (1992) Spatial frequency evoked visuograms in multiple sclerosis. Neurology 42:1067–1070

    Article  CAS  PubMed  Google Scholar 

  147. Lopes de Faria JM, Katsumi O, Cagliero E, Nathan D, Hirose T (2001) Neurovisual abnormalities preceding the retinopathy inpatients with long-term type I diabetes mellitus. Graefes Arch Clin Exp Opthalmol 239:643–648

    Article  CAS  Google Scholar 

  148. Drews-Bankiewicz MA, Caruso RC, Datiles MB, Kaiser-Kupfer MI (1992) Contrast sensitivity in patients with nuclear cataracts. Arch Ophthalmol 110(7):953–959. https://doi.org/10.1001/archopht.1992.01080190059029

    Article  CAS  PubMed  Google Scholar 

  149. Verriest G (1963) Further studies of acquired deficiency of color discrimination. J Opt Soc Am 53:185–195

    Article  CAS  PubMed  Google Scholar 

  150. Foster DH, Snelgar RS, Heron JR (1985) Nonselective losses in foveal chromatic and luminance sensitivity in multpiple sclerosis. Inv Ophthalmol Vis Sci 26:1431–1441

    CAS  Google Scholar 

  151. Zrenner E, Gouras P (1983) Cone opponency in tonic ganglion cells and its variation with eccentricity in rhesus monkey retina. In: Mollon J, Sharpe L (eds) Colour vision: physiology and psychophysics. Academic Press, New York, pp 211–223

    Google Scholar 

  152. Cole BL, Maddocks JD (1998) Can clinical color vision tests be used to predict the results of the Farnsworth lantern test? Vis Res 38(21):3483–3485. https://doi.org/10.1016/s0042-6989(98)00119-9

    Article  CAS  PubMed  Google Scholar 

  153. Morrone MC, Burr DC, Fiorentini A (1993) Development of infant contrast sensitivity to chromatic stimuli. Vis Res 33:2535–2552. https://doi.org/10.1016/0042-6989(93)90133-H

    Article  CAS  PubMed  Google Scholar 

  154. Wall M, Johnson CA, Kutzko KE, Nguyen R, Brito C, Keltner JL (1998) Long- and short-term variability of automated perimetry results in patients with optic neuritis perimetry results in patients with optic neuritis and healthy subjects. Arch Ophthalmol 116:53–61

    Article  CAS  PubMed  Google Scholar 

  155. Werner EB (1991) The normal visual field. In: Werner EB (ed) Manual of visual fields. Churchill Livingstone, New York, pp 91–110

    Google Scholar 

  156. Sartucci F, Buonaguidi R, Savigni P, Murri L (1989) The evaluation of sellar region tumours with pattern visual evoked potentials. Funct Neurol IV(4):379–386

    Google Scholar 

  157. Diamond GR (1999) Evaluation and diagnosis: evaluating vision in preverbal and preliterate infants and children. In: Yanoff M (ed) Ophthalmology, vol 2. Mosby, London, pp 21–24

    Google Scholar 

  158. Fulton AB, Hansen RM, Moskowitz A (2005) Assessment of vision in infants and young children. In: Handbook of Clinical Neurophysiology, vol 5, pp 203–230. https://doi.org/10.1016/S1567-4231(09)70208-4

    Chapter  Google Scholar 

  159. Fulton AB, Hansen RM, Manning KA (1981) Measuring visual acuity in infants. Surv Ophthalmol 25(5):325–332. https://doi.org/10.1016/0039-6257(81)90158-2

    Article  CAS  PubMed  Google Scholar 

  160. Ricci D, Romeo DM, Gallini F et al (2011) Early visual assessment in preterm infants with and without brain lesions: correlation with visual and neurodevelopmental outcome at 12 months. Early Hum Dev 87:177–182

    Article  PubMed  Google Scholar 

  161. Celesia GG (2005) Role of clinical neurophysiology in assessing both normal and pathological processing of visual information. In: Celesia GG (ed) Disorders of visual processing. Handbook of clinical neurophysiology, vol 5. Elsevier B.V, pp 231–248

    Chapter  Google Scholar 

  162. Porciatti V, Chou TH (2021) Modeling Retinal Ganglion Cell Dysfunction in Optic Neuropathies. Cell 10(6):1398. https://doi.org/10.3390/cells10061398

    Article  Google Scholar 

  163. Bayer AU, Maag KP, Erb C (2002) Detection of optic neuropathy in glaucomatous eyes with normal standard visual fields using a test battery of short-wavelength automated perimetry and pattern electroretinography. Ophthalmology 109:1350–1361

    Article  PubMed  Google Scholar 

  164. Gordon PS, Kostic M, Monsalve PF, Triolo G, Golubev I, Luna G, Ventura LM, Feuer WJ, Porciatti V (2020) Long-term PERG monitoring of untreated and treated glaucoma suspects. Doc Ophthalmol 141(2):149–156. https://doi.org/10.1007/s10633-020-09760-5

    Article  PubMed  PubMed Central  Google Scholar 

  165. Cai J, Ma X, Zhu H, Li Y (2001) Cytotoxic effects of antiproliferative agents on human retinal glial cells in vitro. Int Ophthalmol 24:225–231

    Article  CAS  PubMed  Google Scholar 

  166. Celesia GG (2005) Future advances and applications. In: Celesia GG (ed) Disorders of visual processing. Handbook of clinical neurophysiology, vol 5. Elsevier B.V, pp 539–541

    Chapter  Google Scholar 

  167. Adjaman P, Barnes GR, Hillebrand A et al (2004) Co-registration of magnetoencephalography with magnetic resonance imaging using bite-bar-based fiducials and surface-matching. Clin Neurophysiol 115:691–698

    Article  Google Scholar 

  168. Fortin A, Ptito A, Faubert J, Ptito M (2002) Cortical areas mediating stereopsis in the human brain: a PET study. Neuro Report 13:895–898

    Google Scholar 

  169. Halliday AM, McDonald WI, Mushin J (1972) Delayed visual evoked responses in optic neuritis. Lancet 1:982–985

    Article  CAS  PubMed  Google Scholar 

  170. Celesia GG, Peachey NS (1999) Visual evoked potentials and electroretinograms. In: Niedermeyer E, da Silva F (eds) Electroencephalography: basic principles, clinical applications and related fields. Williams and Wilkins, Baltimore, pp 968–993

    Google Scholar 

  171. Sartucci F, Scardigli V, Murri L (1989) Visual evoked potentials and magnetic resonance imaging in the evaluation of pre and retrochiasmatic lesions in multiple sclerosis. Clin Vision Sci 4(3):229–238

    Google Scholar 

  172. Celesia GG, Meredith JT, Pluff K (1983) Perimetry, visual evoked potentials and visual evoked spectrum array in homonymous hemianopsia. Electroencephalogr Clin Neurophysiol 56:16–30

    Article  CAS  PubMed  Google Scholar 

  173. Onofrj M, Bazzano S, Malatesta G, Fulgente T (1991) Mapped distribution of pattern reversal VEPs to central field and lateral half-field stimuli of different spatial frequencies. Electroencephalogr Clin Neurophysiol 89:167–180

    Article  Google Scholar 

  174. Brigell MG, Celesia GG, Salvi F, Clark-Bash R (1990) Topographic mapping of electrophysiologic measures in patients with homonymous hemianopia. Neurology 40:1556–1570

    Article  Google Scholar 

  175. Brigell M, Rubboli G, Celesia GG (1993) Identification of the hemisphere activated by hemifield stimulation using a single equivalent dipole model. Electroencephalogr Clin Neurophysiol 87:291–299

    Article  CAS  PubMed  Google Scholar 

  176. Hood DC, Zang X (2000) Multifocal ERG and VEP responses and visual fields: comparing disease related changes. Doc Ophthalmol 100:115–137

    Article  CAS  PubMed  Google Scholar 

  177. Betsuin J, Mashima Y, Ohde H, Inoue R, Oguchi Y (2001) Clinical application of multifocal VEPs. Curr Eye Res 22:54–63

    Article  CAS  PubMed  Google Scholar 

  178. Horn FK, Jost BJ, Budde WM, Junemann AM, Mardin CY, Korth M (2022) Monitoring glaucoma progression with visual evoked potentials of the blue-sensitive pathways. Invest Ophthalmol Vis Sci 43:1828–1834

    Google Scholar 

  179. Brusa A, Jones SJ, Plant GT (2001) Long-term remyelination after optic neuritis. A 2 year visual evoked potential and psychophysical serial study. Brain 124:468–479

    Article  CAS  PubMed  Google Scholar 

  180. Harding GF, Wild JM, Robertson KA et al (2000) Electrooculography, electroretinography, visual evoked potentials, and multifocal electroretinography in patients with vigabatrin-attributed visual field constriction. Epilepsia 41:1420–1431

    Article  CAS  PubMed  Google Scholar 

  181. Mactier H, Hamilton R, Bradnam MS, Turner TL, Dudgeon J (2000) Contact lens electroretinography in preterm infants from 32 weeks after conception: a development in current methodology. Arch Dis Child Fetal Neonatal Ed 82:F233–F236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Fulton AB, Hansen RM, Petersen RA, Vanderveen DK (2001) The rod photoreceptors in retinopathy of prematurity: an electroretinographic study. Arch Ophthalmol 119:499–505

    Article  CAS  PubMed  Google Scholar 

  183. Cooper LL, Hansen RM, Darras BT et al (2002) Rod photoreceptors function in children with mitochondrial disorders. Arch Ophthalmol 120:1055–1062

    Article  PubMed  Google Scholar 

  184. Dhellemmes SD, Vincent F, Arndt C, Drumare IB, Hache JC (1999) Simplified electroretinography protocol and diagnosis of retinal dystrophies in children. J Français Ophthalmol 22:383–387

    CAS  Google Scholar 

  185. Smith DE, Fitzgerald K, Stass-Isern M, Cibis GW (2000) Electroretinography is necessary for spasmus nutans diagnosis. Pediatr Neurol 23:33–36

    Article  CAS  PubMed  Google Scholar 

  186. Atkinson J, Anker S, Rae S, Weeks F, Braddick O, Rennie J (2002) Cortical visual evoked potentials in very low birth weight premature infants. Arch Dis Child Fetal Neonatal Ed 86:28–31

    Article  Google Scholar 

  187. Kos-Pietro S, Towle VL, Cakmur R, Spire JP (1997) Maturation of human visual evoked potentials: 27 weeks conceptional age to 2 years. Neuropediatrics 28:318–323

    Article  CAS  PubMed  Google Scholar 

  188. Crognale MA (2002) Development, maturation and aging of chromatic visual pathways. VEP results J Vis 2:438–450

    PubMed  Google Scholar 

  189. Morrone MC, Fiorentini A, Burr DC (1996) Development of the temporal properties of visual evoked potentials to luminance and colour contrast in infants. Vis Res 36:3141–3155

    Article  CAS  PubMed  Google Scholar 

  190. Suttle CM, Banks MS, Graf EW (2002) FPL and sweep VEP to tritan stimuli in young human infants. Vis Res 42:2879–2891

    Article  PubMed  Google Scholar 

  191. Riddel PM, Ladenheim B, Mast J, Catalano T, Nobile R, Hainline L (1997) Comparison of measures of visual acuity in infants: teller acuity cards and sweep visual evoked potentials. Optom Vis Sci 74:702–707

    Article  Google Scholar 

  192. Skoczenski AM, Norcia AM (1999) Development of VEP Vernier acuity and grating acuity in human infants. Invest Ophthalmol Vis Sci 40:2411–2417

    CAS  PubMed  Google Scholar 

  193. Russell-Eggitt I (2001) Albinism. Ophthalmol Clin N Am 14:533–546

    Article  CAS  Google Scholar 

  194. Holder GE, Robson AG (2005) Genetically determined disorders of retinal function. In: Celesia GG (ed) Disorders of visual processing. Handbook of clinical neurophysiology, vol 5. Elsevier B.V, pp 271–294

    Chapter  Google Scholar 

  195. Scholl HP, Zrenner E (2000) Electrophysiology in the investigation of acquired retinal disorders. Surv Ophthalmol 45(1):29–47. https://doi.org/10.1016/s0039-6257(00)00125-9

    Article  CAS  PubMed  Google Scholar 

  196. Brigell M, Celesia G (1992) Electrophysiological evaluation of the neuroophthalmology patient: an algorithm for clinical use. Sem Ophthalmol 7:65–78

    Article  CAS  Google Scholar 

  197. Lorans R, Kaufman D, Wray S, Mao C (1987) Contrast visual testing in neurovisual diagnosis. Neurology 37:923–929

    Article  Google Scholar 

  198. Kaufman D, Celesia GG (1985) Simultaneous recording of pattern electroretinogram and visual evoked responses in neuro-ophthalmologic disorders. Neurology 35:644–651

    Article  CAS  PubMed  Google Scholar 

  199. Kaufman D, Lorance R, Woods M, Wray S (1988) The pattern electroretinogram: a long-term study in acute optic neuropathy. Neurology 38:1767–1774

    Article  CAS  PubMed  Google Scholar 

  200. Froehlich J, Kaufman D (1992) Improving the reliability of pattern electroretinogram recording. Electroencephalogr Clin Neurophysiol 84:394–399

    Article  CAS  PubMed  Google Scholar 

  201. Kaufman DI, Eggenberger ER (2005) Optic neuropathies and disorders of optic chiasma. In: Celesia GG (ed) Disorders of visual processing, Handbook of clinical neurophysiology, vol 5. Elsevier B.V, Edinburgh, pp 371–395

    Google Scholar 

  202. Leber T (1871) Ueber hereditaere und congenital angelegte sehnervenleiden. Graefes Arch Clin Exp Ophthalmol 17:249–291

    Article  Google Scholar 

  203. Newman NJ (1998) Hereditary optic neuropathies. In: Miller NR, Newman NJ (eds) Clinical neuro-ophthalmology, 5th edn. Williams and Wilkinsons, Baltimore, pp 741–773

    Google Scholar 

  204. Paty DW, Noseworthy JH, Ebers GC (1997) Diagnosis of multiple sclerosis. In: Paty DW, Ebers GC (eds) Multiple sclerosis. Contemporary neurological series. FA Davis, Philadelphia, pp 48–134

    Google Scholar 

  205. Rodriguez M, Siva A, Cross SA, O’Brien PS, Kurland LT (1995) Optic neuritis: a population-based study in Olmsted country. Minnesota Neurology 45:244–250

    Article  CAS  PubMed  Google Scholar 

  206. Halliday AM (1982) Visual evoked potentials. In: Halliday AM (ed) Evoked potentials in clinical testing. Churchill Livingstone, Edinburgh, pp 210–235

    Google Scholar 

  207. Chiappa KJ (1980) Pattern shift visual, brainstem auditory and short latency somatosensory evoked potentials in multiple sclerosis. Neurology 30:110–123

    Article  CAS  PubMed  Google Scholar 

  208. Celesia GG, Kaufman D, Cone SB (1986) Simultaneous recording of pattern electroretinograms and visual evoked potentials in patients with multiple sclerosis. A method to separate demyelination from axonal damage to the optic nerve. Arch Neurol 43:1247–1252

    Article  CAS  PubMed  Google Scholar 

  209. Chiappa KJ, Perez-Arroyo M (1992) Evoked potentials methodologies and neurological pathophysiology. In: Asbury AK, Mc Khan GM, Mc Donald WI (eds) Disease of nervous system. Saunders, New York, pp 1210–1213

    Google Scholar 

  210. Mc Donald WI (1977) Pathophysiology of conduction in central nervous fibres. In: Desmedt JE (ed) Visual evoked potentials in man: new development. Clarendon Press, Oxford, pp 427–437

    Google Scholar 

  211. Halliday AM, McDonald. (1977) Pathophysiology of demyelinating disease. Br Med Bull 33:21–27

    Article  CAS  PubMed  Google Scholar 

  212. Halliday AM, Mc Donald WI, Mushin J (1977) Visual evoked potentials in patients with multiple sclerosis. In: Desmedt JE (ed) Visual evoked potentials in man: new development. Clarendon Press, Oxford, pp 438–449

    Google Scholar 

  213. Celesia GG, Kaufman D, Cone SB (1987) Simultaneous recording of pattern electroretinograms and visual evoked potentials in patients with multiple sclerosis. In: Barber C, Blum T (eds) Evoked potentials III. Butterworth, Stoneham, pp 225–230

    Google Scholar 

  214. Celesia GG, Kaufman D, Cone SB (1986) Simultaneous recording of pattern electroretinograms and visual evoked potentials inpatients with multiple sclerosis. A method to separate demyelination from axonal damage to the optic nerve. Arch Neurol 43:1247–1252

    Article  CAS  PubMed  Google Scholar 

  215. Brigel M, Kaufman DI, Bobak P, Beydoun A (1994) The pattern visual evoked potential: a multicenter study using standardized techniques. Doc Ophthalmol 86:65–79

    Article  Google Scholar 

  216. Bodis-Wollner I, Yahr MD (1978) Measurements of visual evoked potentials in Parkinson’s disease. Brain 101:661–671

    Article  CAS  PubMed  Google Scholar 

  217. Bodis-Wollner I (1990) Visual deficits related to dopamine deficiency in experimental animals and Parkinson’s disease patients. Trends Neurosci 13:296–302

    Article  CAS  PubMed  Google Scholar 

  218. Bodis-Wollner I, Tzelepi A (2002) Push-pull model of dopamine’s action in the retina. In: Hung GK, Ciuffreda KC (eds) Models of the visual system. Kluver, New York, pp 191–214

    Chapter  Google Scholar 

  219. Maffei L, Fiorentini A (1986) Generator sources of the pattern ERG in man and animals. In: Bodis-Wollner I, Cracco R (eds) Evoked potentials. Alan R Liss, New York, pp 101–116

    Google Scholar 

  220. Bodis-Wollner I, Marx MS, Mitra S, Bobak P, Mylin L, Yahr M (1987) Visual dysfunction in Parkinson’s disease. Brain 110:1675–1698

    Article  PubMed  Google Scholar 

  221. Antal A, Bodis-Wollner I, Paulus W (2005) Visual dysfunction in disorders with altered dopaminergic neurotransmission. In: Celesia GG (ed) Disorders of visual processing, Handbook of clinical neurophysiology, vol 5. Elsevier B.V, pp 467–490

    Google Scholar 

  222. Tartaglione A, Pizio N, Bino G, Spadavecchia L, Favale E (1984) VEP changes in Parkinson’s disease are stimulus dependent. J Neurol Neurosurg Psychiatry 47:305–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Reagan D, Maxner C (1987) Orientation-selective visual loss in patients with Parkinson’s disease. Brain 110:415–432

    Article  Google Scholar 

  224. Price MJ, Feldmann RG, Adelberg D, Kayne H (1992) Abnormalities in color vision and contrast sensitivity in Parkinson’s disease. Neurology 42:887–890

    Article  CAS  PubMed  Google Scholar 

  225. Birch J, Kolle RU, Kunkel M, Paulus W, Upadhyay P (1998) Acquired color deficiency in patients with Parkinson’s disease. Vis Res 38:3421–3426

    Article  CAS  PubMed  Google Scholar 

  226. Haug BA, Kolle RU, Trenkwalder C, Oertel WH, Paulus W (1995) Predominant affection of the blue cone pathway in Parkinson’s disease. Brain 118:771–778

    Article  PubMed  Google Scholar 

  227. Sannita WG, Carozzo S, Orsini P, Domenici L, Porciatti V, Fioretto M, Garbarino S, Sartucci F (2009) ‘Gamma’ band oscillatory response to chromatic stimuli in volunteers and patients with idiopathic Parkinson’s disease. Vis Res 49(7):726–734

    Article  PubMed  Google Scholar 

  228. Sartucci F, Porciatti V (2006b) Elettroretinogramma (ERG) e Potenziali Evocati Visivi (PEV). In: Murri L, Sartucci F (eds) Aggiornamenti in Elettroencefalopgrafia e Tecniche Correlate. Eizioni Plus-Pisa University Press, pp 75–95

    Google Scholar 

  229. Goodin DS, Aminoff LM (1987) Electrophysiological differences between demented and non demented patients with Parkinson’s disease. Ann Neurol 21:90–94

    Article  CAS  PubMed  Google Scholar 

  230. Bodis-Wollner I (1997) Visual electrophysiology in Parkinson’s disease: PERG, VEP and visual P300. Clin Electroencephal 28(3):143–147

    Article  CAS  Google Scholar 

  231. Bodis-Wollner I, Borod JC, Cicero B et al (1995) Modality dependent changes in event related potentials correlate with specific cognitive function in non-demented patients with Parkinson’s disease. J Neurol Transm 9:197–209

    CAS  Google Scholar 

  232. Hof PR, Bouras C, Constantinidis J, Morrison JH (1990) Balint’s syndrome in Alzheimer’s disease; specific disruption of the occipito-parietal visual pathways. J Neuropathol Exp Neurol 49:168–184

    Article  CAS  PubMed  Google Scholar 

  233. Mendez MF, Tomsak RL, Remler B (1990) Disorders of the visual system in Alzheimer’s disease. J Clin Neuropthalmol 10:62–69

    CAS  Google Scholar 

  234. Bassiony NM, Lyketsos CG (2003) Delusions and hallucinations in Alzheimer’s disease: review of the brain decade. Dermatol Psychosom 44:338–401

    Google Scholar 

  235. Rizzo M, Anderson SW, Dawson J, Nawrot M (2000) Vision and cognition in Alzheimer’s disease. Neuropsychologia 38:1157–1169

    Article  CAS  PubMed  Google Scholar 

  236. de Seze J, Hache JC, Vermersch P et al (1998) Creutzfeldt-Jakob disease: neurophysiologic visual impairments. Neurology 51:962–967

    Article  PubMed  Google Scholar 

  237. Simard M, van Reekum R, Myran D (2003) Visuospatial impairment in dementia with Lewy bodies and Alzheimer’s disease: a process analysis approach. Int J Geriatr Psychiatry 18:387–391

    Article  PubMed  Google Scholar 

  238. Tang-Wai DF, Joseph KA, Boeve BF, Dickson DW, Parisi DJ, Petersen RC (2003) Pathologically confirmed corticobasal degeneration presenting with visuo-spatial dysfunction. Neurology 61:1134–1135

    Article  CAS  PubMed  Google Scholar 

  239. Celesia GG (2005) Dementia and Alzheimer’s disease. In: Celesia GG (ed) Disorders of visual processing, Handbook of clinical neurophysiology, vol 5. Elsevier B.V, Edinburgh, pp 517–526

    Google Scholar 

  240. Polich J (1998) P300 clinical utility and control of variability. Clin Neurophysiol 15:14–33

    Article  CAS  Google Scholar 

  241. Olichney JM, Hillert DG (2004) Clinical applications of cognitive event-related potentials in Alzheimer’s disease. Phys Med Rehabil Clin N Am 15:205–233

    Article  PubMed  Google Scholar 

  242. Barret G (2000) Clinical application of event-related potentials in dementing illness: issues and problems. Int J Psychophysiol 37:49–52

    Article  Google Scholar 

  243. Hinton DR, Sadun AA, Blanks JC, Miller CA (1986) Optic nerve degeneration in Alzheimer’s disease. N Engl J Med 315:485–487

    Article  CAS  PubMed  Google Scholar 

  244. Katz B, Rimmer S, Iraqui V, Katzman R (1989) Abnormal pattern electroretinogram in Alzheimer’s disease: evidence for retinal ganglion cell degeneration? Ann Neurol 26:221–225

    Article  CAS  PubMed  Google Scholar 

  245. Trick GL, Barris MC, Bickler-Bluth M (1989) Abnormal pattern electroretinograms in patients with senile dementia of the Alzheimer type. Ann Neurol 26:226–231

    Article  CAS  PubMed  Google Scholar 

  246. Sartucci F, Borghetti D, Bocci T, Murri L, Orsini P, Porciatti V, Origlia N, Domenici L (2010) Dysfunction of the magnocellular stream in Alzheimer’s disease evaluated by pattern electroretinograms and visual evoked potentials. Brain Res Bull 82(3–4):169–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Sartucci F, Domenici L, Porciatti V (2020) Commentary on “dysfunction of the magnocellular stream in Alzheimer disease evaluated by pattern Electroretinograms and visual evoked potentials”. J Exp Neurol 1(1):17–25

    Google Scholar 

  248. Harding GFA, Fylan F (1999) Two visual mechanisms of photosensitivity. Epilepsia 40:1446–1451

    Article  CAS  PubMed  Google Scholar 

  249. Porciatti V, Bonanni P, Fiorentini A, Guerrini R (2000) Lack of contrast gain control in photosensitive epilepsy. Nat Neuroscience 3:259–263

    Article  CAS  PubMed  Google Scholar 

  250. Jeavons PM, Harding GFA (1975) Photosensitive epilepsy: clinics in developmental medicine no. 56. Spastics International Medical Publications, London

    Google Scholar 

  251. Harding GFA, Edson AS, Jeavons PM (1997) Persistence of photosensitivity. Epilepsia 38:663–669

    Article  CAS  PubMed  Google Scholar 

  252. Kasteleijn-Nolst Trenité D, Rubboli G, Hirsch E, Martins da Silva A, Seri S, Wilkins A, Parra J, Covanis A, Elia M, Capovilla G, Stephani U, Harding G (2012) Methodology of photic stimulation revisited: updated European algorithm for visual stimulation in the EEG laboratory. Epilepsia 53(1):16–24. https://doi.org/10.1111/j.1528-1167.2011.03319.x

    Article  PubMed  Google Scholar 

  253. Kastelein-Nolst Trinite DGA, Binnie CD, Harding GFA, Wilkins A (1999) Photic stimulation: standardsation of screening methods. Epilepsia 40(Suppl. 4):75–79

    Google Scholar 

  254. Takahashi T, Tsukahara Y (1976) Influence of color on the photoconvulsive response. Electroencephalogr Clin Neurophysiol 41:124–136

    Article  CAS  PubMed  Google Scholar 

  255. Takahashi T, Tsukahara Y (1992) Usefulness of blue sunglasses in photosensitive epilepsy. Epilepsia 33:517–521

    Article  CAS  PubMed  Google Scholar 

  256. Wilkins AJ (1995) Visual stress. Oxford University Press, Oxford

    Book  Google Scholar 

  257. Bocci T, Caleo M, Giorli E, Barloscio D, Maffei L, Rossi S, Sartucci F (2011) Transcallosal inhibition dampens neural responses to high contrast stimuli in human visual cortex. Neuroscience 187:43–51

    Article  CAS  PubMed  Google Scholar 

  258. Bocci T, Caleo M, Restani L, Barloscio D, Rossi S, Sartucci F (2016) Altered recovery from inhibitory repetitive transcranial magnetic stimulation (rTMS) in subjects with photosensitive epilepsy. Clin Neurophysiol 127:3353–3361

    Article  PubMed  Google Scholar 

  259. Yannuzzi LA, Ober MD, Slakter JS et al (2004) Ophthalmic fundus imaging: today and beyond. Am J Ophthalmol 137:511–524

    Article  PubMed  Google Scholar 

  260. Gerth C, Delahunt PB, Crognale MA, Werner JS (2003) Topography of the chromatic pattern-onset VEP. J Vis 3:171–182

    Article  PubMed  Google Scholar 

  261. Hoffmann MB, Straube S, Bach M (2003) Pattern-onset stimulation boosts central multifocal VEP responses. J Vision 3:432–439

    Article  Google Scholar 

  262. Hood DC, Hodel JG, Winn BJ (2003) The multifocal visual evoked potential. J Neuroophthalmol 23:279–289

    Article  PubMed  Google Scholar 

  263. Sommer M, Meinhardt J, Voltz HP (2003) Combined measurement of event-related potentials (ERPs) and fMRI. Acta Neurobiol Exp 63:49–53

    Google Scholar 

  264. Vanni S, Warniking J, Dojat M, Delon-Martin C, Segebarth C, Bullier J (2004) Sequence of pattern onset responses in the human visual areas: an fMRI constrained VEP source analysis. NeuroImage 21:801–817

    Article  CAS  PubMed  Google Scholar 

  265. Gotman J (2003) Noninvasive methods for evaluating the localization and propagation of epileptic activity. Epilepsia 44(suppl. 12):21–29

    Article  PubMed  Google Scholar 

  266. Bartolini E, Pesaresi I, Fabbri S, Cecchi P, Giorgi SF, Sartucci F, Bonuccelli U, Cosottini M (2014) Abnormal response to photic stimulation in juvenile myoclonic epilepsy: an EEG-fMRI study. Epilepsia 55(7):1038–1047

    Article  PubMed  Google Scholar 

  267. Zrenner E (2002) Will retinal implants restore vision? Science 295:1022–1025

    Article  CAS  PubMed  Google Scholar 

  268. Chow AY, Chow VY, Packo KH, Pollack JS, Peyman GA, Schuchard R (2004) The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophtahlmol 122:460–469

    Article  Google Scholar 

  269. Hetling JR, Baig-Silva MS (2004) Neural prostheses for vision: designing a functional interface with retinal neurons. Neurol Res 26:21–34

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdinando Sartucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sartucci, F., Porciatti, V. (2024). Psychophysiology and Electrophysiology of the Visual System. In: Valeriani, M., de Tommaso, M. (eds) Psychophysiology Methods. Neuromethods, vol 206. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3545-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3545-2_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3544-5

  • Online ISBN: 978-1-0716-3545-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics