Skip to main content

Advertisement

Log in

Activation of c-Fos Expression in the Retrosplenial Cortex but Not the Hippocampus Accompanies Formation of an Association between the Context and the Unconditioned Stimulus and Its Subsequent Retrieval in Mice

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Identification of the neural mechanisms of associative memory is one of the fundamental tasks in neuroscience. We report here use of a model of associative learning in mice in which formation of a memory of a neutral context and subsequent association of transient presentation of this context with an unconditioned electrocutaneous stimulus (footshock) were separated in time. This provided for studies of relationship between different stages in the formation of this memory and protein synthesis and allowed us to study genomic activation of various brain structures during association and the memory of the context of the footshock. These studies showed that blockade of protein synthesis both during exploration of the novel context and during application of immediate footshock in an already familiar context impaired conditioned reflex freezing to this context. The association of the memory trace of the context of the footshock retrieved in response to a reminder was accompanied by activation of the expression of transcription factor c-Fos in the retrosplenial cortex. The retrosplenial cortex was also specifically activated by subsequent retrieval of the associative memory of the context. This activation was not seen in mice with impaired memory. No such differences were seen in the hippocampus, where activation of c-Fos expression occurred in relation to exploration of the novel context and not its association with the footshock. These results provide evidence that the retrosplenial cortex may be part of the neocortex supporting formation of associations between context and aversive unconditioned stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anokhin, K. V. and Sudakov, K. V., “Genome of brain neurons in organization of systemic mechanisms of behavior,” Bull. Exp. Biol. Med., 35, No. 2, 107–13 (2003).

    Article  Google Scholar 

  • Anokhin, K. V., Ryabinin, A. E., and Sudakov, K. V., “Expression of the c-fos gene in the mouse brain during the acquisition of defensive behavior habits,” Neurosci. Behav. Physiol., 31, No. 2, 139–43 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Asok, A., Schreiber, W. B., Jablonski, S. A., et al., “Egr-1 increases in the prefrontal cortex following training in the context preexposure facilitation effect (CPFE) paradigm,” Neurobiol. Learn. Mem., 106, 145–153 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Barrientos, R. M., Reilly, R. C. O., and Rudy, J. W., “Memory for context is impaired by injecting anisomycin into dorsal hippocampus following context exploration,” Behav. Brain Res., 134, 299–306 (2002).

    Article  PubMed  Google Scholar 

  • Barth, A. L., Gerkin, R. C., and Dean, K. L., “Alteration of neuronal firing properties after in vivo experience in a FosGFP transgenic mouse,” J. Neurosci., 24, No. 29, 6466–6475 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernier, B. E., Lacagnina, A. F., Ayoub, A., et al., “Dentate gyrus contributes to retrieval as well as encoding: evidence from context fear conditioning, recall extinction,” J. Neurosci., 37, No. 26, 6359–6371 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourtchouladze, R., Abel, T., Berman, N., et al., “Different training procedures recruit either one or two critical periods for contextual memory consolidation, each of which requires protein synthesis and PKA,” Learn. Mem., 5, No. 4–5, 365–374 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cravens, C. J., Vargas-Pinto, N., Christian, K. M., and Nakazawa, K., “CA3 NMDA receptors are crucial for rapid and automatic representation of context memory,” Eur. J. Neurosci., 24, No. 6, 1771–1780 (2006).

    Article  PubMed  Google Scholar 

  • Dziewiatkowski, J., Spodnik, J. H., Biranowska, J., et al., “The projection of the amygdaloid nuclei to various areas of the limbic cortex in the rat,” Folia Morphol. (Warsz.), 57, No. 4, 301–308 (1998).

    CAS  Google Scholar 

  • Eichenbaum, H., “On the Integration of space, time memory,” Neuron, 95, No. 5, 1007–1018 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fanselow, M. S., “Factors governing one-trial contextual conditioning,” Anim. Learn. Behav., 18, 264–270 (1990).

    Article  Google Scholar 

  • Franklin, K. B. J. and Paxinos, G., The Mouse Brain in Stereotaxic Coordinates, Academic Press, New York (2007), 3rd ed.

  • Grieves, R. M., Jenkins, B. W., Harland, B. C., et al., “Place field repetition and spatial learning in a multicompartment environment,” Hippocampus, 26, No. 1, 118–134 (2016).

    Article  PubMed  Google Scholar 

  • Gross, C. T. and Canteras, N. S., “The many paths to fear,” Nat. Rev. Neurosci., 13, No. 9, 651–658 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Huff, N. C., Frank, M., Wright-Hardesty, K., et al., “Amygdala regulation of immediate-early gene expression in the hippocampus induced by contextual fear conditioning,” J. Neurosci., 26, No. 5, 1616–1623 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivashkina, O. I., Toropova, K. A., Ivanova, A. A., et al., “Wavelike expression of c-Fos and Arc proteins in the neuronal population of the hippocampus in response to single episodes of novel experiences,” Byull. Eksper. Biol. Med., 160, No. 12, 689–692 (2015).

    Google Scholar 

  • Keene, C. S. and Bucci, D. J., “Contributions of the retrosplenial and posterior parietal cortices to cue-specific and contextual fear conditioning,” Behav. Neurosci., 122, No. 1, 89–97 (2008).

    Article  PubMed  Google Scholar 

  • Leutgeb, J. K., Leutgeb, S., Moser, M. B., and Moser, E. I., “Pattern separation in the dentate gyrus and CA3 of the hippocampus,” Science, 315, 961–966 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Maren, S., “Neurobiology of Pavlovian fear conditioning,” Annu. Rev. Neurosci., 24, 897–931 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Marr, D., “Simple memory: A theory for archicortex,” Philos. Trans. R. Soc. Lond. B Biol. Sci., 262, 23–81 (1971).

    Article  CAS  PubMed  Google Scholar 

  • Matus-Amat, P., Higgins, E. A., Barrientos, R. M., and Rudy, J. M., “The role of the dorsal hippocampus in the acquisition and retrieval of context memory representations,” J. Neurosci., 24, No. 10, 2431–2439 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matus-Amat, P., Higgins, E. A., Sprunger, D., et al., “The role of dorsal hippocampus and basolateral amygdala NMDA receptors in the acquisition and retrieval of context and contextual fear memories,” Behav. Neurosci., 121, No. 4, 721–731 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Maviel, T., Durkin, T., Menzaghi, F., and Bontempi, B., “Sites of neocortical reorganization critical for remote spatial memory,” Science, 305, 96–99 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Murav’eva, E. V. and Anokhin, K. V., “Involvement of protein synthesis in memory reconsolidation at different times after training to conditioned reflex freezing in mice,” Zh. Vyssh. Nerv. Deyat., 56, No. 2, 274–282 (2006).

    Google Scholar 

  • Nakayama, D., Baraki, Z., Onoue, K., et al., “Frontal association cortex is engaged in stimulus integration during associative learning,” Curr. Biol., 25, 117–123 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Neunuebel, J. P. and Knierim, J. J., “CA3 retrieves coherent representations from degraded input: direct evidence for CA3 pattern completion and dentate gyrus pattern separation,” Neuron, 81, No. 2, 416–427 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Reilly, R. C. and Rudy, J. W., “Conjunctive representations in learning and memory: principles of cortical and hippocampal function,” Psychol. Rev., 108, No. 2, 311–3 (2001).

    Article  PubMed  Google Scholar 

  • Ozawa, T., Yamada, K., and Ichitani, Y., “Differential requirements of hippocampal de novo protein and mRNA synthesis in two long-term spatial memory tests: Spontaneous place recognition and delay-interposed radial maze performance in rats,” PLoS One, 12, No. 2, e0171629 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearce, K., Cai, D., Roberts, A. C., and Glanzman, D. L., “Role of protein synthesis and DNA methylation in the consolidation and maintenance of long-term memory in Aplysia,” eLife, 6, e18299 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Pevzner, A. and Guzowski, J. F., “Immediate-early gene transcriptional activation in hippocampus CA1 and CA3 does not accurately reflect rapid, pattern completion-based retrieval of context memory,” Learn. Mem., 22, No. 1, 1–5 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Quinton, E. E. and Kramarcy, N. R., “Memory impairment correlates closely with cycloheximide dose and degree of inhibition of protein synthesis,” Brain Res., 131, 184–190 (1977).

    Article  CAS  PubMed  Google Scholar 

  • Randt, C. T., Barnett, B. M., McEwen, B. S., and Quartermain, D., “Amnesic effects of cycloheximide on two strains of mice with different memory characteristics,” Exp. Neurol., 30, 467–474 (1971).

    Article  CAS  PubMed  Google Scholar 

  • Rizzo, V., Touzani, K., Raveendra, B. L., et al., “Encoding of contextual fear memory requires de novo proteins in the prelimbic cortex,” Biol. Psychiatry Cogn. Neurosci. Neuroimaging, 2, No. 2, 158–169 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Robinson, S., Poorman, C. E., Marder, T. J., and Bucci, D. J., “Identification of functional circuitry between retrosplenial and postrhinal cortices during fear conditioning,” J. Neurosci., 32, No. 35, 12076–12086 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudy, J. W. and MorleDFe, P., “Ontogeny of contextual fear conditioning in rats: implications for consolidation, infantile amnesia hippocampal system function,” Behav. Neurosci., 108, No. 2, 227–234 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Rudy, J. W. and O’Reilly, R. C., “Conjunctive representations, the hippocampus contextual fear conditioning,” Cogn. Affect. Behav. Neurosci., 1, No. 1, 66–82 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Rudy, J. W. and O’Reilly, R. C., “Contextual fear conditioning, conjunctive representations, pattern completion the hippocampus,” Behav. Neurosci., 113, No. 5, 867–880 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Rudy, J. W. and Wright-Hardesty, K., “The temporal dynamics of retention of a context memory: Something is missing,” Learn. Mem., 12, 172–177 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rudy, J. W., Barrientos, R. M., and O’Reilly, R. C., “Hippocampal formation supports conditioning to memory of a context,” Behav. Neurosci., 116, No. 4, 530–538 (2002).

    Article  PubMed  Google Scholar 

  • Ryan, T. J., Roy, D. S., Pignatelli, M., et al., “Engram cells retain memory under retrograde amnesia,” Science, 348, No. 6238, 1007–1013 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarinana, J., Kitamura, T., Kunzler, P., et al., “Differential roles of the dopamine 1-class receptors, D1R and D5R, in hippocampal dependent memory,” Proc. Natl. Acad. Sci. USA, 111, No. 22, 8245–8250 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strekalova, T., Zorner, B., Zacher, C., et al., “Memory retrieval after contextual fear conditioning induces c-Fos and JunB expression in CA1 hippocampus,” Genes Brain Behav., 2, 3–10 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Van Groen, T., Kadish, I., and Wyss, J. M., “Efferent connections of the anteromedial nucleus of the thalamus of the rat,” Brain Res. Brain Res. Rev., 30, No. 1, 1–26 (1999).

    Article  PubMed  Google Scholar 

  • Vann, S. D., Aggleton, J. P., and Maguire, E. A., “What does the retrosplenial cortex do,” Nat. Rev. Neurosci., 10, 792–802 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Vazdarjanova, A. and Guzowski, J. F., “Differences in hippocampal neuronal population responses to modifications of an environmental context: evidence for distinct, yet complementary, functions of CA3 and CA1 ensembles,” J. Neurosci., 24, 6489–6496 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vorobeva, N. S., Ivashkina, O. I., Toropova, K. A., and Anokhin, K. V., “Long-term contextual memory in mice: duration and ability to form associations with a reinforcing stimulus,” Zh. Vyssh. Nerv. Deyat., 66, No. 3, 352–360 (2016).

    Google Scholar 

  • Zvorykina, S. V. and Anokhin, K. V., “Studies of the topography of c-fos-expressing neurons in the mouse neocortex on training to conditioned reflex freezing,” Zh. Vyssh. Nerv. Deyat., 53, No. 4, 518–522 (2003).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Toropova.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 68, No. 6, pp. 759–774, November–December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toropova, K.A., Troshev, D.V., Ivashkina, O.I. et al. Activation of c-Fos Expression in the Retrosplenial Cortex but Not the Hippocampus Accompanies Formation of an Association between the Context and the Unconditioned Stimulus and Its Subsequent Retrieval in Mice. Neurosci Behav Physi 50, 81–91 (2020). https://doi.org/10.1007/s11055-019-00872-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-019-00872-3

Keywords

Navigation