Skip to main content
Log in

SFRP5 prevents memory impairment induced by WNT5A in male Wistar rats

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Wingless-type family members (Wnt5a) and secreted frizzled-related protein 5 (SFRP5) play important roles in the central nervous system during development. However, the effects of Wnt5a and SFRP5 on learning and memory in adults remain unknown. Here, we evaluated the effects of Wnt5a and SFRP5 on the consolidation of passive avoidance memory in rats. Forty-two male Wistar rats were divided into six groups including saline, Wnt5a(10ng/mL), SFRP5 (30, 60 and 120 ng/ml), and SFRP5+ Wnt5a groups (n=7). Animals were anaesthetized and cannulated for intra-cerebroventricular (ICV) injection using stereotaxic apparatus. Drugs were injected one hour after the training in step-through passive avoidance learning, and 24 h later, memory retention was evaluated. Data were analyzed by one-way ANOVA and post hoc Tucky tests. Findings showed that injection of Wnt5a in a dose of 10 ng/mL, one hour after training, significantly impaired consolidation of passive avoidance memory (P = 0.01), whereas ICV injection of SFRP5 (60 and 120 ng/ml) (P=0.02) showed a significant facilitatory effect on consolidation of memory compared to the saline receiving group. Also, pretreatment with 60 ng/ml SFRP5, 15 min before WNT5A prevents memory impairment. Our findings suggest that ICV injection of Wnt5a one hour after training impairs consolidation of passive avoidance memory, but pretreatment with SFRP5 significantly prevents the deleterious effect of Wnt5a.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data will be made available on reasonable request from the correspondent author.

References

  1. Freese JL, Pino D, Pleasure SJ. Neurobiology of Disease Wnt signaling in development and disease. Neurobiol Dis. 2010;38(2):148-153. https://doi.org/10.1016/j.nbd.2009.09.003

    Article  CAS  PubMed  Google Scholar 

  2. Gottmann P, Ouni M, Saussenthaler S, et al. A computational biology approach of a genome-wide screen connected miRNAs to obesity and type 2 diabetes. Mol Metab. 2018;11:145-159.

    Article  CAS  Google Scholar 

  3. Gay A, Towler DA. Wnt signaling in cardiovascular disease: opportunities and challenges. Curr Opin Lipidol. 2017;28(5):387.

    Article  CAS  Google Scholar 

  4. Liu LB, Chen XD, Zhou XY, Zhu Q. The Wnt antagonist and secreted frizzled-related protein 5: implications on lipid metabolism, inflammation, and type 2 diabetes mellitus. Biosci Rep. 2018;38(4).

  5. Grainger S, Willert K. Mechanisms of Wnt signaling and control. Wiley Interdiscip Rev Syst Biol Med. 2018;10(5):e1422. https://doi.org/10.1002/wsbm.1422

    Article  Google Scholar 

  6. Arredondo SB, Valenzuela-Bezanilla D, Mardones MD, Varela-Nallar L. Role of Wnt signaling in adult hippocampal neurogenesis in health and disease. Front Cell Dev Biol. Published online 2020:860.

  7. Clevers H. Wnt/β-catenin signaling in development and disease. Cell. 2006;127(3):469-480.

    Article  CAS  Google Scholar 

  8. Garcia AL, Udeh A, Kalahasty K, Hackam AS. 越来越多的领域: 通过 Wnt 信号调节轴突再生. 中国神经再生研究 (英文版). 2018;13(1):43.

  9. Wang JF, Xu HJ, He ZL, Yin Q, Cheng W. Crocin alleviates pain hyperalgesia in AIA rats by inhibiting the spinal Wnt5a/β-catenin signaling pathway and glial activation. Neural Plast. 2020;2020.

  10. Chen C ming, Orefice LL, Chiu S ling, Legates TA, Hattar S, Huganir RL. Wnt5a is essential for hippocampal dendritic maintenance and spatial learning and memory in adult mice. Published online 2017. https://doi.org/10.1073/pnas.1615792114

  11. Arredondo SB, Guerrero FG, Herrera-Soto A, et al. Wnt5a promotes differentiation and development of adult-born neurons in the hippocampus by noncanonical Wnt signaling. Stem Cells. 2020;38(3):422-436.

    Article  CAS  Google Scholar 

  12. Vargas JY, Ahumada J, Arrázola MS, Fuenzalida M, Inestrosa NC. WASP-1, a canonical Wnt signaling potentiator, rescues hippocampal synaptic impairments induced by Aβ oligomers. Exp Neurol. 2015;264:14-25.

    Article  CAS  Google Scholar 

  13. Vargas JY, Fuenzalida M, Inestrosa NC. In vivo activation of Wnt signaling pathway enhances cognitive function of adult mice and reverses cognitive deficits in an Alzheimer’s disease model. J Neurosci. 2014;34(6):2191-2202.

    Article  CAS  Google Scholar 

  14. Zhang GL, Zhang J, Li SF, et al. Wnt-5a prevents Aβ-induced deficits in long-term potentiation and spatial memory in rats. Physiol Behav. 2015;149:95-100.

    Article  CAS  Google Scholar 

  15. Pashirzad M, Shafiee M, Rahmani F, et al. Role of Wnt5a in the pathogenesis of inflammatory diseases. J Cell Physiol. 2017;232(7):1611-1616.

    Article  CAS  Google Scholar 

  16. Lewcock JW, Schlepckow K, Di Paolo G, Tahirovic S, Monroe KM, Haass C. Emerging microglia biology defines novel therapeutic approaches for Alzheimer’s disease. Neuron. 2020;108(5):801-821.

    Article  CAS  Google Scholar 

  17. Maguschak KA, Ressler KJ. Wnt signaling in amygdala-dependent learning and memory. J Neurosci. 2011;31(37):13057-13067.

    Article  CAS  Google Scholar 

  18. Schulte DM, Müller N, Neumann K, et al. Pro-inflammatory wnt5a and anti-inflammatory sFRP5 are differentially regulated by nutritional factors in obese human subjects. PLoS One. 2012;7(2):e32437.

    Article  CAS  Google Scholar 

  19. Bagchi DP, Nishii A, Li Z, et al. Wnt/β-catenin signaling regulates adipose tissue lipogenesis and adipocyte-specific loss is rigorously defended by neighboring stromal-vascular cells. Mol Metab. 2020;42:101078.

    Article  CAS  Google Scholar 

  20. Osman J, Bellamkonda K, Liu Q, Andersson T, Sjölander A. The WNT5A agonist Foxy5 reduces the number of colonic cancer stem cells in a xenograft mouse model of human colonic cancer. Anticancer Res. 2019;39(4):1719-1728.

    Article  CAS  Google Scholar 

  21. Kouhestani S, Jafari A, Babaei P. Kaempferol attenuates cognitive deficit via regulating oxidative stress and neuroinflammation in an ovariectomized rat model of sporadic dementia. Published online 2014:1827-1832. https://doi.org/10.4103/1673-5374.238714

  22. Mohammadi S, Oryan S, Komaki A, Eidi A, Zarei M. Effects of hippocampal microinjection of irisin, an exercise-induced myokine, on spatial and passive avoidance learning and memory in male rats. Int J Pept Res Ther. 2020;26(1):357-367.

    Article  CAS  Google Scholar 

  23. Badrikoohi M, Esmaeili-Bandboni A, Babaei P. Simultaneous administration of bromodomain and histone deacetylase I inhibitors alleviates cognition deficit in Alzheimer’s model of rats. Brain Res Bull. 2022;179:49-56.

    Article  Google Scholar 

  24. Babai P, Anokhin K V, Dolgov ON, Sudakov K V. Characteristics of c-fos gene expression in the brains of rats with different investigative and defensive behaviors. Neurosci Behav Physiol. 2001;31(6):583-588.

    Article  CAS  Google Scholar 

  25. Sarkaki A, Rezaiei M. Improving active and passive avoidance memories deficits due to permanent cerebral ischemia by pomegranate seed extract in female rats. Malaysian J Med Sci MJMS. 2013;20(2):25.

    Google Scholar 

  26. Hodges SL, Reynolds CD, Smith GD, et al. Neuronal subset-specific deletion of Pten results in aberrant Wnt signaling and memory impairments. Brain Res. 2018;1699:100-106.

    Article  CAS  Google Scholar 

  27. Li B, Zhong L, Yang X, Andersson T, Huang M, Tang SJ. WNT5A signaling contributes to Aβ-induced neuroinflammation and neurotoxicity. PLoS One. 2011;6(8):e22920.

    Article  CAS  Google Scholar 

  28. Maguschak KA, Ressler KJ. The dynamic role of beta-catenin in synaptic plasticity. Neuropharmacology. 2012;62(1):78-88.

    Article  CAS  Google Scholar 

  29. Zhang G li, Zhang J, Li S feng, et al. Physiology & Behavior Wnt-5a prevents A β -induced de fi cits in long-term potentiation and spatial memory in rats. Physiol Behav. 2015;149:95-100. https://doi.org/10.1016/j.physbeh.2015.05.030

  30. Fortress AM, Schram SL, Tuscher JJ, Frick KM. Canonical Wnt Signaling is Necessary for Object Recognition Memory Consolidation. 2013;33(31):12619-12626. https://doi.org/10.1523/JNEUROSCI.0659-13.2013

    Article  CAS  Google Scholar 

  31. Srikanth MP, Feldman RA. Elevated Dkk1 mediates downregulation of the canonical Wnt pathway and lysosomal loss in an iPSC model of neuronopathic gaucher disease. Biomolecules. 2020;10(12):1630.

    Article  CAS  Google Scholar 

  32. Kalkman HO. A review of the evidence for the canonical Wnt pathway in autism spectrum disorders. Mol Autism. 2012;3(1):1-12.

    Article  Google Scholar 

  33. Caracci MO, Ávila ME, De Ferrari G V. Synaptic Wnt/GSK3β signaling hub in autism. Neural Plast. 2016;2016.

  34. Pérez-Palma E, Andrade V, Caracci MO, et al. Early transcriptional changes induced by Wnt/β-catenin signaling in hippocampal neurons. Neural Plast. 2016;2016.

  35. Zhang Y, Yuan X, Wang Z, Li R. The canonical Wnt signaling pathway in autism. CNS Neurol Disord Targets (Formerly Curr Drug Targets-CNS Neurol Disord. 2014;13(5):765-770.

  36. Ackers I, Malgor R. Interrelationship of canonical and non-canonical Wnt signalling pathways in chronic metabolic diseases. Diabetes Vasc Dis Res. 2018;15(1):3-13.

    Article  CAS  Google Scholar 

  37. Meng S, Zhang L, Tang Y, et al. BET inhibitor JQ1 blocks inflammation and bone destruction. J Dent Res. 2014;93(7):657-662.

    Article  CAS  Google Scholar 

  38. Zhao Y, Zhang C, Huang Y, et al. Up-regulated expression of WNT5a increases inflammation and oxidative stress via PI3K/AKT/NF-κB signaling in the granulosa cells of PCOS patients. J Clin Endocrinol Metab. 2015;100(1):201-211.

    Article  CAS  Google Scholar 

  39. McLeod F, Salinas PC. Wnt proteins as modulators of synaptic plasticity. Curr Opin Neurobiol. 2018;53:90-95.

    Article  CAS  Google Scholar 

  40. Cuitino L, Godoy JA, Farías GG, et al. Wnt-5a modulates recycling of functional GABAA receptors on hippocampal neurons. J Neurosci. 2010;30(25):8411-8420.

    Article  CAS  Google Scholar 

  41. Muñoz FJ, Godoy JA, Cerpa W, Poblete IM, Huidobro-Toro JP, Inestrosa NC. Wnt-5a increases NO and modulates NMDA receptor in rat hippocampal neurons. Biochem Biophys Res Commun. 2014;444(2):189-194.

    Article  Google Scholar 

  42. P B. NMDA and AMPA receptors dysregulation in Alzheimer’s disease. Eur J Pharmacol. 2021;908:174310. https://doi.org/10.1016/j.ejphar.2021.174310.

  43. Cerpa W, Gambrill A, Inestrosa NC, Barria A. Regulation of NMDA-receptor synaptic transmission by Wnt signaling. J Neurosci. 2011;31(26):9466-9471.

    Article  CAS  Google Scholar 

  44. DavisEK Z. GhoshA. Wntsactingthrough canonicalandnoncanonicalsignalingpathwaysexert oppositeeffectsonhippocampalsynapseformation. NeuralDev. 2008;3:32.

  45. Yang K, Wang X, Zhang H, et al. The evolving roles of canonical WNT signaling in stem cells and tumorigenesis: implications in targeted cancer therapies. Lab Investig. 2016;96(2):116-136.

    Article  CAS  Google Scholar 

  46. Fayaz E, Ph D, Damirchi A, et al. Cinnamon extract combined with high-intensity endurance training alleviates metabolic syndrome via non-canonical WNT signaling. Nutrition. 2019;65:173-178. https://doi.org/10.1016/j.nut.2019.03.009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Cellular & Molecular Research Center staff for providing facilities during this project.

Author information

Authors and Affiliations

Authors

Contributions

PB conceived and designed the experiment, contributed to the interpretation of data and wrote the first draft of the manuscript. MB performed the behavioural experiments and contributed to the drafting. AD contributed to analyzing and interpreting data, besides providing the grant for research. SK analyzed data, provided figures for the manuscript, and contributed to drafting. All authors reviewed the manuscript and approved the final manuscript.

Corresponding author

Correspondence to Mahshid BadriKoohi.

Ethics declarations

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

The protocol of this study was confirmed by the ethics committee of Guilan University of Medical Sciences, Rasht, Iran, IR.GUMS.REC.1397.058.

Competing Interests and Funding

Authors declare no competing interest. This study was supported by the Grant from Dr Arsalan Damirchi, the Guilan University.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babaei, P., Kouhestani, S., Damirchi, A. et al. SFRP5 prevents memory impairment induced by WNT5A in male Wistar rats. Neurosci Behav Physi 52, 784–790 (2022). https://doi.org/10.1007/s11055-022-01261-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-022-01261-z

Keywords

Navigation