Skip to main content

Advertisement

Log in

The Role or NMDA Receptors in Epileptogenesis

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Epilepsy is characterized by repeated sudden-onset epileptic seizures. Around 30% of cases of epilepsy show drug resistance, with the result that the disease can progress and lead to degradation of cognitive capacities and the onset of concomitant psychoneurological diseases. Early therapeutic interventions can reduce disease severity, while suppression of epileptogenesis is regarded as the most promising strategy for preventing the development of epilepsy after disease-provoking events. NMDA receptors are regarded as a potential target for suppressing epileptogenesis. Impairment to NMDA receptor function occurs at all stages of the development of epilepsy. Changes in their expression are seen in the fi rst hours after acute seizures, while NMDA receptors themselves are actively involved in generating epileptic activity. In addition, NMDA receptor antagonists effectively suppress epileptiform activity in a variety of models of convulsive states and status epilepticus. This review considers existing data on the role played by NMDA receptors in the development of epilepsy and how their expression changes at different periods of epileptogenesis, and the potential use of NMDA receptor antagonists and modulators in preventing epileptogenesis is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. T. Berg, S. F. Berkovic, M. J. Brodie, et al., “Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classifi cation and Terminology, 2005– 2009,” Epilepsia, 51, No. 4, 676–685 (2010).

  2. A. K. Sharm, R. Y. Reams, W. H. Jordan, et al., “Mesial temporal lobe epilepsy: pathogenesis, induced rodent models and lesions,” Toxicol. Pathol., 35, No. 7, 984–999 (2007).

    Article  Google Scholar 

  3. S. T. Herman, “Epilepsy after brain insult: targeting epileptogenesis,” Neurology, 59, No. 9, Supplement 5, S21–S26 (2002).

  4. G. D. Anderson, N. R. Temkin, W. L. Chandler, and H. R. Winn, “Effect of valproate on hemostatic function in patients with traumatic brain injury,” Epilepsy Res., 57, No. 2–3, 111–119 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. B. S. Chang and D. H. Lowenstein, “Epilepsy,” New Engl. J. Med., 349, No. 13, 1257–1266 (2003).

    Article  PubMed  Google Scholar 

  6. E. Altındağ, F. F. Erdoğan, İ. Tezer, and Ç. Özkara, “Management and early treatment of status epilepticus in adults and children,” Turkish J. Neurol., 23, No. 4, 155–161 (2017).

    Article  CAS  Google Scholar 

  7. J. P. Betjemann and D. H. Lowenstein, “Status epilepticus in adults,” Lancet Neurol., 14, No. 6, 615–624 (2015).

    Article  PubMed  Google Scholar 

  8. T. A. Bayer, O. D. Wiestler, and H. K. Wolf, “Hippocampal loss of N-methyl-D-aspartate receptor subunit 1 mRNA in chronic temporal lobe epilepsy,” Acta Neuropathol., 89, No. 5, 446–450 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. G. W. Mathern, J. P. Leite, T. L. Babb, et al., “Aberrant hippocampal mossy fi ber sprouting correlates with greater NMDAR2 receptor staining,” Neuroreport, 7, No. 5, 1029–1035 (1996).

  10. P. Punnakkal and D. Dominic, “NMDA receptor GluN2 subtypes control epileptiform events in the hippocampus,” Neuromolecular Med., 20, No. 1, 90–96 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. H. Kubova and P. Mares, “Effects of MK-801 (dizocilpine) and ketamine on strychnine-induced convulsions in rats: comparison with benzodiazepines and standard anticonvulsants,” Physiol. Res., 43, No. 5, 313–320 (1994).

    CAS  PubMed  Google Scholar 

  12. B. Laube, J. Kuhse, and H. Betz, “Evidence for a tetrameric structure of recombinant NMDA receptors,” J. Neurosci., 18, No. 8, 2954–2961 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. I. Mano and V. I. Teichberg, “A tetrameric subunit stoichiometry for a glutamate receptor-channel complex,” Neuroreport, 9, No. 2, 327–331 (1998).

  14. A. I. Sobolevsky, M. P. Rosconi, and E. Gouaux, “X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor,” Nature, 462, No. 7274, 745–756 (2009).

  15. G. Ayalon, E. Segev, S. Elgavish, and Y. Stern-Bach, “Two regions in the N-terminal domain of ionotropic glutamate receptor 3 form the subunit oligomerization interfaces that control subtype-specifi c receptor assembly,” J. Biol. Chem., 280, No. 15, 15,053–15,060 (2005).

    Article  CAS  Google Scholar 

  16. K. B. Hansen, F. Yi, R. E. Perszyk, et al., et al., “Structure, function, and allosteric modulation of NMDA receptors,” J. Gen. Physiol., 150, No. 8, 1081–1105 (2018).

  17. M. H. Ulbrich and E. Y. Isacoff, “Subunit counting in membrane- bound proteins,” Nat. Methods, 4, No. 4, 319–321 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. M. H. Ulbrich and E. Y. Isacoff, “Rules of engagement for NMDA receptor subunits,” Proc. Natl. Acad. Sci. USA, 105, No. 37, 14163–14168 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. D. Forrest, M. Yuzaki, H. D. Soares, et al., “Targeted disruption of NMDA receptor 1 gene abolishes NMDA response and results in neonatal death,” Neuron, 13, No. 2, 325–338 (1994).

  20. S. F. Traynelis, L. P. Wollmuth, C. J. McBain, et al., “Glutamate receptor ion channels: Structure, regulation, and function,” Pharmacol. Rev., 62, No. 3, 405–496 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. M. C. Regan, A. Romero-Hernandez, and H. Furukawa, “A structural biology perspective on NMDA receptor pharmacology and function,” Current Opin. Struct. Biol., 33, 68–75 (2015).

    Article  CAS  Google Scholar 

  22. P. Punnakkal, P. Jendritza, and G. Kohr, “Infl uence of the intracellular GluN2 C-terminal domain on NMDA receptor function,” Neuropharmacology, 62, No. 5–6, 1985–1992 (2012).

  23. B. A. Maki, T. K. Aman, S. A. Amico-Ruvio, et al., “C-terminal domains of N-methyl-D-aspartic acid receptor modulate unitary channel conductance and gating,” J. Biol. Chem., 287, No. 43, 36071–36080 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. M. Sheng, J. Cummings, L. A. Roldan, et al., “Changing subunit composition of heteromeric NMDA receptors during development of rat cortex,” Nature, 368, No. 6467, 144–147 (1994).

  25. A. W. Dunah, J. Luo, Y. H. Wang, et al., “Subunit composition of N-methyl-D-aspartate receptors in the central nervous system that contain the NR2D subunit,” Mol. Pharmacol., 53, No. 3, 429–437 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. A. W. Dunah and D. G. Standaert, “Subcellular segregation of distinct heteromeric NMDA glutamate receptors in the striatum,” J. Neurochem., 85, No. 4, 935–943 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. C. Rauner and G. Kohr, “Triheteromeric NR1/NR2A/NR2B receptors constitute the major N-methyl-D-aspartate receptor population in adult hippocampal synapses,” J. Biol. Chem., 286, No. 9, 7558– 7566 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. K. R. Tovar, M. J. McGinley, and G. L. Westbrook, “Triheteromeric NMDA receptors at hippocampal synapses,” J. Neurosci., 33, No. 21, 9150–9160 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. J. W. Johnson and P. Ascher, “Glycine potentiates the NMDA response in cultured mouse brain neurons,” Nature, 325, No. 6104, 529–531 (1987).

  30. H. Furukawa, S. K. Singh, R. Mancusso, and E. Gouaux, “Subunit arrangement and function in NMDA receptors,” Nature, 438, No. 7065, 185–192 (2005).

  31. Y. Yao, C. B. Harrison, P. L. Freddolino, et al., “Molecular mechanism of ligand recognition by NR3 subtype glutamate receptors,” EMBO J., 27, No. 15, 2158–2170 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. L. M. Pullan, J. W. Olney, M. T. Price, et al., “Excitatory amino acid receptor potency and subclass specifi city of sulfur-containing amino acids,” J. Neurochem., 49, No. 4, 1301–1307 (1987).

    Article  CAS  PubMed  Google Scholar 

  33. C. J. McBain, N. W. Kleckner, S. Wyrick, and R. Dingledine, “Structural requirements for activation of the glycine coagonist site of N-methyl-D-aspartate receptors expressed in Xenopus oocytes,” Mol. Pharmacol., 36, No. 4, 556–565 (1989).

    CAS  PubMed  Google Scholar 

  34. A. Panatier, D. T. Theodosis, J. Mothet, et al., “Glia-derived D-serine controls NMDA receptor activity and synaptic memory,” Cell, 125, No. 4, 775–784 (2006).

  35. H. Wolosker, S. Blackshaw, and S. H. Snyder, “Serine racemase: A glial enzyme synthesizing D-serine to regulate glutamate-N-methyl- D-aspartate neurotransmission,” Proc. Natl. Acad. Sci. USA, 96, No. 23, 13409–13414 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. D. T. Balu, S. Takagi, M. D. Puhl, et al., “D-serine and serine racemase are localized to neurons in the adult mouse and human forebrain,” Cell. Mol. Neurobiol., 34, No. 3, 419–435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. K. Miya, R. Inoue, Y. Takata, et al., “Serine racemase is predominantly localized in neurons in mouse brain,” J. Comp. Neurol., 510, No. 6, 641–654 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. H. Benveniste, “Brain microdialysis,” J. Neurochem., 52, No. 6, 1667–1679 (1989).

    Article  CAS  PubMed  Google Scholar 

  39. X. Zhang and J. V. Nadler, “Postsynaptic response to stimulation of the Schaffer collaterals with properties similar to those of synaptosomal aspartate release,” Brain Res., 1295, 13–20 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. K. Q. Do, P. L. Herrling, P. Streit, et al., “In vitro release and electrophysiological effects in situ of homocysteic acid, an endogenous N-methyl-(D)-aspartic acid agonist, in the mammalian striatum,” J. Neurosci., 6, No. 8, 2226–2234 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. M. Yuzaki and J. A. Connor, “Characterization of L-homocysteateinduced currents in Purkinje cells from wild-type and NMDA receptor knockout mice,” J. Neurophysiol, 82, No. 5, 2820–2826 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. H. Monyer, R. Sprengel, R. Schoepfer, et al., “Heteromeric NMDA receptors: molecular and functional distinction of subtypes,” Science, 256, No. 5060, 1217–1221 (1992).

  43. H. Monyer, N. Burnashev, D. J. Laurie, et al., “Developmental and regional expression in the rat brain and functional properties of four NMDA receptors,” Neuron, 12, No. 3, 529–540 (1994).

  44. C. Akazawa, R. Shigemoto, Y. Bessho, et al., “Differential expression of fi ve N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats,” J. Comp. Neurol., 347, No. 1, 150–160 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. J. Zhong, D. P. Carrozza, K. Williams, et al., “Expression of mRNAs encoding subunits of the NMDA receptor in developing rat brain,” J. Neurochem., 64, No. 2, 531–539 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. K. Erreger, M. T. Geballe, A. Kristensen, et al., “Subunit- specific agonist activity at NR2A-, NR2B-, NR2C-, and NR2D-containing N-methyl-D-aspartate glutamate receptors,” Mol. Pharmacol., 72, No. 4, 907–920 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. P. E. Chen, M. T. Geballe, E. Katz, et al., “Modulation of glycine potency in rat recombinant NMDA receptors containing chimeric NR2A/2D subunits expressed in Xenopus laevis oocytes,” J. Physiol., 586, No. 1, 227–245 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. K. B. Hansen, H. Brauner-Osborne, and J. Egebjerg, “Pharmacological characterization of ligands at recombinant NMDA receptor subtypes by electrophysiological recordings and intracellular calcium measurements,” Comb. Chem. High Throughput Screen, 11, No. 4, 304–315 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. R. A. J. Lester, J. D. Clements, G. L. Westbrook, and C. E. Jahr, “Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents,” Nature, 346, No. 6284, 565–567 (1990).

  50. S. Vicini, J. F. Wang, J. H. Li, et al., “Functional and pharmacological differences between recombinant N-methyl-D-aspartate receptors,” J. Neurophysiol, 79, No. 2, 555–566 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. K. Erreger, P. E. Chen, D. J. A. Wyllie, and S. F. Traynelis, “Glutamate receptor gating,” Crit. Rev. Neurobiol., 16, No. 3, 187–224 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. N. G. Glasgow, B. Siegler-Retchless, and J. W. Johnson, “Molecular bases of NMDA receptor subtype-dependent properties,” J. Physiol., 593, No. 1, 83–95 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. H. Yuan, M. T. Geballe, K. B. Hansen, and S. F. Traynelis, “Structure and function of the NMDA receptor,” in: Structural and Functional Organization of the Synapse, J. W. Hell and M. D. Ehlers (eds.), Springer, Boston (2008), pp. 289–316.

    Chapter  Google Scholar 

  54. N. Burnashev, Z. Zhou, E. Neher, and B. Sakmann, “Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes,” J. Physiol., 485, No. 2, 403–418 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. C. Jatzke, J. Watanabe, and L. P. Wollmuth, “Voltage and concentration dependence of Ca(2+) permeability in recombinant glutamate receptor subtypes,” J. Physiol., 538, No. 1, 25–39 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. B. Siegler Retchless, W. Gao, and J. W. Johnson, “A single GluN2 subunit residue controls NMDA receptor channel properties via intersubunit interaction,” Nat. Neurosci., 15, No. 3, 406–413, S1–2 (2012).

  57. T. Kuner and R. Schoepfer, “Multiple structural elements determine subunit specifi city of Mg2+ block in NMDA receptor channels,” J. Neurosci., 16, No. 11, 3549–3558 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. T. Nevian and B. Sakmann, “Single spine Ca2+ signals evoked by coincident EPSPs and backpropagating action potentials in spiny stellate cells of layer 4 in the juvenile rat somatosensory barrel cortex,” J. Neurosci., 24, No. 7, 1689–1699 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. T. Nevian and B. Sakmann, “Spine Ca2+ signaling in spike-timingdependent plasticity,” J. Neurosci., 26, No. 43, 11001–11013 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. B. C. Carter and C. E. Jahr, “Postsynaptic, not presynaptic NMDA receptors are required for spike timing-dependent LTD induction,” Nat. Neurosci., 19, No. 9, 1218–1224 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. S. E. Tomek, A. L. Lacrosse, N. E. Nemirovsky, and M. F. Olivev, “NMDA receptor modulators in the treatment of drug addiction,” Pharmaceuticals (Basel), 6, No. 2, 251–268 (2013).

  62. M. J. Croucher, J. F. Collins, and B. S. Meldrum, “Anticonvulsant action of excitatory amino acid antagonists,” Science, 216, No. 4548, 899–901 (1982).

  63. S. Patel, A. G. Chapman, J. L. Graham, et al., “Anticonvulsant activity of the NMDA antagonists, D(-)4-(3-phosphonopropyl)-piperazine-2-carboxylic acid (D-CPP) and D(-)(E)-4-(3-phosphonoprop-2-enyl)-piperazine-2-carboxylic acid (D-CPPene) in a rodent and a primate model of refl ex epilepsy,” Epilepsy Res., 7, No. 1, 3–10 (1990).

    Article  CAS  PubMed  Google Scholar 

  64. E. S. Burnell, M. Irvine, G. Fang, et al., “Positive and negative allosteric modulators of N-methyl-d-aspartate (NMDA) receptors: Structure-activity relationships and mechanisms of action,” J. Med. Chem., 62, No. 1, 3–23 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. K. K. Ogden and S. F. Traynelis, “New advances in NMDA receptor pharmacology,” Trends Pharmacol. Sci., 32, No. 12, 726–733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. E. Karakas, N. Simorowski, and H. Furukawa, “Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors,” Nature, 475, No. 7355, 249–253 (2011).

  67. E. Karakas and H. Furukawa, “Crystal structure of a heterotetrameric NMDA receptor ion channel,” Science, 344, No. 6187, 992–997 (2014).

  68. D. Stroebel, D. L. Buhl, J. D. Knafels, et al., “A novel binding mode reveals two distinct classes of NMDA receptor GluN2B-selective antagonists,” Mol. Pharmacol., 89, No. 5, 541–551 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. P. B. Burger, H. Yuan, E. Karakas, et al., “Mapping the binding of GluN2B-selective N-methyl-D-aspartate receptor negative allosteric modulators,” Mol. Pharmacol., 82, No. 2, 344–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. A. Romero-Hernandez, N. Simorowski, E. Karakas, and H. Furukawa, “Molecular basis for subtype specifi city and high-affinity zinc inhibition in the GluN1-GluN2A NMDA receptor amino- terminal domain,” Neuron, 92, No. 6, 1324–1336 (2016).

  71. C. G. Parsons, G. Quack, I. Bresink, et al., “Comparison of the potency, kinetics and voltage-dependency of a series of uncompetitive NMDA receptor antagonists in vitro with anticonvulsive and motor impairment activity in vivo,” Neuropharmacology, 34, No. 10, 1239–1258 (1995).

  72. M. Benveniste and M. L. Mayer, “Trapping of glutamate and glycine during open channel block of rat hippocampal neuron NMDA receptors by 9-aminoacridine,” J. Physiol., 483, No. 2, 367–384 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. K. V. Bolshakov, V. E. Gmiro, D. B. Tikhonov, and L. G. Magazanik, “Determinants of trapping block of N-methyl-d-aspartate receptor channels,” J. Neurochem., 87, No. 1, 56–65 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. O. I. Barygin, V. E. Gmiro, K. K. Kim, et al., “Blockade of NMDA receptor channels by 9-aminoacridine and its derivatives,” Neurosci. Lett., 451, No. 1, 29–33 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. T. A. Blanpied, F. A. Boeckman, E. Aizenman, and J. W. Johnson, “Trapping channel block of NMDA-activated responses by amantadine and memantine,” J. Neurophysiol, 77, No. 1, 309–323 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. S. E. Kotermanski, J. T. Wood, and J. W. Johnson, “Memantine binding to a superfi cial site on NMDA receptors contributes to partial trapping,” J. Physiol., 587, No. 19, 4589–4604 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. J. W. Johnson, N. G. Glasgow, and N. V. Povysheva, “Recent insights into the mode of action of memantine and ketamine,” Curr. Opin. Pharmacol., 20, 54–63 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. A. I. Sobolevsky and M. V. Yelshansky, “The trapping block of NMDA receptor channels in acutely isolated rat hippocampal neurones,” J. Physiol., 526, No. 3, 493–506 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. M. H. Poulsen, J. Andersen, R. Christensen, et al., “Binding of ArgTX-636 in the NMDA receptor ion channel,” J. Mol. Biol., 427, No. 1, 176–189 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. H. Takahashi, P. Xia, J. Cui, et al., “Pharmacologically targeted NMDA receptor antagonism by NitroMemantine for cerebrovascular disease,” Sci. Rep., 5, 14781 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. N. B. Hamilton and D. Attwell, “Do astrocytes really exocytose neurotransmitters?” Nat. Rev. Neurosci., 11, No. 4, 227–238 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. S. Duan, C. M. Anderson, E. C. Keung, et al., “P2X7 receptor-mediated release of excitatory amino acids from astrocytes,” J. Neurosci., 23, No. 4, 1320–1328 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. E. B. Malarkey and V. Parpura, “Mechanisms of glutamate release from astrocytes,” Neurochem. Int., 52, No. 1–2, 142–154 (2008).

  84. M. Szatkowski, B. Barbour, and D. Attwell, “Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake,” Nature, 348, No. 6300, 443–446 (1990).

  85. D. Nicholls and D. Attwell, “The release and uptake of excitatory amino acids,” Trends Pharmacol. Sci., 11, No. 11, 462–468 (1990).

    Article  PubMed  Google Scholar 

  86. G. E. Hardingham and H. Bading, “Coupling of extrasynaptic NMDA receptors to a CREB shut-off pathway is developmentally regulated,” Biochim. Biophys. Acta, 1600, No. 1–2, 148–153 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. W. Tu, X. Xu, L. Peng, et al., “DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke,” Cell, 140, No. 2, 222–234 (2010).

  88. C. M. Wroge, J. Hogins, L. Eisenman, and S. Mennerick, “Synaptic NMDA receptors mediate hypoxic excitotoxic death,” J. Neurosci., 32, No. 19, 6732–6742 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. R. Sattler, Z. Xiong, W. Y. Lu, et al., “Specifi c coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein,” Science, 284, No. 5421, 1845–1848 (1999).

  90. N. Tajima, E. Karakas, T. Grant, et al., “Activation of NMDA receptors and the mechanism of inhibition by ifenprodil,” Nature, 534, No. 7605, 63–68 (2016).

  91. N. Ahmadirad, A. Shojaei, M. Javan, et al., “Effect of minocycline on pentylenetetrazol-induced chemical kindled seizures in mice,” Neurol. Sci., 35, No. 4, 571–576 (2014).

    Article  PubMed  Google Scholar 

  92. M. Davoudi, A. Shojaei, M. R. Palizvan, et al., “Comparison between standard protocol and a novel window protocol for induction of pentylenetetrazol kindled seizures in the rat,” Epilepsy Res., 106, No. 1–2, 54–63 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. M. W. Lopes, F. M. S. Soares, N. de Mello, et al., “Time-dependent modulation of AMPA receptor phosphorylation and mRNA expression of NMDA receptors and glial glutamate transporters in the rat hippocampus and cerebral cortex in a pilocarpine model of epilepsy,” Exp. Brain Res., 226, No. 2, 153–163 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. O. E. Zubareva, A. A. Kovalenko, V. B. Karyakin, et al., “Changes in the expression of genes of the glutamate transporter and subunits of the NMDA and AMPA receptors in the rat amygdala in the lithium-pilocarpine model of epilepsy,” Neurochem. J., 12, No. 3, 222–227 (2018).

    Article  CAS  Google Scholar 

  95. R. di Maio, P. G. Mastroberardino, X. Hu, et al., “Pilocapine alters NMDA receptor expression and function in hippocampal neurons: NADPH oxidase and ERK1/2 mechanisms,” Neurobiol. Dis., 42, No. 3, 482–95 (2011).

    Article  PubMed  CAS  Google Scholar 

  96. R. di Maio, P. G. Mastroberardino, X. Hu, et al., “Thiol oxidation and altered NR2B/NMDA receptor functions in in vitro and in vivo pilocarpine models: implications for epileptogenesis,” Neurobiol. Dis., 49, 87–98 (2013).

    Article  PubMed  CAS  Google Scholar 

  97. W. A. Alsharafi , B. Xiao, and J. Li, “MicroRNA-139-5p negatively regulates NR2A-containing NMDA receptor in the rat pilocarpine model and patients with temporal lobe epilepsy,” Epilepsia, 57, No. 11, 1931–1940 (2016).

  98. L. Muller, T. Tokay, K. Porath, et al., “Enhanced NMDA receptor- dependent LTP in the epileptic CA1 area via upregulation of NR2B,” Neurobiol. Dis., 54, 183–193 (2013).

    Article  PubMed  CAS  Google Scholar 

  99. T. Y. Postnikova, O. E. Zubareva, A. A. Kovalenko, et al., “Status epilepticus impairs synaptic plasticity in rat hippocampus and is followed by changes in expression of NMDA receptors,” Biochemistry, 82, No. 3, 282–290 (2017).

  100. A. Alinaghipour, T. Mazoochi, and A. Ardjmand, “Low-dose ethanol ameliorates amnesia induced by a brief seizure model: the role of NMDA signaling,” Neurol. Res., 41, No. 7, 624–632 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. W.-P. Wang, Y. Lou, Z.-Z. Li, et al., “Change of hippocampal NMDA receptor and emotional behavior and spatial learning and memory in status epilepticus rat model,” Chin. J. Appl. Physiol., 23, No. 1, 51–55 (2007).

    Google Scholar 

  102. X. Zhu, J. Dong, K. Shen, et al., “NMDA receptor NR2B subunits contribute to PTZ-kindling-induced hippocampal astrocytosis and oxidative stress,” Brain Res. Bull., 114, 70–78 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. W. Lasoń, J. Turchan, B. Przewłocka, et al., “Effects of pentylenetetrazol kindling on glutamate receptor genes expression in the rat hippocampus,” Brain Res., 785, No. 2, 355–358 (1998).

    Article  PubMed  Google Scholar 

  104. M. B. Gori and E. Girardi, “3-Mercaptopropionic acid-induced repetitive seizures increase glun2a expression in rat hippocampus: A potential neuroprotective role of cyclopentyladenosine,” Cell. Mol. Neurobiol., 33, No. 6, 803–813 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. E. Girardi, J. Auzmendi, N. Charo, et al., “3-Mercaptopropionic acid- induced seizures decrease NR2B expression in Purkinje cells: Cyclopentyladenosine effect,” Cell. Mol. Neurobiol., 30, No. 7, 985–990 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. J. Auzmendi, N. Gonzalez, and E. Girardi, “The NMDAR subunit NR2B expression is modifi ed in hippocampus after repetitive seizures,” Neurochem. Res., 34, No. 5, 819–826 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. L.-J. Zhu, Z. Chen, L.-S. Zhang, et al., “Spatiotemporal changes of the N-methyl-d-aspartate receptor subunit levels in rats with pentylenetetrazole-induced seizures,” Neurosci. Lett., 356, No. 1, 53–56 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. W.-F. Peng, J. Ding, X. Li, et al., “N-methyl-d-aspartate receptor NR2B subunit involved in depression-like behaviours in lithium chloride-pilocarpine chronic rat epilepsy model,” Epilepsy Res., 119, 77–85 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. W. Lason, J. Turchan, R. Przewłocki, et al., “Effects of pilocarpine and kainate-induced seizures on N-methyl-D-aspartate receptor gene expression in the rat hippocampus,” Neuroscience, 78, No. 4, 997– 1004 (1997).

  110. C. Zhou, H. Sun, P. M. Klein, and F. E. Jensen, “Neonatal seizures alter NMDA glutamate receptor GluN2A and 3A subunit expression and function in hippocampal CA1 neurons,” Front. Cell. Neurosci., 9, 362 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  111. G. Curia, D. Longo, G. Biagini, et al., “The pilocarpine model of temporal lobe epilepsy,” J. Neurosci. Meth., 172, No. 2, 143–157 (2008).

    Article  CAS  Google Scholar 

  112. M. Levesque and M. Avoli, “The kainic acid model of temporal lobe epilepsy,” Neurosci. Biobehav. Rev., 37, No. 10, 2887–2899 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. N. O. Dalby and I. Mody, “The process of epileptogenesis: A pathophysiological approach,” Curr. Opin, Neurol, 14, No. 2, 187–192 (2001).

  114. A. Pitkanen and T. P. Sutula, “Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy,” Lancet Neurol., 1, No. 3, 173–181 (2002).

    Article  PubMed  Google Scholar 

  115. O. E. Zubareva, A. A. Kovalenko, S. V. Kalemenev, et al., “Alterations in mRNA expression of glutamate receptor subunits and excitatory amino acid transporters following pilocarpine-induced seizures in rats,” Neurosci. Lett., 686, 94–100 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. M. D. Ehlers, W. G. Tingley, and R. L. Huganir, “Regulated subcellular distribution of the NR1 subunit of the NMDA receptor,” Science, 269, No. 5231, 1734–1737 (1995).

  117. W. G. Tingley, M. D. Ehlers, K. Kameyama, et al., “Characterization of protein kinase A and protein kinase C phosphorylation of the N-methyl- D-aspartate receptor NR1 subunit using phosphorylation site-specifi c antibodies,” J. Biol. Chem., 272, No. 8, 5157–5166 (1997).

    Article  CAS  PubMed  Google Scholar 

  118. F. T. Crump, K. S. Dillman, and A. M.Craig, “cAMP-dependent protein kinase mediates activity-regulated synaptic targeting of NMDA receptors,” J. Neurosci., 21, No. 14, 5079–5088 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. D. K. Fong, A. Rao, F. T. Crump, and A. M. Craig, “Rapid synaptic remodeling by protein kinase C: Reciprocal translocation of NMDA receptors and calcium/calmodulin-dependent kinase II,” J. Neurosci., 22, No. 6, 2153–2164 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. M. D. Ehlers, S. Zhang, J. P. Bernhardt, and R. L. Huganir, “Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit,” Cell, 84, No. 5, 745–755 (1996).

  121. C. Hisatsune, H. Umemori, T. Inoue, et al., “Phosphorylationdependent regulation of N-methyl-D-aspartate receptors by calmodulin,” J. Biol. Chem., 272, No. 33, 20805–20810 (1997).

    Article  CAS  PubMed  Google Scholar 

  122. H. J. Ryu, J. E. Kim, S. I. Yeo, et al., “Potential roles of D-serine and serine racemase in experimental temporal lobe epilepsy,” J. Neurosci. Res., 88, No. 11, 2469–2482 (2010).

    CAS  PubMed  Google Scholar 

  123. D. E. Naylor, H. Liu, J. Niquet, and C. G. Wasterlain, “Rapid surface accumulation of NMDA receptors increases glutamatergic excitation during status epilepticus,” Neurobiol. Dis., 54, 225–238 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. M. Ouardouz, P. Lema, P. N. Awad, et al., “N-methyl-d-aspartate, hyperpolarization-activated cation current (Ih) and γ-aminobutyric acid conductances govern the risk of epileptogenesis following febrile seizures in rat hippocampus,” Eur. J. Neurosci., 31, No. 7, 1252–1260 (2010).

    Article  PubMed  Google Scholar 

  125. Q. Chen, S. He, X. L. Hu, et al., “Differential roles of NR2A- and NR2B-containing NMDA receptors in activity-dependent brain-derived neurotrophic factor gene regulation and limbic epileptogenesis,” J. Neurosci., 27, No. 3, 542–552 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. U. B. Eyo, A. Bispo, J. Liu, et al., “The GluN2A subunit regulates neuronal nmda receptor-induced microglia-neuron physical interactions,” Sci. Rep., 8, No. 1, 828 (2018).

  127. Y. Wu, C. Chen, Q. Yang, et al., “Endocytosis of GluN2B-containing NMDA receptor mediates NMDA-induced excitotoxicity,” Mol. Pain, 13, 1744806917701921 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. E. H. Bertram and E. W. Lothman, “NMDA receptor antagonists and limbic status epilepticus: a comparison with standard anticonvulsants,” Epilepsy Res., 5, No. 3, 177–184 (1990).

    Article  CAS  PubMed  Google Scholar 

  129. M. A. Rogawski, “The NMDA receptors. NMDA antagonists and epilepsy therapy,” Drugs, 44, No. 3, 279–292 (1992).

    Article  CAS  PubMed  Google Scholar 

  130. N. B. Farber, “The NMDA receptor hypofunction model of psychosis,” Ann. N. Y. Acad. Sci., 1003, 119–130 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. K. W. Muir and K. R. Lees, “Clinical experience with excitatory amino acid antagonist drugs,” Stroke, 26, No. 3, 503–513 (1995).

  132. E. Gouzoulis-Mayfrank, K. Heekeren, A. Neukirch, et al., “Psychological effects of (S)-ketamine and N,N-dimethyltryptamine (DMT, a double-blind, cross-over study in healthy volunteers,” Pharmacopsychiatry, 38, No. 6, 301–311 (2005).

  133. F. A. Zeiler, “Early use of the NMDA receptor antagonist ketamine in refractory and superrefractory status epilepticus,” Crit. Care Res. Pract., 2015, 831260 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. M. Ghasemi, H. Shafaroodi, S. Nazarbeiki, et al., “Voltage-dependent calcium channel and NMDA receptor antagonists augment anticonvulsant effects of lithium chloride on pentylenetetrazole-induced clonic seizures in mice,” Epilepsy Behav., 18, No. 3, 171–178 (2010).

    Article  PubMed  Google Scholar 

  135. N. Y. Lukomskaya, N. I. Rukoyatkina, L. V. Gorbunova, et al., “Studies of the roles of NMDA and AMPA glutamate receptors in the mechanism of corasole convulsions in mice,” Neurosci. Behav. Physiol., 34, No. 8, 783–789 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. K. Vermoesen, I. Smolders, A. Massie, et al., “The control of kainic acid-induced status epilepticus,” Epilepsy Res., 90, No. 1–2, 164–166 (2010).

    Article  PubMed  Google Scholar 

  137. F. Dorandeu, P. Carpentier, D. Baubichon, et al., “Effi cacy of the keta mine-atropine combination in the delayed treatment of soman- induced status epilepticus,” Brain Res., 1051, No. 1–2, 164– 175 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. C. Zellinger, J. D. Salvamoser, J. Soerensen, et al., “Pre-treatment with the NMDA receptor glycine-binding site antagonist L-701,324 improves pharmacosensitivity in a mouse kindling model,” Epilepsy Res., 108, No. 4, 634–643 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. C. M. Loss, N. S. da Rosa, R. G. Mestriner, et al., “Blockade of GluN2B-containing NMDA receptors reduces short-term brain damage induced by early-life status epilepticus,” Neurotoxicology, 71, 138–149 (2019).

    Article  CAS  PubMed  Google Scholar 

  140. J. Clasadonte, J. Dong, D. J. Hines, and P. G. Haydon, “Astrocyte control of synaptic NMDA receptors contributes to the progressive development of temporal lobe epilepsy,” Proc. Natl. Acad. Sci. USA, 110, No. 43, 17540–17545 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. W. Yu, M. Calos, J. Pilitsis, and D. S. H. Shin, “Deconstructing the neural and ionic involvement of seizure-like events in the striatal network,” Neurobiol. Dis., 52, 128–136 (2013).

    Article  PubMed  Google Scholar 

  142. S. Hanna, M. Harrison, I. Macintyre, and R. Fraser, “The syndrome of magnesium defi ciency in man,” Lancet, 276, No. 7143, 172–176 (1960).

  143. D. R. Buck, A. W. Mahoney, and D. G. Hendricks, “Effect of magnesium defi ciency on nonspecifi c excitability level (NEL) and audiogenic seizure susceptibility,” Pharmacol. Biochem. Behav., 5, No. 5, 529–534 (1976).

    Article  CAS  PubMed  Google Scholar 

  144. R. E. J. Randall, E. C. Rossmeisl, and K. H. Bleifer, “Magnesium depletion in man,” Ann. Intern. Med., 50, No. 2, 257–287 (1959).

    Article  CAS  PubMed  Google Scholar 

  145. M. K. Govil, B. D. Mangal, S. M. Alam, et al., “Serum and cerebrospinal fluid calcium and magnesium levels in cases of idiopathic grand mal epilepsy and induced convulsions,” J. Assoc. Physic. India, 29, No. 9, 695–699 (1981).

    CAS  Google Scholar 

  146. R. Sinert, S. Zehtabchi, S. Desai, et al., “Serum ionized magnesium and calcium levels in adult patients with seizures,” Scand. J. Clin. Lab. Invest., 67, No. 3, 317–326 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. M. A. Mikati, H. Injibar, R. M. Kurdi, et al., “Effects of magnesium sulfate in kainic acid-induced status epilepticus,” J. Med. Liban., 54, No. 4, 200–204 (2006).

    PubMed  Google Scholar 

  148. A. Ghasemi, M. Saberi, M. Ghasemi, et al., “Administration of lithium and magnesium chloride inhibited tolerance to the anticonvulsant effect of morphine on pentylenetetrazole-induced seizures in mice,” Epilepsy Behav., 19, No. 4, 568–574 (2010).

    Article  PubMed  Google Scholar 

  149. P. Bac, C. Herrenknecht, P. Binet, and J. Durlach, “Audiogenic seizures in magnesium-defi cient mice: effects of magnesium pyrrolidone-2-carboxylate, magnesium acetyltaurinate, magnesium chloride and vitamin B-6,” Magnes. Res., 6, No. 1, 11–19 (1993).

    CAS  PubMed  Google Scholar 

  150. M. M. Safar, D. M. Abdallah, N. M. Arafa, and M. T. Abdel-Aziz, “Magnesium supplementation enhances the anticonvulsant potential of valproate in pentylenetetrazol-treated rats,” Brain Res., 1334, 58–64 (2010).

    Article  CAS  PubMed  Google Scholar 

  151. D. B. Cotton, M. Hallak, C. Janusz, et al., “Central anticonvulsant effects of magnesium sulfate on N-methyl-D-aspartate-induced seizures,” Am. J. Obstet. Gynecol., 168, No. 3, 974–978 (1993).

    Article  CAS  PubMed  Google Scholar 

  152. L. Bennet, R. Galinsky, V. Draghi, et al., “Time and sex dependent effects of magnesium sulphate on post-asphyxial seizures in preterm fetal sheep,” J. Physiol., 596, No. 23, 6079–6092 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. S. A. Lipton, “Failures and successes of NMDA receptor antagonists: molecular basis for the use of open-channel blockers like memantine in the treatment of acute and chronic neurologic insults,” NeuroRx, 1, No. 1, 101–110 (2004).

  154. M. Bialer, S. I. Johannessen, H. J. Kupferberg, et al., “Progress report on new antiepileptic drugs: a summary of the fourth Eilat conference (EILAT IV),” Epilepsy Res., 34, No. 1, 1–41 (1999).

    Article  CAS  PubMed  Google Scholar 

  155. L. Sun and S. S. Lin, “The anticonvulsant SGB-017 (ADCI) blocks voltage-gated sodium channels in rat and human neurons: comparison with carbamazepine,” Epilepsia, 41, No. 3, 263–270 (2000).

  156. M. A. Rogawski, S. Yamaguchi, S. M. Jones, et al., “Anticonvulsant activity of the low-affi nity uncompetitive N-methyl-D-aspartate antagonist (+–)-5-aminocarbonyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten- 5,10-imine (ADCI, comparison with the structural analogs dizocilpine (MK-801) and carbamazepine,” J. Pharmacol. Exp. Ther., 259, No. 1, 30–37 (1991).

  157. B. K. Seidleck, A. Thurkauf, and J. M. Witkin, “Evaluation of ADCI against convulsant and locomotor stimulant effects of cocaine: comparison with the structural analogs dizocilpine and carbamazepine,” Pharmacol. Biochem. Behav., 47, No. 4, 839–844 (1994).

    Article  CAS  PubMed  Google Scholar 

  158. B. Geter-Douglass and J. M. Witkin, “Behavioral effects and anticonvulsant efficacies of low-affi nity, uncompetitive NMDA antagonists in mice,” Psychopharmacology, 146, No. 3, 280–289 (1999).

  159. M. H. Coleman, S. Yamaguchi, and M. A. Rogawski, “Protection against dendrotoxin-induced clonic seizures in mice by anticonvulsant drugs,” Brain Res., 575, No. 1, 138–142 (1992).

    Article  CAS  PubMed  Google Scholar 

  160. K. A. Grant, L. D. Snell, M. A. Rogawski, et al., “Comparison of the effects of the uncompetitive N-methyl-D-aspartate antagonist (+–)-5-aminocarbonyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10-imine (ADCI) with its structural analogs dizocilpine (MK-801) and carbamazepine on ethanol withdrawal seizures,” J. Pharmacol. Exp. Ther., 260, No. 3, 1017–1022 (1992).

  161. M. Ghasemi, H. Shafaroodi, S. Nazarbeiki, et al., “Inhibition of NMDA receptor/NO signaling blocked tolerance to the anticonvulsant effect of morphine on pentylenetetrazole-induced seizures in mice,” Epilepsy Res., 91, No. 1, 39–48 (2010).

    Article  CAS  PubMed  Google Scholar 

  162. P. V. Taberner, “The anticonvulsant activity of ketamine against seizures induced by pentylenetetrazol and mercaptopropionic acid,” Eur. J. Pharmacol., 39, No. 2, 305–311 (1976).

    Article  CAS  PubMed  Google Scholar 

  163. J. Veliskova, L. Velisek, P. Mares, and R. Rokyta, “Ketamine suppresses both bicuculline- and picrotoxin-induced generalized tonic-clonic seizures during ontogenesis,” Pharmacol. Biochem. Behav., 37, No. 4, 667–674 (1990).

    Article  CAS  PubMed  Google Scholar 

  164. R. D’Hooge, Y. Q. Pei, and P. P. de Deyn, “N-methyl-D-aspartate receptors contribute to guanidinosuccinate- induced convulsions in mice,” Neurosci. Lett., 157, No. 2, 123–126 (1993).

    Article  PubMed  Google Scholar 

  165. C. E. Stafstrom and D. M. Sasaki-Adams, “NMDA-induced seizures in developing rats cause long-term learning impairment and increased seizure susceptibility,” Epilepsy Res., 53, No. 1–2, 129–137 (2003).

    Article  CAS  PubMed  Google Scholar 

  166. B. L. Trommer and J. F. Pasternak, “NMDA receptor antagonists inhibit kindling epileptogenesis and seizure expression in developing rats,” Brain Res. Dev., 53, No. 2, 248–252 (1990).

    Article  CAS  Google Scholar 

  167. K. K. Borowicz, J. Łuszczki, and S. J. Czuczwar, “Interactions between non-barbiturate injectable anesthetics and conventional antiepileptic drugs in the maximal electroshock test in mice – an isobolographic analysis,” Eur. Neuropsychopharmacol., 14, No. 2, 163–172 (2004).

    Article  CAS  PubMed  Google Scholar 

  168. B. S. Martin and J. Kapur, “A combination of ketamine and diazepam synergistically controls refractory status epilepticus induced by cholinergic stimulation,” Epilepsia, 49, No. 2, 248–255 (2008).

  169. K. K. Kim, A. V. Zaitsev, V. V. Lavrent’eva, et al., “Effects of ionotropic glutamate receptor blockers on pentylenetetrazole-induced seizures in Krushinskii–Molodkina rats,” Neurosci. Behav. Physiol., 44, No. 8, 945–950 (2014).

    Article  CAS  Google Scholar 

  170. B. Chen, B. Feng, Y. Tang, et al., “Blocking GluN2B subunits reverses the enhanced seizure susceptibility after prolonged febrile seizures with a wide therapeutic time-window,” Exp. Neurol., 283, 29–38 (2016).

    Article  CAS  PubMed  Google Scholar 

  171. M. Jansen and G. Dannhardt, “Antagonists and agonists at the glycine site of the NMDA receptor for therapeutic interventions,” Eur. J. Med. Chem., 38, No. 7–8, 661–670 (2003).

    Article  CAS  PubMed  Google Scholar 

  172. H.-S. V. Chen and S. A. Lipton, “The chemical biology of clinically tolerated NMDA receptor antagonists,” J. Neurochem., 97, No. 6, 1611–1626 (2006).

    Article  CAS  PubMed  Google Scholar 

  173. L. V. Kalia, S. K. Kalia, and M. W. Salter, “NMDA receptors in clinical neurology: excitatory times ahead,” Lancet Neurol., 7, No. 8, 742–755 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. P. Berger, K. Farrel, F. Sharp, and P. Skolnick, “Drugs acting at the strychnine-insensitive glycine receptor do not induce HSP-70 protein in the cingulate cortex,” Neurosci. Lett., 168, No. 1–2, 147–150 (1994).

    Article  CAS  PubMed  Google Scholar 

  175. J. Niquet, L. Lumley, R. Baldwin, et al., “Rational polytherapy in the treatment of cholinergic seizures,” Neurobiol. Dis., 133, 104537 (2020).

    Article  CAS  PubMed  Google Scholar 

  176. A. Schidlitzki, F. Twele, R. Klee, et al., “A combination of NMDA and AMPA receptor antagonists retards granule cell dispersion and epileptogenesis in a model of acquired epilepsy,” Sci. Rep., 7, No. 1, 1–19 (2017).

    Article  CAS  Google Scholar 

  177. C. Brandt, H. Potschka, W. Loscher, and U. Ebert, “N-methyl-Daspartate receptor blockade after status epilepticus protects against limbic brain damage but not against epilepsy in the kainate model of temporal lobe epilepsy,” Neuroscience, 118, No. 3, 727–740 (2003).

  178. A. Santamaria and C. Rios, “MK-801, an N-methyl-d-aspartate receptor antagonist, blocks quinolinic acid-induced lipid peroxidation in rat corpus striatum,” Neurosci. Lett., 159, No. 1, 51–54 (1993).

    Article  CAS  PubMed  Google Scholar 

  179. Q. Yang, Z. Huang, Y. Luo, et al., “Inhibition of Nwd1 activity attenuates neuronal hyperexcitability and GluN2B phosphorylation in the hippocampus,” EBioMedicine, 47, 470–483 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  180. M. Rodriguez-Munoz, Y. Onetti, E. Cortes-Montero, et al., “Cannabidiol enhances morphine antinociception, diminishes NMDA-mediated seizures and reduces stroke damage via the sigma 1 receptor,” Mol. Brain, 11, No. 1, 1–12 (2018).

    Article  CAS  Google Scholar 

  181. Y. Yang, X. Tian, D. Xu, et al., “GPR40 modulates epileptic seizure and NMDA receptor function,” Sci. Adv., 4, No. 1, 1–12 (2018).

    Google Scholar 

  182. W. Koek and F. C. Colpaert, “Selective blockade of N-methyl-Daspartate (NMDA)-induced convulsions by NMDA antagonists and putative glycine antagonists: relationship with phencyclidine-like behavioral effects,” J. Pharmacol. Exp. Ther., 252, No. 1, 349–357 (1990).

    CAS  PubMed  Google Scholar 

  183. C. Chiamulera, S. Costa, and A. Reggiani, “Effect of NMDA- and strychnine-insensitive glycine site antagonists on NMDA-mediated convulsions and learning,” Psychopharmacology (Berlin), 102, No. 4, 551–552 (1990).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zaitsev.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 106, No. 12, pp. 1455–1478, December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ergina, J.L., Kovalenko, A.A. & Zaitsev, A.V. The Role or NMDA Receptors in Epileptogenesis. Neurosci Behav Physi 51, 793–806 (2021). https://doi.org/10.1007/s11055-021-01136-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-021-01136-9

Keywords

Navigation