Skip to main content
Log in

Formation and Retrieval of Associative Memory for a Complex Signal in Mice: Specific Involvement of Hippocampal Field CA1 Neurons

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Most important events in the environment are complex in sensory terms. Integration of multimodal information relating to such complex signals by the brain is regarded by many investigators as a biological function of very early forms of consciousness. We report here use of a model of associative learning in mice in which electrocutaneous stimulation was combined with a complex conditioned signal consisting of simultaneous presentation of light and sound stimuli. These studies showed that mice successfully learned and formed long-term memory in a task consisting of conditioned reflex freezing in response to a complex conditioned stimulus. Immunohistochemical mapping of the neuronal expression of the c-fos gene in the hippocampus and associative retrosplenial cortex was performed to study the neural substrates of this memory. We found that only hippocampal field CA1 and not other areas of the hippocampus or the retrosplenial cortex underwent activation on retrieval of the associative memory for the complex conditioned signal, while its components produced no hippocampal activation. In addition, field CA1 showed a strong positive correlation between the level of freezing on retrieval of the memory and the number of neurons activated by retrieval of the memory. Thus, it can be suggested that hippocampal field CA1 is specifically involved in forming and retrieving associative memory for complex signals in the natural environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrianov, O. S., “Structure of reflexes to complex simultaneous conditioned stimuli,” Zh. Vyssh. Nerv. Deyat., 11, 1019–1025 (1961).

    CAS  Google Scholar 

  • Batuev, A. S., “The mechanisms of interaction of the visual and auditory analyzers,” Zh. Vyssh. Nerv. Deyat., 14, No. 5, 834–846 (1964).

    CAS  Google Scholar 

  • Berens, S. C., and Bird, C. M., “The role of the hippocampus in generalizing configural relationships,” Hippocampus, 27, No. 3, 223–228 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Bergstrom, H. C., “The neurocircuitry of remote cued fear memory,” Neurosci. Biobehav. Rev., 71, 409–417 (2016).

    PubMed  Google Scholar 

  • Bourtchouladze, R., Abel, T., Berman, N., et al., “Different training procedures recruit either one or two critical periods for contextual memory consolidation, each of which requires protein synthesis and PKA,” Learn. Mem., 5, No. 4, 365–374 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bronfman, Z. Z., Ginsburg, S., and Jablonka, E., “The transition to minimal consciousness through the evolution of associative learning,” Front. Psychol., 22, No. 7, 1954 eCollection 2016 (2016).

  • Chang, S. D. and Liang, K. C., “The hippocampus integrates context and shock into a configural memory in contextual fear conditioning,” Hippocampus, 27, No. 2, 145–155 (2017).

    PubMed  Google Scholar 

  • Chen, V. M., Foilb, A. R., and Christianson, J. P., “Inactivation of ventral hippocampus interfered with cued-fear acquisition but did not influence later recall or discrimination,” Behav. Brain Res., 296, 249–253 (2016).

    PubMed  Google Scholar 

  • Cho, J. H., Rendall, S. D., and Gray, J. M., “Brain-wide maps of Fos expression during fear learning and recall,” Learn. Mem., 24, No. 4, 169–181 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corcoran, K. A., Frick, B. J., Radulovic, J., and Kay, L. M., “Analysis of coherent activity between retrosplenial cortex, hippocampus, thalamus, and anterior cingulate cortex during retrieval of recent and remote context fear memory,” Neurobiol. Learn. Mem., 127, 93–101 (2016).

    PubMed  Google Scholar 

  • Debiec, J., Diaz-Mataix, L., Bush, D. E., et al., “The selectivity of aversive memory reconsolidation and extinction processes depends on the initial encoding of the Pavlovian association,” Learn. Mem., 20, No. 12, 695–699 (2013).

    PubMed  PubMed Central  Google Scholar 

  • Doron, A. and Goshen, I., “Investigating the transition from recent to remote memory using advanced tools,” Brain Res. Bull., 141, 35–43 (2018).

    PubMed  Google Scholar 

  • Duncan, K., Doll, B. B., Daw, N. D., and Shohamy, D., “More than the sum of its parts: A role for the hippocampus in configural reinforcement learning,” Neuron, 98, No. 3, 645–657 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eichenbaum, H., “On the integration of space, time, and memory,” Neuron, 95, No. 5, 1007–1018 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feinberg, T. E. and Mallatt, J., “The nature of primary consciousness: a new synthesis,” Conscious. Cogn., 43, 113–127 (2016).

    PubMed  Google Scholar 

  • Franklin, K. B. J. and Paxinos, G., The Mouse Brain in Stereotaxic Coordinates, Academic Press, New York (2007), 3rd edition.

  • Ginsburg, S. and Jablonka, E., The Evolution of the Sensitive Soul: Learning and the Origins of Consciousness, MIT Press, Cambridge, MA (2019).

    Google Scholar 

  • Gross, C. T. and Canteras, N. S., “The many paths to fear,” Nat. Rev. Neurosci., 13, No. 9, 651–658 (2012).

    CAS  PubMed  Google Scholar 

  • Guzowski, J. F., Timlin, J. A., Roysam, B., et al., “Mapping behaviorally relevant neural circuits with immediate-early gene expression,” Curr. Opin. Neurobiol., 15, No. 5, 599–606 (2005).

    CAS  PubMed  Google Scholar 

  • Hall, J., Thomas, K. L., and Everitt, B. J., “Cellular imaging of zif268 expression in the hippocampus and amygdala during contextual and cued fear memory retrieval: selective activation of hippocampal CA1 neurons during the recall of contextual memories,” J. Neurosci., 21, No. 6, 2186–2193 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ivashkina, O. I., Toropova, K. A., Ivanova, A. A., et al., “Wave expression of c-Fos and Arc proteins in the neuronal populations of the hippocampus in response to single episodes of novel experiences,” Byull. Eksperim. Biol. Med., 160, No. 12, 689–692 (2015).

    Google Scholar 

  • Ivashkina, O. I., Toropova, K. A., Roshchina, M. V., and Anokhin, K. V., “Acquisition of conditioned fear reaction to a light stimulus in mice: comparison with learning to sound stimuli,” Zh. Vyssh. Nerv. Deyat., 66, No. 4, 1–6 (2016).

    Google Scholar 

  • Ivashkina, O. I., Vorob’eva, N. S., Gruzdeva, A. M., et al., “Cognitive indexing of neurons: Cre-controlled genetic marking and studies of cells involved in learning and memory,” Acta Naturae, 10, No. 2, 40–51 (2018).

    Google Scholar 

  • Jones, C. E., Ringuet, S., and Monfi ls, M. H., “Learned together, extinguished apart: reducing fear to complex stimuli,” Learn. Mem., 20, No. 12, 674–685 (2013).

    PubMed  PubMed Central  Google Scholar 

  • Keene, C. S. and Bucci, D. J., “Contributions of the retrosplenial and posterior parietal cortices to signal-specific and contextual fear conditioning,” Behav. Neurosci., 122, No. 1, 89–97 (2008).

    PubMed  Google Scholar 

  • Kim, J. J. and Fanselow, M. S., “Modality-specific retrograde amnesia of fear,” Science, 256, 675–677 (1992).

    CAS  PubMed  Google Scholar 

  • Lugo, J. N., Smith, G. D., and Holley, A. J., “Trace fear conditioning in mice,” J. Vis. Exp., 85 (2014).

  • Matus-Amat, P., Higgins, E. A., Barrientos, R. M., and Rudy, J. W., “The role of the dorsal hippocampus in the acquisition and retrieval of context memory representations,” J. Neurosci., 24, No. 10, 2431–2439 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mei, B., Li, C., Dong, S., et al., “Distinct gene expression profiles in hippocampus and amygdala after fear conditioning,” Brain Res. Bull., 67, No. 1–2, 1–12 (2005).

  • Mineeva, O. A., Bezryadnov, D. V., Chekhov, S. A., et al., “Integrative functions of the retrosplenial cortex: anatomical, connectome, and cellular electrophysiological data from rats,” Ann. Klin. Eksperim. Nevrol., 13, No. 1, 47–54 (2019).

    Google Scholar 

  • Murav’eva, E. V. and Anokhin, K. V., “Involvement of protein synthesis in memory reconsolidation at different times after training to conditioned reflex freezing in mice,” Zh. Vyssh. Nerv. Deyat., 56, No. 2, 274–282 (2006).

    Google Scholar 

  • Palladin, A. V., “Formation of artificial conditioned reflexes from summed stimuli,” Trudy Obshch. Russ. Vrachev SPb, 73, No. 1906, 393–401.

  • Pavlov, I. P., Complete Collection of Works in 5 Volumes, L. A. Orbeli (ed.), USSR Academy of Sciences Press, Moscow, Leningrad (1949).

  • Perel’tsveig, I. Ya., Materials for the Study of Conditioned Reflexes: Dissertation, St. Petersburg (1907).

  • Pevzner, A. and Guzowski, J. F., “Immediate-early gene transcriptional activation in hippocampus CA1 and CA3 does not accurately reflect rapid, pattern completion-based retrieval of context memory,” Learn. Mem., 22, No. 1, 1–5 (2014).

    PubMed  Google Scholar 

  • Phillips, R. G. and LeDoux, J. E., “Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning,” Behav. Neurosci., 106, 274–285 (1992).

    CAS  PubMed  Google Scholar 

  • Raybuck, J. D. and Lattal, K. M., “Double dissociation of amygdala and hippocampal contributions to trace and delay fear conditioning,” PLoS One, 6, No. 1, e15982 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Razran, G. H. S., “Studies in configural conditioning: I. Historical and preliminary experimentation,” J. Gen. Psychol., 21, No. 2, 307–330 (1939a).

    Google Scholar 

  • Razran, G. H. S., “Studies in configural conditioning: IV. Gestalt organization and configural conditioning,” J. Psychol., 7, No. 1, 3–16 (1939b).

    Google Scholar 

  • Razran, G. H. S., Mind in Evolution: An East-West Synthesis of Learned Behavior and Cognition, Houghton Mifflin (1971).

  • Robinson, S., Poorman, C. E., Marder, T. J., and Bucci, D. J., “Identification of functional circuitry between retrosplenial and postrhinal cortices during fear conditioning,” J. Neurosci., 32, No. 35, 12,076–12,086 (2012).

    CAS  Google Scholar 

  • Roshchina, M. A., Ivashkina, O. I., and Anokhin, K. V., “New approaches to cognitive neurobiology: methods for two-photon in vivo visualization of cognitively active neurons,” Zh. Vyssh. Nerv. Deyat., 62, No. 2, 141–149 (2017).

    Google Scholar 

  • Rudy, J. W. and O’Reilly, R. C., “Conjunctive representations, the hippocampus, and contextual fear conditioning,” Cogn. Affect. Behav. Neurosci., 1, No. 1, 66–82 (2001).

  • Rudy, J. W. and Sutherland, R. J., “Configural association theory and the hippocampal formation: an appraisal and reconfiguration,” Hippocampus, 5, No. 5, 375–389 (1995).

  • Saidov, Kh. M. and Anokhin, K. V., “New approaches to cognitive neurobiology: methods for molecular labelling and ex vivo visualization of cognitively active neurons,” Zh. Vyssh. Nerv. Deyat., 67, No. 3, 259–272 (2017).

    Google Scholar 

  • Schmajuk, N. A. and Blair, H. T., “Stimulus configuration, spatial learning, and hippocampal function,” Behav. Brain Res., 59, No. 1–2, 103–117 (1993).

    CAS  PubMed  Google Scholar 

  • Selden, N. R., Everitt, B. J., Jarrard, L. E., and Robbins, T. W., “Complementary roles for the amygdala and hippocampus in aversive conditioning to explicit and contextual signals,” Neuroscience, 42, No. 2, 335–350 (1991).

    CAS  PubMed  Google Scholar 

  • Sigwald, E. L., Bignante, E. A., de Olmos, S., and Lorenzo, A., “Fear-context association during memory retrieval requires input from granular to dysgranular retrosplenial cortex,” Neurobiol. Learn. Mem., 163, 107036 (2019).

    PubMed  Google Scholar 

  • Strekalova, T., Zorner, B., Zacher, C., et al., “Memory retrieval after contextual fear conditioning induces c-Fos and JunB expression in CA1 hippocampus,” Genes Brain Behav., 2, 3–10 (2003).

    CAS  PubMed  Google Scholar 

  • Sugar, J., Witter, M. P., van Strien, N. M., and Cappaert, N. L., “The retrosplenial cortex: intrinsic connectivity and connections with the (para)hippocampal region in the rat. An interactive connectome,” Front. Neuroinform., 5, 7.eCollection 2011 (2011), https://doi.org/10.3389/fninf.2011.00007.

  • Sutherland, R. J., O’Brien, J., and Lehmann, H., “Absence of systems consolidation of fear memories after dorsal, ventral, or complete hippocampal damage,” Hippocampus, 18, No. 7, 710–718 (2008).

    PubMed  Google Scholar 

  • Tanaka, K. Z. and McHugh, T. J., “The hippocampal engram as a memory index,” J. Exp. Neurosci., 12, 1179069518815942 (2018).

    PubMed  PubMed Central  Google Scholar 

  • Tanaka, K. Z., Pevzner, A., Hamidi, A. B., et al., “Cortical representations are reinstated by the hippocampus during memory retrieval,” Neuron, 84, 347–354 (2014).

    CAS  PubMed  Google Scholar 

  • Teyler, T. J. and DiScenna, P., “The hippocampal memory indexing theory,” Behav. Neurosci., 100, 147–154 (1986).

    CAS  PubMed  Google Scholar 

  • Teyler, T. J. and Rudy, J. W., “The hippocampal indexing theory and episodic memory: updating the index,” Hippocampus, 17, No. 12, 1158–1169 (2007).

    PubMed  Google Scholar 

  • Todd, T. P., DeAngeli, N. E., Jiang, M. Y., and Bucci, D. J., “Retrograde amnesia of contextual fear conditioning: Evidence for retrosplenial cortex involvement in confi gural processing,” Behav. Neurosci., 131, No. 1, 46–54 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Todd, T. P., Fournier, D. I., and Bucci, D. J., “Retrosplenial cortex and its role in signal-specific learning and memory,” Neurosci. Biobehav. Rev., 107, 713–728 (2019).

    PubMed  Google Scholar 

  • Todd, T. P., Mehlman, M. L., Keene, C. S., et al., “Retrosplenial cortex is required for the retrieval of remote memory for auditory signals,” Learn. Mem., 23, 278–288 (2016).

    PubMed  PubMed Central  Google Scholar 

  • Toropova, K. A. and Anokhin, K. V., “Modeling of post-traumatic stress disorder in mice: nonlinear link with the strength of the trauma,” Zh. Vyssh. Nerv. Deyat., 68, No. 3, 378–394 (2018).

    Google Scholar 

  • Toropova, K. A., Troshev, D. V., Ivashkina, O. I., and Anokhin, K. V., “Activation of c-Fos expression in the retrosplenial cortex but not the hippocampus accompanies the formation of associations between context and an unconditioned stimulus and its subsequent retrieval in mice,” Zh. Vyssh. Nerv. Deyat., 68, No. 6, 759–774 (2018).

    Google Scholar 

  • Voronin, L. G., Analysis and Synthesis of Complex Stimulation by Normal and Lesioned Hemispheres in the Dog Brain. An Experimental Study, USSR Academy of Sciences, Moscow (1948).

  • Yadav, R., Hillman, B. G., Gupta, S. C., et al., “Deletion of glutamate delta-1 receptor in mouse leads to enhanced working memory and deficit in fear conditioning,” PLoS One, 8, No. 4, e60785 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeliony, G. P., “Contributions a l’analyse des excitants complexes des reflexes conditionnels,” Arch. Sciences Biol., 15, 437–453 (1910).

    Google Scholar 

  • Zhang, L., Chen, X., Sindreu, C., et al., “Dynamics of a hippocampal neuronal ensemble encoding trace fear memory revealed by in vivo Ca2+ imaging,” PLoS One, 14, No. 7, e0219152 (2019).

  • Zvorykina, S. V. and Anokhin, K. V., “Studies of the topography of c-fos-expressing neurons in the mouse neocortex on training to conditioned refl ex freezing,” Zh. Vyssh. Nerv. Deyat., 53, No. 4, 518–522 (2003).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Ivashkina.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 70, No. 3, pp. 326–340, May–June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivashkina, O.I., Toropova, K.A., Roshchina, M.A. et al. Formation and Retrieval of Associative Memory for a Complex Signal in Mice: Specific Involvement of Hippocampal Field CA1 Neurons. Neurosci Behav Physi 50, 1185–1194 (2020). https://doi.org/10.1007/s11055-020-01020-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-020-01020-y

Keywords

Navigation