Skip to main content
Log in

Corticomuscular Interactions in Real and Imaginary Arm Movements

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Electroencephalogram (EEG) and electromyogram (EMG) traces were made in ten adult subjects in the resting state (eyes open) and on execution of real and imaginary rhythmically repeating movements. Vector autoregression modeling was used to evaluate the directed transfer function (DTF) for six bilaterally symmetrical EEG channels (F1/2, C3/4, and P5/6) and two EMG channels (flexor carpi radialis in the left and right upper limbs). Subjects executed real and imaginary repetitive opening and clenching of the right and left hands. Statistical analysis of DTF averaged in the α and γ ranges, corresponding to top-down and bottom-up corticomuscular influences, showed (1) top-down influences changed in different ways in the α and γ frequency ranges on transition from resting to imaginary and real movements. In the α range, these influences increased on performance of real movements while in imaginary movements they were no different from the resting state. In the γ range, the top-down influence of signals from the left frontal lead on the EMG channel of the right arm increased as compared with the resting state on performance of both real and imaginary movements; (2) that bottom-up influences showed a tendency to change: in real movements, these influences in both frequency ranges were slightly greater than at rest; (3) that bottom-up influences in both the α and γ ranges on imaginary movements displayed a tendency to take up a lower level than in controls; (4) that top-down influences in both frequency ranges were significantly greater than bottom-up influences; (5) that the greatest top-down influences in the α range in both real and imaginary movements were seen in the frontal rather than the central areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baccala, L. A. and Sameshima, K., “Partial directed coherence: a new concept in neural structure determination,” Biol. Cybern., 84, 463–474 (2001).

    Article  CAS  Google Scholar 

  • Baccala, L. A., Sameshima, K., Ballester, G., et al., “Studying the interaction between brain structures via directed coherence and Granger causality,” Applied Sig. Process., 5, 40–48 (1998).

    Article  Google Scholar 

  • Batula, A. M., Mark, J. A., Kim, Y. E., and Ayaz, H., “Comparison of brain activation during motor imagery and motor movement using fNIRS,” Computat. Intell. Neurosci., 2017, 5491296 (2017).

  • Budini, F., McManus, L. M., Berchicci, M., et al., “Alpha band cortico-muscular coherence occurs in healthy individuals during mechanically-induced tremor,” PloS ONE, 9, No. 12, e115012 (2004).

  • Côté, S. L., Hamadjida, X. A., Quessy, X. S., and Dancause, X. N., “contrasting modulatory effects from the dorsal and ventral premotor cortex on primary motor cortex outputs,” J. Neurosci., 37, No. 24, 5960–5973 (2017).

    Article  Google Scholar 

  • De Luca, C. J., “The use of surface electromyography in biomechanics,” J. Appl. Biomechanics, 13, 135–163 (1997).

    Article  Google Scholar 

  • Demougeot, L., Normand, H., Denise, P., and Papaxanthis, C., “Discrete and effortful imagined movements do not specifically activate the autonomic nervous system,” PLoS One, 4, No. 8, e6769 (2009), https://doi.org/10.1371/journal.pone.0006769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desmurget, M. and Sirigu, A., “A parietal-premotor network for movement intention and motor awareness,” Trends Cogn. Sci., 13, No. 10, 411–419 (2009).

    Article  Google Scholar 

  • Desmurget, M., Reilly, K. T., Richard, N., et al., “Movement intention after parietal cortex stimulation in humans,” Science, 324, 811–813 (2009).

    Article  CAS  Google Scholar 

  • Di Rienzo, F., Collet, C., Hoyek, N., and Guillot, A., “Impact of neurologic deficits on motor imagery: a systematic review of clinical evaluations,” Neuropsychol. Rev., 24, No. 2, 116–147 (2014).

    Article  Google Scholar 

  • Dum, R. P. and Strick, P. L., “Frontal lobe inputs to the digit representations of the motor areas on the lateral surface of the hemisphere,” J. Neurosci., 25, No. 6, 1375–1386 (2005).

    Article  CAS  Google Scholar 

  • Dum, R. P. and Strick, P. L., “The origin of corticospinal projections from the premotor areas in the frontal lobe,” J. Neurosci., 77, No. 3, 667–669 (1991).

    Article  Google Scholar 

  • Farina, D., Merletti, R., and Enoka, R. M., “The extraction of neural strategies from the surface,” J. Appl. Physiol., 96, 1486–1495 (2004).

    Article  Google Scholar 

  • Friston, K. J., “Functional and effective connectivity: A review,” Brain Connectivity, 1, No. 1, 13–36 (2011).

    Article  Google Scholar 

  • Frolov, A. A., Aziatskaya, G. A., Bobrov, P. D., et al., “Electrophysiological activity of the brain in controlling a brain–computer interface based on motor imagery,” Fiziol. Cheloveka, 43, No. 5, 17–28 (2017).

    Google Scholar 

  • Graimann, B., Allison, B., and Pfurtcheller, G., “Brain–computer interfaces: a gentle introduction,” in: Brain–Computer Interfaces, The Frontiers Collection, Springer, Berlin Heidelberg (2009), pp. 1–27.

  • Graziano, M. S. A., Taylor, C. S. R., Moore, T., and Cooke, D. F., “The cortical control of movement revisited,” Neuron, 36, 349–362 (2002).

    Article  CAS  Google Scholar 

  • Gross, J., Tass, P. A., Salenius, S., et al., “Cortico-muscular synchronization during isometric muscle contraction in humans as revealed by magnetoencephalography,” J. Physiol., 527, No. 3, 623–631 (2000).

    Article  CAS  Google Scholar 

  • Grosse, P., Cassidy, M. J., and Brown, P., “EEG-EMG, MEG-EMG and EMG-EMG frequency analysis: physiological principles and clinical applications,” Clin. Neurophysiol., 113, 1523–1531 (2002).

    Article  CAS  Google Scholar 

  • Guillot, A. and Collet, C., “Contribution from neurophysiological and psychological methods to the study of motor imagery,” Brain Res. Brain Res. Rev., 50, 387–397 (2005).

    Article  Google Scholar 

  • Halliday, D. M., Conway, B. A., Farmer, S. F., and Rosenberg, J. R., “Using electroencephalography to study functional coupling between cortical activity and electromyograms during voluntary contractions in humans,” Neurosci. Lett., 241, 5–8 (1998).

    Article  CAS  Google Scholar 

  • Ives-Deliperi, V. L. and Butler, J. T., “Relationship between EEG electrode and functional cortex in the international 10 to 20 system,” J. Clin. Neurophysiol., 35, No. 6, 504–509 (2018).

    Article  Google Scholar 

  • Jeannerod, M., “Mental imagery in the motor context,” Neuropsychologia, 33, No. 11, 1419–1432 (1995).

    Article  CAS  Google Scholar 

  • Jeannerod, M., “Neural simulation of action: A unifying mechanism for motor cognition,” NeuroImage, 14, S103–S109 (2001).

    Article  CAS  Google Scholar 

  • Kamiński, M., Ding, M., Truccolo, W. A., and Bressler, S. L., “Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance,” Biol. Cybern., 85, 145–157 (2001).

    Article  Google Scholar 

  • Kilner, J. M., Baker, S. N., Salenius, S., et al., “Human cortical muscle coherence is directly related to specific motor parameters,” J. Neurosci., 20, No. 23, 8838–8845 (2000).

    Article  CAS  Google Scholar 

  • Kilner, J. M., Baker, S. N., Salenius, S., et al., “Task-dependent modulation of 1530 Hz coherence between rectified EMGs from human hand and forearm muscles,” J. Physiol., 516, No. 2, 559–570 (1999).

    Article  CAS  Google Scholar 

  • Kurganskii, A. V., “Some questions of studies of corticocortical functional connections using a vector autoregression model of the multichannel EEG,” Zh. Vyssh. Nerv. Deyat., 60, No. 5, 630–649 (2010).

    Google Scholar 

  • Li, S., Kamper, D. G., Stevens, J. A., and Rymer, W. Z., “The effect of motor imagery on spinal segmental excitability,” J. Neurosci., 27, 9674–9680 (2004).

    Article  Google Scholar 

  • Likhachev, S. A., Vashchilin, V. V., and Dik, S. K., “Tremor: phenomenology and recording methods,” Meditsinsk. Zh., No. 2, 133–137 (2010).

  • Mokienko, O. A., Chernikova, L. A., Frolov, A. A., and Bobrov, P. D., “Motor imagery and its practical application,” Zh. Vyssh. Nerv. Deyat., 63, No. 2, 195–204 (2013).

    CAS  Google Scholar 

  • Omlor, W., Patino, L., Hepp-Reymond, M. C., and Kristeva, R., “Gammarange corticomuscular coherence during dynamic force output,” NeuroImage, 34, 1191–1198 (2007).

    Article  Google Scholar 

  • Pfurtcheller, G., Brunner, C., Schlogl, A., and Lopes da Silva, F. H., “Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks,” Neuroimage, 31, 153–159 (2006).

    Article  Google Scholar 

  • Reyes, A., Laine, C. M., Kutch, J. J., and Valero-Cuevas, F. J., “Beta band corticomuscular drive reflects muscle coordination strategies,” Front. Comput. Neurosci., 11, 17 (2017).

    Article  Google Scholar 

  • Sheahan, H. R., Ingram, J. N., Žalalytė, G. M., and Wolpert, D. M., “Imagery of movements immediately following performance allows learning of motor skills that interfere,” Sci. Rep., 8, 14330 (2018).

    Article  Google Scholar 

  • Stolbkov, Yu. K., Moshonkina, T. R., Orlov, I. V., et al., “Motor imagery as a means of improving the rehabilitation of motor functions,” Usp. Fiziol. Nauk., 49, No. 2, 45–59 (2018).

    Google Scholar 

  • Verstynen, T., Jarbo, K., Pathak, S., and Schneider, W., “In vivo mapping of microstructural somatotopies in the human corticospinal pathways,” J. Neurophysiol., 105, 336–346 (2011).

    Article  Google Scholar 

  • Yang, Y., Dewald, J. P. A., van der Helm, F. C. T., and Schouten, A. C., “Unveiling neural coupling within the sensorimotor system: directionality and nonlinearity,” Eur. J. Neurosci., 48, 2407–2415 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Kurgansky.

Additional information

Deceased (A. A. Frolov).

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 70, No. 6, pp. 738–751, November–December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurgansky, M.E., Bobrov, P.D., Frolov, A.A. et al. Corticomuscular Interactions in Real and Imaginary Arm Movements. Neurosci Behav Physi 51, 724–733 (2021). https://doi.org/10.1007/s11055-021-01128-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-021-01128-9

Keywords

Navigation