Skip to main content
Log in

Functional Studies of the Primary Auditory Cortex in the Cat

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The results of electrophysiological studies of the responses of cat primary auditory cortex neurons to acoustic stimuli are analyzed. Over more than half a century, this zone has been a favorite object of research for both morphologists and specialists in sensory physiology. Some early electrophysiological studies showed that the responses of cells in intact subjects had high specificity. However, further studies, mostly performed on anesthetized animals, focused mainly on analysis of the tonotopic organization of the cortex and the possible detection of other features of the responses of the cells determining the topography of this cortical zone. Primary cortex neurons generally only produced responses to sounds at the moment of signal onset and were characterized by very feeble ability to reproduce rapid temporal changes. Comparison of data obtained in different laboratories shows that the general state of the subject during recording of cortical neuron spike activity plays a significant role. In recent years, important results on auditory cortex neurons obtained from waking rodents and primates demonstrated a clear deficit in the data for an apparently very well studied subject as the primary cortical zone in cats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeles, M. and Goldstein, M. H., “Functional architecture in cat primary auditory cortex: columnar organization and organization according to depth,” J. Neurophysiol., 33, 172–187 (1970).

    Article  CAS  PubMed  Google Scholar 

  • Aertsen, A. M. H. J. and Johannesma, P. I. M., “Spectro-temporal receptive fields of auditory neurons in the grass frog,” Biol. Cybern., 38, No. 4, 223–234 (1980), https://doi.org/10.1007/bf00337015.

    Article  Google Scholar 

  • Al’tman, Ya. A., “Cat auditory cortex neuron responses to sound signals with interaural differences,” Ros. Fiziol. Zh., T 58, No. 1, 9–16 (1972).

    Google Scholar 

  • Al’tman, Ya. A. and Nikitin, N. I., “Inhibitory processes in the responses of cat auditory cortex neurons in dichotic stimulation,” Zh. Evolyuts. Biokhim. Fiziol., 21, 463–469 (1985).

    Google Scholar 

  • Atencio, C. A. and Schreiner, C. E., “Spectrotemporal processing differences between auditory cortical fast-spiking and regular-spiking neurons,” J. Neurosci., 28, 3897–3910 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atencio, C. A. and Schreiner, C. E., “Laminar diversity of dynamic sound processing in cat primary auditory cortex,” J. Neurophysiol., 103, 192–205 (2010a).

    Article  PubMed  Google Scholar 

  • Atencio, C. A. and Schreiner, C. E., “Columnar connectivity and laminar processing in cat primary auditory cortex,” PLoS One, 5, e9521 (2010b), https://doi.org/10.1371/journal.pone.0009521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atencio, C. A. and Schreiner, C. E., “Spectrotemporal processing in spectral tuning modules of cat primary auditory cortex,” PLoS One, 7, No. 2, e31537 (2012), https://doi.org/10.1371/journal.pone.0031537.

  • Atencio, C. A. and Schreiner, C. E., “Functional congruity in local auditory cortical microcircuits,” Neuroscientist, 316, 402–419 (2016), https://doi.org/10.1016/j.neuroscience.2015.12.057.

    Article  CAS  Google Scholar 

  • Atencio, C. A., Sharpee, T. O., and Schreiner, C. E., “Hierarchical computation in the canonical auditory cortical circuit,” Proc. Natl. Acad. Sci. USA, 106, 21,894–21,899 (2009).

  • Atencio, C. A. and Sharpee, T. O., “Multidimensional receptive fi eld processing by cat primary auditory cortical neurons,” Neuroscientist, 359, 130–141 (2017), https://doi.org/10.1016/j.neuroscience.2017.07.003.

    Article  CAS  Google Scholar 

  • Bakhtin, G. A. and Bibikov, N. G., “Changes in the sensitivity to interruption of acoustic signals in the process of adaptation of the frog acoustic system,” Akustich. Zh., 19, No. 4, 614–616 (1974).

    Google Scholar 

  • Bar-Yosef, O., Rotman, Y., and Nelken, I., “Responses of neurons in cat primary auditory cortex to bird chirps: effects of temporal and spectral context,” J. Neurosci., 22, No. 19, 8619–8632 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bibikov, N. G., “Cross-correlation analysis of the activity of auditory neurons on exposure to sound clicks,” Biofi zika, 26, No. 2), 339–345 (1981).

    CAS  Google Scholar 

  • Bibikov, N. G., Samson, F., and Imig, T., “The risk function and the expected neuron spike density function in the cochlear nucleus of cats,” Ros. Fiziol. Zh., 89, No. 6), 682–699 (2003).

    CAS  Google Scholar 

  • Bibikov, N. G., “The relative role of signal amplitude and its rate of change for the generation of spike activity by neurons in the medulla oblongata of amphibia,” Zh. Evolyuts. Biokhim. Fiziol., 56, No. 1), 62–72 (2020).

    Google Scholar 

  • Bonham, B. H., Cheung, S. W., Godey, B., and Schreiner, C. E., “Spatial organization of frequency response areas and rate/level functions in the developing AI,” J. Neurophysiol., 91, No. 2, 841–854 (2004), https://doi.org/10.1152/jn.00017.2003.

    Article  PubMed  Google Scholar 

  • Britvina, T. and Eggermont, J. J., “Spectrotemporal receptive fields during spindling and non-spindling epochs in cat primary auditory cortex,” Neuroscientist, 154, No. 4, 1576–1588 (2008).

    Article  CAS  Google Scholar 

  • Brosch, M. and Schreiner, C. E., “Time course of masking curves in cat primary auditory cortex,” J. Neurophysiol., 77, 923–943 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Brosch, M. and Schreiner, C. E., “Sequence sensitivity of neurons in cat primary auditory cortex,” Cereb. Cortex, 10, No. 12, 1155–1167 (2000), https://doi.org/10.1093/cercor/10.12.1155.

    Article  CAS  PubMed  Google Scholar 

  • Brugge, J. F., Dubrovsky, N. A., Aitkin, L. M., and Anderson, D. J., “Sensitivity of single neurons in the auditory cortex of cat to binaural stimulation: effects of varying interaural time and intensity,” J. Neurophysiol., 32, 1005–1024 (1969).

    Article  CAS  PubMed  Google Scholar 

  • Brugge, J. F., Reale, R. A., Hind, J. E., et al., “Simulation of free-fi eld sound sources and its application to studies of cortical mechanisms of sound localization in the cat,” Hear. Res., 73, 67–84 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Brugge, J. F., Reale, R. A., and Hind, J. E., “The structure of spatial receptive fields of neurons in primary auditory cortex of the cat,” J. Neurosci., 16, No. 14, 4420–4437 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler, B. E., Hall, A. J., and Lomber, S. G., “High-field functional imaging of pitch processing in auditory cortex of the cat,” PLoS One, 10, No. 7, e0134362 (2015), https://doi.org/10.1371/journal.pone.0134362.

  • Calford, M. B. and Semple, M. N., “Monaural inhibition in cat auditory cortex,” J. Neurophysiol., 73, 1876–1891 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Carrasco, A. and Lomber, S. G., “Neuronal activation times to simple, complex, and natural sounds in cat primary and non-primary auditory cortex,” J. Neurophysiol., 106, 1166–1178 (2011).

    Article  PubMed  Google Scholar 

  • Cheung, S. W., Nagarajan, S. S., Bedenbaugh, P. H., et al., “Auditory cortical neuron differences under isoflurane versus pentobarbital anesthesia,” Hear. Res., 156, 115–127 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Chimoto, S., Kitama, T., Qin, L., et al., “Tonal response patterns of primary auditory cortex neurons in alert cats,” Brain Res., 934, No. 1, 34–42 (2002), https://doi.org/10.1016/s0006-8993(02)02316.

    Article  CAS  PubMed  Google Scholar 

  • De Boer, E., “On cochlear encoding: Potentialities and limitations of the reverse-correlation technique,” J. Acoust. Soc. Am., 63, No. 1, 115– 135 (1978), https://doi.org/10.1121/1.381704.

    Article  PubMed  Google Scholar 

  • Dinse, H. R., Godde, B., Hilger, T., et al., “Optical imaging of cat auditory cortex cochleotopic selectivity evoked by acute electrical stimulation of a multi-channel cochlear implant,” Eur. J. Neurosci., 9, 113–119 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Dong, C., Qin, L., Liu, Y., et al., “Neural responses in the primary auditory cortex of freely behaving cats while discriminating fast and slow click-trains,” PLoS One, 6v, No. 10; e25895 (2011), https://doi.org/10.1371/journal.pone.0025895.

  • Eggermont, J. J., “Rate and synchronization measures of periodicity coding in cat primary auditory cortex,” Hear. Res., 56, 153–167 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Eggermont, J. J., “Stimulus induced and spontaneous rhythmic fi ring of single units in cat primary auditory cortex,” Hear. Res., 61, No. 1–2, 1–11 (1992), https://doi.org/10.1016/0378-5955(92)90029.

    Article  CAS  PubMed  Google Scholar 

  • Eggermont, J. J., “Temporal modulation transfer functions for AM and FM stimuli in cat auditory cortex. Effects of carrier type, modulating waveform and intensity,” Hear. Res., 74, No. 1–2, 51–66 (1994), https://doi.org/10.1016/0378-5955(94)90175-9.

    Article  CAS  PubMed  Google Scholar 

  • Eggermont, J. J., “Representation of spectral and temporal sound features in three cortical fi elds of the cat. Similarities outweigh differences,” J. Neurophysiol., 80, No. 5, 2743–2764 (1998), https://doi.org/10.1152/jn.1998.80.5.2743.

    Article  CAS  PubMed  Google Scholar 

  • Eggermont, J. J., “Neural correlates of gap detection in three auditory cortical fi elds in the cat,” J. Neurophysiol., 81, 2570–2581 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Eggermont, J. J., “Neural responses in primary auditory cortex mimic psychophysical, across-frequency-channel, gap-detection thresholds,” J. Neurophysiol., 84, 1453–1463 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Eggermont, J. J., “Temporal modulation transfer functions in cat primary auditory cortex: separating stimulus effects from neural mechanisms,” J. Neurophysiol., 87, 305–321 (2002).

    Article  PubMed  Google Scholar 

  • Eggermont, J. J., “Context dependence of spectro-temporal receptive fi elds with implications for neural coding,” Hear. Res., 271, 123–132 (2011).

    Article  PubMed  Google Scholar 

  • Eggermont, J. J. and Komiya, H., “Moderate noise trauma in juvenile cats results in profound cortical topographic map changes in adulthood,” Hear. Res., 142, 89–101 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Eisenman, L., “Neural encoding of sound location: an electrophysiological study in auditory cortex (AI) of the cat using free field stimuli,” Brain Res., 75, 203–214 (1974).

    Article  CAS  PubMed  Google Scholar 

  • Evans, E. and Whitfield, I., “Classifi cation of unit responses in the auditory cortex of the unanaesthetized and unrestrained cat,” J. Physiol., 171, 476–793 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fallon, J. B., Shepherd, R. K., and Irvine, D. R. F., “Effects of chronic cochlear electrical stimulation after an extended period of profound deafness on primary auditory cortex organization in cats,” Eur. J. Neurosci., 39, No. 5, 811–820 (2013), https://doi.org/10.1111/ejn.12445.

    Article  PubMed  Google Scholar 

  • Fallon, J. B., Shepherd, R. K., Nayagam, D. A. X., et al., “Effects of deafness and cochlear implant use on temporal response characteristics in cat primary auditory cortex,” Hear. Res., 315, 1–9 (2014), https://doi.org/10.1016/j.heares.2014.06.001.

    Article  PubMed  Google Scholar 

  • Fishbach, A., Nelken, I., and Yeshurun, Y., “Auditory edge detection: a neural model for physiological and psychoacoustical responses to amplitude transients,” J. Neurophysiol., 85, 2303–2323 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Gerstein, G. L. and Kiang, N. Y., “Responses of single units in the auditory cortex,” Exp. Neurol., 10, No. 1, 1–18 (1964), https://doi.org/10.1016/0014-4886(64)90083-4.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein, M. H., Hall, J. L., II, and Butterfield, B. O., “Single unit activity in the primary auditory cortex of unanesthetized cats”, J. Acoust. Soc. Am., 43, 444–455 (1968).

    Article  PubMed  Google Scholar 

  • Gehr, D. D., Komiya, H., and Eggermont, J. J., “Neuronal responses in cat primary auditory cortex to natural and altered species-specifi c calls,” Hear. Res., 150, 27–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Gourevitch, B. and Eggermont, J. J., “Spatial representation of neural responses to natural and altered conspecifi c vocalizations in cat auditory cortex,” J. Neurophysiol., 97, 144–158 (2007).

    Article  PubMed  Google Scholar 

  • Gourévitch, B. and Eggermont, J. J., “Spectrotemporal sound density dependent long-term adaptation in cat primary auditory cortex,” Eur. J. Neurosci., 27, 3310–3321 (2008).

    Article  PubMed  Google Scholar 

  • Gourévitch, B., Noreña, A., Shaw, G., and Eggermont, J. J., “Spectrotemporal receptive fi elds in anesthetized cat primary auditory cortex are context dependent,” Cereb. Cortex, 19, No. 6, 1448–1461 (2009), https://doi.org/10.1093/cercor/bhn184.

  • Hall, J. L. and Goldstein, M. H., “Representation of binaural stimuli by single units in primary auditory cortex of unanesthetized cats”, J. Acoust. Soc. Am., 43, No. 3, 456–461 (1968), https://doi.org/10.1121/1.

  • Hall, A. J. and Lomber, S. G., “High-fi eld fMRI reveals tonotopically-organized and core auditory cortex in the cat,” Hear. Res., 325, 1–11 (2015).

    Article  PubMed  Google Scholar 

  • Harper, N. S., Schoppe, O., Willmore, B. D., et al., “Network receptive fi eld modeling reveals extensive integration and multi-feature selectivity in auditory cortical neurons,” PLoS Comput. Biol., 12,e1005113 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • He, J., Hashikawa, T., Ojima, H., and Kinouchi, Y., “Temporal integration and duration tuning in the dorsal zone of cat auditory cortex,” J. Neurosci., 17, No. 7, 2615–2625 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heil, P., “Auditory cortical onset responses revisited. I. First-spike timing,” J. Neurophysiol., 77, 2616–2641 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Heil, P., Rajan, R., and Irvine, D. R., “Topographic representation of tone intensity along the isofrequency axis of cat primary auditory cortex,” Hear. Res., 76, 188–202 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Hind, J. E., “An electrophysiological determination of tonotopic organization in auditory cortex of cat,” J. Neurophysiol., 16, 473–489 (1953).

    Article  Google Scholar 

  • Hubel, D. H., Henson, C. O., Rupert, A., and Galambos, R., “Attention units in the auditory cortex,” Science, 129, 1279–1280 (1959).

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi, K., Priebe, N. J., Sharpee, T. O., et al., “Encoding of temporal information by timing, rate, and place in cat auditory cortex,” PLoS One, 5 (e11531) (2010).

  • Jenkins, W. M. and Merzenich, M. M., “Role of cat primary auditory cortex for sound-localization behavior,” J. Neurophysiol., 52, No. 5, 819–847 (1984).

    Article  CAS  PubMed  Google Scholar 

  • Imig, T. J., Brugge, J. F., “Sources and terminations of callosal axons related to binaural and frequency maps in primary auditory cortex of the cat,” J. Comp. Neurol., 182, No. 4, 637–660 (1978).

    Article  CAS  PubMed  Google Scholar 

  • Imig, T. J. and Reale, R. A., “Pattern of cortico-cortical connections related to tonotopic maps in cat auditory-cortex,” J. Comp. Neurol., 192, 293–332 (1980).

    Article  CAS  PubMed  Google Scholar 

  • Imig, T. J., Irons, W. A., and Samson, F. R., “Single unit and sound pressure level of selectivity to azimuthal direction noise bursts in cat high-frequency primary auditory cortex,” J. Neurophysiol., 63, 1448–1466 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Katsuki, Y., Watanabe, T., and Maruyama, N., “Activity of auditory neurons in upper levels of brain of cat,” J. Neurophysiol., 22, No. 4, 343–359 (1959).

    Article  CAS  PubMed  Google Scholar 

  • Kenmochi, M. and Eggermont, J. J., “Autonomous cortical rhythms affect temporal modulation transfer functions,” NeuroReport, 8, No. 7, 1589–1593 (1997), https://doi.org/10.1097/00001756-199705060-00008.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S., Manyam, S. C., Warren, D. J., Normann, R. A., “Electrophysiological mapping of cat primary auditory cortex with multielectrode arrays,” Ann. Biomed. Eng., 34, 300–309 (2006), https://doi.org/10.1007/s10439-005-9037-9.

    Article  PubMed  Google Scholar 

  • Kok, M. A., Stolzberg, D., Brown, T. A., and Lomber, S. G., “Dissociable influences of primary auditory cortex and the posterior auditory field on neuronal responses in the dorsal zone of auditory cortex,” J. Neurophysiol., 113, No. 2, 475–486 (2015), https://doi.org/10.1152/jn.00682.2014.

    Article  PubMed  Google Scholar 

  • Kok, M. A. and Lomber, S. G., “Origin of the thalamic projection to dorsal auditory cortex in hearing and deafness,” Hear. Res., 343, 108–117 (2017), https://doi.org/10.1016/j.heares.2016.05.013.

    Article  PubMed  Google Scholar 

  • Langner, G., Dinse, H. R., and Godde, B., “A map of periodicity orthogonal to frequency representation in the cat auditory cortex,” Front. Integr. Neurosci., 3, Art. 27 (2009), 10.3389/neuro.07.027.2009.

  • Lee, C. C., Imaizumi, K., Schreiner, C. E., Winer, J. A., Concurrent tonotopic processing streams in auditory cortex,” Cereb. Cortex, 14, 441–451 (2004a).

  • Lee, C. C., Schreiner, C. E., Imaizumi, K., and Winer, J. A., “Tonotopic and heterotopic projection systems in physiologically defi ned auditory cortex,” Neuroscience, 128, 871–887 (2004b).

    Article  CAS  PubMed  Google Scholar 

  • Lee, C. C. and Winer, J. A., “Connections of cat auditory cortex: I. Thalamocortical system,” J. Comp. Neurol., 507, 1879–1900 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, C. C. and Winer, J. A., “Convergence of thalamic and cortical pathways in cat auditory cortex,” Hear. Res., 274, 85–94 (2011).

    Article  PubMed  Google Scholar 

  • Lu, T. and Wang, X., “Temporal discharge patterns evoked by rapid sequences of wide- and narrowband clicks in the primary auditory cortex of cat,” J. Neurophysiol., 84, 236–246 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Ma, H., Qin, L., Dong, C., et al., “Comparison of neural responses to cat meows and human vowels in the anterior and posterior auditory fi eld of awake cats,” PLoS One, 8, No. 1, e52942 (2013), https://doi.org/10.1371/journal.pone.0052942.

  • Mendelson, J. R. and Cynader, M. S., “Sensitivity of cat primary auditory cortex (Al) neurons to the direction and rate of frequency modulation,” Brain Res., 327, No. 1–2, 331–335 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Mendelson, J. R. and Grasse, K. L., “A comparison of monaural and binaural responses to frequency modulated (FM) sweeps in cat primary auditory cortex,” Exp. Brain Res., 91, 435–454 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Merzenich, M. M., Knight, P. L., and Roth, G. L., “Representation of cochlea within primary auditory cortex in the cat,” J. Neurophysiol., 38, 231–249 (1975).

    Article  CAS  PubMed  Google Scholar 

  • Mickey, B. J. and Middlebrooks, J. C., “Responses of auditory cortical neurons to pairs of sounds: correlates of fusion and localization,” J. Neurophysiol., 86, 1333–1350 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Mickey, B. J. and Middlebrooks, J. C., “Representation of auditory space by cortical neurons in awake cats,” Neuroscience, 23, 8649–8663 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mickey, B. J. and Middlebrooks, J. C., “Sensitivity of auditory cortical neurons to the locations of leading and lagging sounds,” J. Neurophysiol., 94, No. 2, 979–989 (2005), https://doi.org/10.1152/jn.00580.2004.

    Article  PubMed  Google Scholar 

  • Middlebrooks, J. C., Dykes, R. W., and Merzenich, M. M., “Binaural response- specifi c bands in primary auditory cortex (AI) of the cat: topographic organization orthogonal to isofrequency contours,” Brain Res., 181, 31–48 (1980).

    Article  CAS  PubMed  Google Scholar 

  • Miller, L. M., Escabí, M. A., Read, H. L., and Schreiner, C. E., “Functional convergence of response properties in the auditory thalamocortical system,” Neuron, 32, 151–160 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Moshitch, D., Las, L., Ulanovsky, N., et al., “Responses of neurons in primary auditory cortex (A1) to pure tones in the halothane-anesthetized cat,” J. Neurophysiol., 95, 3756–3769 (2006).

    Article  PubMed  Google Scholar 

  • Moshitch, D. and Nelken, I., “The representation of interaural time differences in high-frequency auditory cortex,” Cereb. Cortex, 26, No. 2, 656–668 (2014), https://doi.org/10.1093/cercor/bhu230.

    Article  PubMed  Google Scholar 

  • Nakamoto, K. T., Zhang, J., and Kitzes, L. M., “Temporal nonlinearity during recovery from sequential inhibition by neurons in the cat primary auditory cortex,” J. Neurophysiol., 95, 1897–1907 (2006).

    Article  PubMed  Google Scholar 

  • Nelken, I., Prut, Y., Vaadia, E., and Abeles, M., “In search of the best stimulus: An optimization procedure for fi nding effi cient stimuli in the cat auditory cortex,” Hear. Res., 72, 237–253 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Nelken, I., Rotman, Y., and Yosef, O. B., “Responses of auditory-cortex neurons to structural features of natural sounds,” Nature, 397, No. 6715, 154–157 (1999), https://doi.org/10.1038/16456.

    Article  CAS  PubMed  Google Scholar 

  • Nikitin, N. I., Varfolomeev, A. L., and Kotelenko, L. M., “Responses of primary auditory cortex neurons to moving stimuli with dynamically changing interaural delays,” Ros. Fiziol. Zh., 89, 625–638 (2003).

    CAS  Google Scholar 

  • Norena, A. J., Gourevitch, B., Pienkowsky, M., et al., “Increasing spectrotemporal sound density reveals an octave-based organization in cat primary auditory cortex,” J. Neurosci., 28, No. 36, 8885–8896 (2008), https://doi.org/10.1523/jneurosci.2693-08.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osanai, H. and Tateno, T., “Neural response differences in the rat primary auditory cortex under anesthesia with ketamine versus the mixture of medetomidine, midazolam and butorphanol,” Hear. Res., 339, 69–79 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Phillips, D. P., “Factors shaping the response latencies of neurons in the cat’s auditory cortex,” Behav. Brain Res., 93, 33–41 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Phillips, D. P. and Cynader, M. S., “Some neural mechanisms in the cat’s auditory cortex underlying sensitivity to combined tone and widespectrum noise stimuli,” Hear. Res., 18, 87–102 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Phillips, D. P. and Irvine, D. R., “Responses of single neurons in physiologically defi ned primary auditory cortex (AI) of the cat: frequency tuning and responses to intensity,” J. Neurophysiol., 45, 48–58 (1981a).

    Article  CAS  PubMed  Google Scholar 

  • Phillips, D. P. and Irvine, D. R., “Responses of single neurons in physiologically defined area AI of cat cerebral cortex: sensitivity to interaural intensity differences,” Hear. Res., 4, 299–307 (1981b).

    Article  CAS  PubMed  Google Scholar 

  • Phillips, D. P., and Hall, S. E., “Responses of single neurons in cat auditory cortex to time-varying stimuli: linear amplitude modulations,” Exp. Brain Res., 67, No. 3, 479–492 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Phillips, D. P. and Hall, S. E., “Response timing constraints on the cortical representation of sound time structure”, J. Acoust. Soc. Am. 88, No. 3, 1403–1411 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Phillips, D. P., Orman, S. S., Musicant, A. D., and Wilson, G. F., “Neurons in the cat’s primary auditory cortex distinguished by their responses to tones and wide-spectrum noise,” Hear. Res., 18, No. 1, 73–86 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Phillips, D. P., Semple, M. N., Calford, M. B., and Kitzes, L. M., “Leveldependent representation of stimulus frequency in cat primary auditory cortex,” Exp. Brain Res., 102, 210–226 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Phillips, D. P., Taylor, T. L., Hall, S. E., et al., “Detection of silent intervals between noises activating different perceptual channels: Some properties of ‘central’ auditory gap detection”, J. Acoust. Soc. Am. 101, No. 6, 3694–3705 (1997), https://doi.org/10.1121/1.419376.

    Article  CAS  PubMed  Google Scholar 

  • Pienkwoski, M., Shaw, G., and Eggermont, J. J., “Wiener-Volterra characterization of neurons in primary auditory cortex using Poissondistributed impulse train inputs,” J. Neurophysiol., 101, 3031–3041 (2009).

    Article  Google Scholar 

  • Pienkowski, M. and Eggermont, J. J., “Sound frequency representation in primary auditory cortex is level tolerant for moderately loud, complex sounds,” J. Neurophysiol., 106, 1016–1027 (2011).

    Article  PubMed  Google Scholar 

  • Poirier, P., Jiang, H., Lepore, F., and Guillemot, J.-P., “Positional, directional and speed selectivities in the primary auditory cortex of the cat,” Hear. Res., 113, No. 1–2, 1–13 (1997), https://doi.org/10.1016/s0378-5955(97)00126-3.

    Article  CAS  PubMed  Google Scholar 

  • Qin, L., Kitama, T., Chimoto, S., et al., “Time course of tonal frequency-response-area of primary auditory cortex neurons in alert cats,” Neurosci. Res., 46, No. 2, 145–152 (2003), https://doi.org/10.1016/s0168-0102(03)00034-8.

    Article  PubMed  Google Scholar 

  • Qin, L., Sakai, M., Chimoto, S., and Sato, Y., “Interaction of excitatory and inhibitory frequency-receptive fi elds in determining fundamental frequency sensitivity of primary auditory cortex neurons in awake cats,” Cereb. Cortex, 15, No. 9, 1371–1383 (2004a), https://doi.org/10.1093/cercor/bhi019.

    Article  PubMed  Google Scholar 

  • Qin, L., Chimoto, S., Sakai, M., and Sato, Y., “Spectral-shape preference of primary auditory cortex neurons in awake cats,” Brain Res., 1024, No. 1–2, 167–175 (2004b), https://doi.org/10.1016/j.brainres.2004.07.061.

    Article  CAS  PubMed  Google Scholar 

  • Qin, L., Chimoto, S., Sakai, M., et al., “Comparison between offset and onset responses of primary auditory cortex ON-OFF neurons in awake cats,” J. Neurophysiol., 97, 3421–3431 (2007).

    Article  PubMed  Google Scholar 

  • Qin, L., Wang, J., and Sato, Y., “Heterogeneous neuronal responses to frequency- modulated tones in the primary auditory cortex of awake cats,” J. Neurophysiol., 100, 1622–1634 (2008a).

    Article  PubMed  Google Scholar 

  • Qin, L., Wang, J., and Sato, Y., “Representations of cat meows and human vowels in the primary auditory cortex of awake cats,” J. Neurophysiol., 99, 2305–2319 (2008b).

    Article  PubMed  Google Scholar 

  • Qin, L., Liu, Y., Wang, J., et al., “Neural and behavioral discrimination of sound duration by cats,” J. Neurosci., 29, No. 50, 15650–15659 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajan, R., Aitkin, L. M., and Irvine, D. R., “Azimuthal sensitivity of neurons in primary auditory cortex of cats. II. Organization along frequency-band strips,” J. Neurophysiol., 64, No. 3, 888–902 (1990), https://doi.org/10.1152/jn.1990.64.3.888.

    Article  CAS  PubMed  Google Scholar 

  • Rajan, R., Irvine, D. R., Wise, L. Z., and Heil, P., “Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex,” J. Comp. Neurol., 338, 17–49 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Read, H. L., Miller, L. M., Schreiner, C. E., and Winer, J. A., “Two thalamic pathways to primary auditory cortex,” Neuroscience, 152, 151– 159 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Reale, R. A. and Imig, T. J., “Tonotopic organization in auditory cortex of the cat,” J. Comp. Neurol., 192, 265–291 (1980).

    Article  CAS  PubMed  Google Scholar 

  • Reale, R. A. and Brugge, J. F., “Directional sensitivity of neurons in the primary auditory (AI) cortex of the cat to successive sounds ordered in time and space,” J. Neurophysiol., 84, 435–450 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Ribaupierre, F., Goldstein, M. H., and Yeni-Komshian, G., “Intracellular study of the cat’s primary auditory cortex,” Brain Res., 48, 185–204 (1972a), https://doi.org/10.1016/0006-8993(72)90178-3.

    Article  PubMed  Google Scholar 

  • Ribaupierre, F., Goldstein, M. H., and Yeni-Komshian, G., “Cortical coding of repetitive acoustical pulses,” Brain Res., 48, 205–225 (1972b).

    Article  PubMed  Google Scholar 

  • Rouiller, E. M., Simm, G. M., Villa, A. E. P., et al., “Auditory corticocortical interconnections in the cat – evidence for parallel and hierarchical arrangement of the auditory cortical areas,” Exp. Brain Res., 86, 483–505 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Sakai, M., Chimoto, S., Qin, L., and Sato, Y., “Differential representation of spectral and temporal information by primary auditory cortex neurons in awake cats: Relevance to auditory scene analysis,” Brain Res., 1265, 80–92 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Schreiner, C. E., Mendelson, J. R., and Sulter, M. L., “Functional topography of cat primary auditory cortex: representation of tone intensity,” Exp. Brain Res., 7, 105–127 (1992).

    Google Scholar 

  • Schreiner, C. E. and Calhoun, B. M., “Spectral envelope coding in cat primary auditory cortex: Properties of ripple transfer functions,” Audit. Neurosci., 1, No. 1, 39–61 (1994).

    Google Scholar 

  • Schreiner, C. E., “Spatial distribution of responses to simple and complex sounds in the primary auditory cortex,” Audiol. Neurootol., 3, 104– 122 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Schreiner, C. E. and Mendelson, J. R., “Functional topography of cat primary auditory cortex: distribution of integrated excitation,” J. Neurophysiol., 64, 1442–1459 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Schreiner, C. E., Mendelson, J., Raggio, M. W., et al., “Temporal processing in cat primary auditory cortex,” Acta Otolaryngol. Suppl., 532, 54–60 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Schreiner, C. E., Read, H. L., and Sutter, M. L., “Modular organization of frequency integration in primary auditory cortex,” Annu. Rev. Neurosci., 23, 501–529 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Schreiner, C. E. and Sutter, M. L., “Topography of excitatory bandwidth in cat primary auditory cortex: single-neuron versus multiple-neuron recordings,” J. Neurophysiol., 68, 1487–1502 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Schreiner, C. E. and Urbas, J. V., “Representation of amplitude modulation in the auditory cortex of the cat: comparison between cortical fi elds,” Hear. Res., 32, 49–64 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Seki, S. and Eggermont, J. J., “Changes in cat primary auditory cortex after minor-to-moderate pure-tone induced hearing loss,” Hear. Res., 173, 172–186 (2002).

    Article  PubMed  Google Scholar 

  • Serkov, F. N., “Neurons and synaptic mechanisms of cortical inhibition,” Neirofi ziologiya, 16, No. 3, 313–319 (1985).

    Google Scholar 

  • Serkov, F. N. and Storozhuk, V. M., “Responses of auditory cortex neurons to sound signals,” Neirofi ziologiya, 1, No. 2, 113–120 (1969).

    Google Scholar 

  • Serkov, F. N. and Yanovskii, E. Sh., “Postsynaptic potentials in neurons of the cat auditory cortex,” Neirofi ziologiya, 3, 339–349 (1971).

    CAS  Google Scholar 

  • Serkov, F. N., Yanovskii, E. Sh., and Tal’nov, A. N., “the effects of pentobarbital, chloralose, and urethane on the inhibition of postsynaptic potentials in cortical neurons,” Neirofi ziologiya, 5, No. 4, 339–346 (1974).

    Google Scholar 

  • Silkis, I. G. and Rapoport, S. Sh., “Plastic rearrangements in the receptive fields of neurons in the auditory cortex and medial geniculate body,” Zh. Vyssh. Nerv. Deyat., 44, No. 3, 548–568 (1994).

    CAS  Google Scholar 

  • Sovijarvi, A. R. A. and Sainio, K., “Neuroleptanalgesia and the function of the auditory cortex in the cat,” Anesthesiology, 37, 406–412 (1972).

    Article  CAS  PubMed  Google Scholar 

  • Sovijarvi, A. R. A., “Detection of natural complex sounds by cells in the primary auditory cortex of the cat,” Acta Physiol. Scand., 93, 318–335 (1975).

    Article  CAS  PubMed  Google Scholar 

  • Stumpf, E., Toronchuk, J. M., and Cynader, M. S., “Neurons in cat primary auditory cortex sensitive to correlates of auditory motion in three dimensional space,” Exp. Brain Res., 88, 158–168 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Suga, N. and Tsuzuki, K., “Inhibition and level-tolerant frequency tuning in the auditory cortex of the mustached bat,” J. Neurophysiol., 53, 1109–1145 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Sutter, M. L. and Schreiner, C. E., “Physiology and topography of neurons with multipeaked tuning curves in cat primary auditory cortex,” J. Neurophysiol., 65, 1207–1226 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Sutter, M. L. and Schreiner, C. E., “Topography of intensity tuning in cat primary auditory cortex: single-neuron versus multiple-neuron recordings,” J. Neurophysiol., 73, 190–204 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Sutter, M. L., Schreiner, C. E., McLean, M., et al., “Organization of inhibitory frequency receptive fi elds in cat primary auditory cortex,” J. Neurophysiol., 82, No. 5, 2358–2371 (1999), https://doi.org/10.1152/jn.1999.82.5.2358.

    Article  CAS  PubMed  Google Scholar 

  • Tan, A. Y., Atencio, C. A., Polley, D. B., et al., “Unbalanced synaptic inhibition can create intensity-tuned auditory cortex neurons,” Neuroscientist, 146, 449–462 (2007).

    Article  CAS  Google Scholar 

  • Toronchuk, J. M., Stumpf, E., and Cynader, M. S., “Auditory cortex neurons sensitive to correlates of auditory motion: underlying mechanisms,” Exp. Brain Res., 88, No. 1, 169–180 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Volkov, I. O. and Dembnovetskii, O. F., “The receptive fi elds of neurons in the cat auditory cortex,” Neirofi ziologia, 13, No. 5, 328–333 (1982).

    Google Scholar 

  • Volkov, I. O. and Galazyuk, A. V., “Responses of auditory cortex neurons in unanesthetized cats to tones at the characteristic frequency,” Neirofi ziologiya, 17, No. 4, 500–508 (1985).

    CAS  Google Scholar 

  • Volkov, I. O. and Galazyuk, A. V., “Responses of auditory cortex neurons in unanesthetized cats to best-frequency tones,” Neurophysiology, 17, No. 4, 360–367 (1986), https://doi.org/10.1007/bf01052348.

    Article  Google Scholar 

  • Volkov, I. O. and Galazyuk, A. V., “Formation of spike response to sound tones in cat auditory cortex neurons: Interaction of excitatory and inhibitory effects,” Neuroscientist, 43, No. 2–3, 307–321 (1991).

    Article  CAS  Google Scholar 

  • Volkov, I. O. and Galazyuk, A. V., “Peculiarities of inhibition in cat auditory cortex neurons evoked by tonal stimuli of various durations,” Exp. Brain Res., 91, No. 1, 115–120 (1992), https://doi.org/10.1007/bf00230019.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, T. and Katsuki, Y., “Response patterns of single auditory neurons of the cat to species-specifi c vocalization,” Jap. J. Physiol., 24, No. 2, 135–155 (1974), https://doi.org/10.2170/jjphysiol.24.135.

    Article  CAS  Google Scholar 

  • Wang, X. and Kadia, S. C., “Differential representation of species-specific primate vocalizations in the auditory cortices of marmoset and cat,” J. Neurophysiol., 86, 2616–2620 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Lu, T., Bendor, D., and Bartlett, E., “Neural coding of temporal information in auditory thalamus and cortex,” Neuroscientist, 154, No. 1, 294–303 (2008), https://doi.org/10.1016/j.neuroscience.2008.03.065.

    Article  CAS  Google Scholar 

  • Wang, J., Qin, L., Chimoto, S., et al., “Response characteristics of primary auditory cortex neurons underlying perceptual asymmetry of ramped and damped sounds,” Neuroscientist, 256, 309–321 (2014), https://doi.org/10.1016/j.neuroscience.2013.10.042.

    Article  CAS  Google Scholar 

  • Winer, J. A., “Decoding the auditory corticofugal systems,” Hear. Res., 207, 1–9 (2006).

    Article  Google Scholar 

  • Winer, J. A., Diamond, I. T., and Raczkowski, D., “Subdivisions of the auditory cortex of the cat: the retrograde transport of horseradish peroxidase to the medial geniculate body and posterior thalamic nuclei,” J. Comp. Neurol., 176, 387–418 (1977).

    Article  CAS  PubMed  Google Scholar 

  • Winer, J. A. and Lee, C. C., “The distributed auditory cortex,” Hear. Res., 229, No. 1–2, 3–13 (2007), https://doi.org/10.1016/j.heares.2007.01.017.

    Article  PubMed  PubMed Central  Google Scholar 

  • Woody, C. D., Zotova, E., and Gruen, E., “Multiple representations of information in the primary auditory cortex of cats,” Brain Res., 868, No. 1, 56–65 (2000), https://doi.org/10.1016/s0006-8993(00)02276-9.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, K., Shih, J. Y., Winer, J. A., and Schreiner, C. E., “Functional networks of parvalbumin-immunoreactive neurons in cat auditory cortex,” J. Neurosci., 31, No. 37, 13,333–13,342 (2011), https://doi.org/10.1523/jneurosci.1000-11.2011.

  • Zhang, J., Nakamoto, K. T., and Kitzes, L. M., “Modulation of level response areas and stimulus selectivity of neurons in cat primary auditory cortex,” J. Neurophysiol., 94, No. 4, 2263–2274 (2005), https://doi.org/10.1152/jn.01207.2004.

    Article  PubMed  Google Scholar 

  • Zhang, J., Nakamoto, K. T., and Kitzes, L. M., “Responses of neurons in the cat primary auditory cortex to sequential sounds,” Neuroscientist, 161, 578–588 (2009).

    Article  CAS  Google Scholar 

  • Zhang, X., Qin, L., Liu, Y., et al., “Cat’s behavioral sensitivity and cortical spatiotemporal responses to the sweep direction of frequency-modulated tones,” Behav. Brain Res., 217, 315–325 (2011).

    Article  PubMed  Google Scholar 

  • Zhang, X., Yang, P., Dong, C., et al., “Correlation between neural discharges in cat primary auditory cortex and tone-detection behaviors,” Behav. Brain Res., 232, No. 1, 114–123 (2012), https://doi.org/10.1016/j.bbr.2012.03.025.

    Article  PubMed  Google Scholar 

  • Zotova, E., Woody, C. D., and Gruen, E., “Multiple representations of information in the primary auditory cortex of cats: II. Stability and electrical microstimulation at coronal-pericruciate cortex of cat with change in early (<32 ms) components of activity after conditioning classical conditioning of different facial movements,” Brain Res., 868, 66–78 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Zurita, P., Villa, A. E., de Ribaupierre, Y., et al., “Changes of single unit activity in the cat’s auditory thalamus and cortex associated to different anesthetic conditions,” Neurosci. Res., 19, 303–316 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Bibikov.

Additional information

Translated from Sensornye Sistemy, Vol. 35, No. 2, pp. 103–134, April–June, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bibikov, N.G. Functional Studies of the Primary Auditory Cortex in the Cat. Neurosci Behav Physi 51, 1169–1189 (2021). https://doi.org/10.1007/s11055-021-01177-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-021-01177-0

Keywords

Navigation