Skip to main content
Log in

The Functions of the Hippocampal θ Rhythm

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The θ rhythm (4–12 Hz) in the main rhythm in the hippocampus and in contrast to other rhythms it has its own pacemaker (the medial septal area) and physiological regulatory mechanisms. Generation of the θ rhythm is critically required for processing novel information arriving in the hippocampus. This review seeks to describe current views of how synchronization of the neural network of the hippocampus at the θ rhythm is involved in cognitive processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alger, B. E. and Teyler, T. J., “Long-term and short-term plasticity in the CA1, CA3, and dentate regions of the rat hippocampal slice,” Brain Res., 110, 463–480 (1976).

    CAS  PubMed  Google Scholar 

  • Astasheva, E., Astashev, M., and Kitchigina, V., “Changes in the behavior and oscillatory activity in cortical and subcortical brain structures induced by repeated l-glutamate injections to the medial septal area in guinea pigs,” Epilepsy Res., 109, 134–145 (2015).

    CAS  PubMed  Google Scholar 

  • Belluscio, M. A., Mizuseki, K., Schmidt, R., et al., “Cross-frequency phase-phase coupling between θ and γ oscillations in the hippocampus,” J. Neurosci., 32, 423–435 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bi, G. and Poo, M., “Distributed synaptic modification in neural networks induced by patterned stimulation,” Nature, 401, 792–796 (1999).

    CAS  PubMed  Google Scholar 

  • Bi, G. Q. and Poo, M. M., “Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type,” J. Neurosci., 18, 10,464–10,472 (1998).

  • Bittner, K. C., Milstein, A. D., Grienberger, C., et al., “Behavioral time scale synaptic plasticity underlies CA1 place fields,” Science, 357, 1033–1036 (2017).

  • Brazhnik, E. S., “Theta rhythmicity in the medial septum: entraining by the GABA-ergic neurons,” Zh. Vyssh. Nerv. Deyat., 54, No. 2, 192–201 (2004).

    CAS  Google Scholar 

  • Brzosko, Z., Zannone, S., Schultz, W., et al., “Sequential neuromodulation of Hebbian plasticity offers mechanism for effective reward-based navigation,” eLife, 6, 0–0 (2017).

    CAS  Google Scholar 

  • Burak, Y. and Fiete, I. R., “Accurate path integration in continuous attractor network models of grid cells,” PLoS Comput. Biol., 5, e1000291 (2009).

    PubMed  PubMed Central  Google Scholar 

  • Burak, Y., “Spatial coding and attractor dynamics of grid cells in the entorhinal cortex,” Curr. Opin. Neurobiol., 25, 169–175 (2014).

    CAS  PubMed  Google Scholar 

  • Burgess, A. P. and Gruzelier, J. H., “Short duration synchronization of human theta rhythm during recognition memory,” Neuroreport, 8, 1039–1042 (1997).

  • Burgess, C. P. and Burgess, N., “Controlling phase noise in oscillatory interference models of grid cell firing,” J. Neurosci., 34, 6224–6232 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burgess, N., “Grid cells and theta as oscillatory interference: theory and predictions,” Hippocampus, 18, 1157–1174 (2008).

    PubMed  PubMed Central  Google Scholar 

  • Burgess, N., Barry, C., and O’Keefe, J., “An oscillatory interference model of grid cell firing,” Hippocampus, 17, 801–812 (2007).

    PubMed  PubMed Central  Google Scholar 

  • Bush, D. and Burgess, N., “A hybrid oscillatory interference/continuous attractor network model of grid cell firing,” J. Neurosci., 34, 5065–5079 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buzsáki, G. and Moser, E. I., “Memory, navigation and theta rhythm in the hippocampal-entorhinal system,” Nat. Neurosci., 16, 130–138 (2013).

    PubMed  PubMed Central  Google Scholar 

  • Buzsáki, G., “Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning,” Hippocampus, 25, 1073–1188 (2015).

    PubMed  PubMed Central  Google Scholar 

  • Buzsáki, G., “Theta oscillations in the hippocampus,” Neuron, 33, 325–340 (2002).

    PubMed  Google Scholar 

  • Buzsáki, G., “Two-stage model of memory trace formation: a role for, ‘noisy’ brain states,” Neuroscience, 31, 551– (1989).

    PubMed  Google Scholar 

  • Buzsáki, G., Anastassiou, C. A., and Koch, C., “The origin of extracellular fields and currents-EEG, ECoG, LFP and spikes,” Nat. Rev. Neurosci., 13, 407–420 (2012).

    PubMed  PubMed Central  Google Scholar 

  • Buzsáki, G., Horváth, Z., Urioste, R., et al., “High-frequency network oscillation in the hippocampus,” Science, 256, 1025–1027 (1992).

    PubMed  Google Scholar 

  • Carr, M. F., Jadhav, S. P., and Frank, L. M., “Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval,” Nat. Neurosci., 14, 147–153 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaieb, L., Leszczynski, M., Axmacher, N., et al., “Theta-gamma phase-phase coupling during working memory maintenance in the human hippocampus,” Cogn. Neurosci., 6, 149–157 (2015).

    PubMed  Google Scholar 

  • Chen, Z., Resnik, E., McFarland, J. M., et al., “Speed controls the amplitude and timing of the hippocampal gamma rhythm,” PLoS One, 6, e21408 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chizhov, A. V., Sanchez-Aguilera, A., Rodrigues, S., and de la Prida, L. M., “Simplest relationship between local field potential and intracellular signals in layered neural tissue,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 92, 062704 (2015).

    PubMed  Google Scholar 

  • Couey, J. J., Witoelar, A., Zhang, S. J., et al., “Recurrent inhibitory circuitry as a mechanism for grid formation,” Nat. Neurosci., 16, 318–324 (2013).

    CAS  PubMed  Google Scholar 

  • Csicsvari, J., Hirase, H., Czurkó, A., et al., “Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat,” J. Neurosci., 19, 274–287 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cutsuridis, V. and Poirazi, P., “A computational study on how theta modulated inhibition can account for the long temporal windows in the entorhinal-hippocampal loop,” Neurobiol. Learn. Mem., 120, 69–83 (2015).

    PubMed  Google Scholar 

  • Cutsuridis, V., Cobb, S., and Graham, B. P., “Encoding and retrieval in a model of the hippocampal CA1 microcircuit,” Hippocampus, 20, 423–446 (2010).

    CAS  PubMed  Google Scholar 

  • D’Albis, T., Jaramillo, J., Sprekeler, H., and Kempter, R., “Inheritance of hippocampal place fields through hebbian learning: effects of theta modulation and phase precession on structure formation,” Neural Comput., 27, 1624–1672 (2015).

    PubMed  Google Scholar 

  • Diekelmann, S. and Born, J., “The memory function of sleep,” Nat. Rev. Neurosci., 11, 114–126 (2010).

    CAS  PubMed  Google Scholar 

  • Doppelmayr, M., Klimesch, W., Schwaiger, J., et al., “Theta synchronization in the human EEG and episodic retrieval,” Neurosci. Lett., 257, 41–44 (1998).

    CAS  PubMed  Google Scholar 

  • Eichenbaum, H., “Time cells in the hippocampus: a new dimension for mapping memories,” Nat. Rev. Neurosci., 15, 732–744 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feldman, D. E., “The spike-timing dependence of plasticity,” Neuron, 75, 556–571 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foster, D. J. and Wilson, M. A., “Hippocampal theta sequences,” Hippocampus, 17, 1093–1099 (2007).

    PubMed  Google Scholar 

  • Freund, T. F. and Buzsáki, G., “Interneurons of the hippocampus,” Hippocampus, 6, 347–470 (1996).

    CAS  PubMed  Google Scholar 

  • Fries, P., “A mechanism for cognitive dynamics: neuronal communication through neuronal coherence,” Trends Cogn. Sci., 9, 474–480 (2005).

    PubMed  Google Scholar 

  • Fuhs, M. C. and Touretzky, D. S., “A spin glass model of path integration in rat medial entorhinal cortex,” J. Neurosci., 26, 4266–4276 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gołebiewski, H., Eckersdorf, B., and Konopacki, J., “Electrical coupling underlies theta rhythm in freely moving cats,” Eur. J. Neurosci., 24, 1759–1770 (2006).

    PubMed  Google Scholar 

  • Grastyan, E., Lissak, K., Madarasz, I., and Donhoffer, H., “Hippocampal electrical activity during the development of conditioned reflexes,” Electroencephalogr. Clin. Neurophysiol., 11, 409–430 (1959).

  • Green, J. D. and Arduini, A. A., “Hippocampal electrical activity in arousal,” J. Neurophysiol, 17, 533–557 (1954).

    CAS  PubMed  Google Scholar 

  • Grunwald, M., Weiss, T., Krause, W., et al., “Theta power in the EEG of humans during ongoing processing in a haptic object recognition task,” Brain Res. Cogn. Brain Res., 11, 3337 (2001).

    Google Scholar 

  • Hafting, T., Fyhn, M., Molden, S., et al., “Microstructure of a spatial map in the entorhinal cortex,” Nature, 436, 801–806 (2005).

    CAS  PubMed  Google Scholar 

  • Hartley, T., Lever, C., Burgess, N., and O’Keefe, J., “Space in the brain: how the hippocampal formation supports spatial cognition,” Philos. Trans. R. Soc. Lond. B Biol. Sci., 369, 20120510 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Hasselmo, M. E. and Brandon, M. P., “A model combining oscillations and attractor dynamics for generation of grid cell firing,” Front. Neural Circuits, 6, 30 (2012).

  • Hasselmo, M. E., “Neuromodulation and the hippocampus: memory function and dysfunction in a network simulation,” Prog. Brain Res., 121, 3–18 (1999).

    CAS  PubMed  Google Scholar 

  • Hasselmo, M. E., Bodelón, C., and Wyble, B. P., “A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning,” Neural Comput., 14, 793–817 (2002).

    PubMed  Google Scholar 

  • Herculano-Houzel, S., “The human brain in numbers: a linearly scaled-up primate brain,” Front. Hum. Neurosci., 3, 31 (2009).

  • Jeewajee, A., Barry, C., Douchamps, V., et al., “Theta phase precession of grid and place cell firing in open environments,” Philos. Trans. R. Soc. Lond. B. Biol. Sci., 369, 20120532 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeewajee, A., Barry, C., O’Keefe, J., and Burgess, N., “Grid cells and theta as oscillatory interference: electrophysiological data from freely moving rats,” Hippocampus, 18, 1175–1185 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffery, K. J., “Place cells, grid cells, attractors, and remapping,” Neural Plast., 2011, 182602 (2011).

  • Jouvet, M., “Biogenic amines and the states of sleep,” Science, 163, 32–41 (1969).

    CAS  PubMed  Google Scholar 

  • Jung, R. and Kornmüller, A. E., “Eine Methodik der Ableitung Iokalisierter Potentialschwankungen aus subcorticalen Hirngebieten,” Archiv. Psychiatrie, 109, 1–30 (1938).

    Google Scholar 

  • Justus, D., Dalügge, D., Bothe, S., et al., “Glutamatergic synaptic integration of locomotion speed via septoentorhinal projections,” Nat. Neurosci., 20, 16–19 (2017).

    CAS  PubMed  Google Scholar 

  • Kelemen, E., Morón, I., and Fenton, A. A., “Is the hippocampal theta rhythm related to cognition in a non-locomotor place recognition task?” Hippocampus, 15, No. 4, 472–479 (2005).

    PubMed  Google Scholar 

  • Klausberger, T., Magill, P. J., Márton, L. F., et al., “Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo,” Nature, 421, 844–848 (2003).

    CAS  PubMed  Google Scholar 

  • Klimesch, W., Doppelmayr, M., Yonelinas, A., et al., “Theta synchronization during episodic retrieval: neural correlates of conscious awareness,” Brain Res. Cogn. Brain Res., 12, 33–38 (2001).

    CAS  PubMed  Google Scholar 

  • Kocsis, B., Bragin, A., and Buzsáki, G., “Interdependence of multiple theta generators in the hippocampus: a partial coherence analysis,” J. Neurosci., 19, 6200–6212 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kreiman, G., Koch, C., and Fried, I., “Category-specific visual responses of single neurons in the human medial temporal lobe,” Nat. Neurosci., 3, 946–953 (2000).

    CAS  PubMed  Google Scholar 

  • Ledberg, A. and Robbe, D., “Locomotion-related oscillatory body movements at 6–12 Hz modulate the hippocampal theta rhythm,” PLoS One, 6, e27575 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, D. J., Izadi, A., Melnik, M., et al., “Stimulation of the medial septum improves performance in spatial learning following pilocarpine-induced status epilepticus,” Epilepsy Res., 130, 53–63 (2017).

    PubMed  Google Scholar 

  • Lisman, J. E. and Otmakhova, N. A., “Storage, recall, and novelty detection of sequences by the hippocampus: elaborating on the SOCRATIC model to account for normal and aberrant effects of dopamine,” Hippocampus, 11, 551–568 (2001).

    CAS  PubMed  Google Scholar 

  • Lisman, J., Grace, A. A., and Duzel, E., “A neoHebbian framework for episodic memory; role of dopamine-dependent late LTP,” Trends Neurosci., 34, 536–547 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Long, L. L., Hinman, J. R., Chen, C. M. A., et al., “Novel acoustic stimuli can alter locomotor speed to hippocampal theta relationship,” Hippocampus, 24, 1053–1058 (2014).

    PubMed  Google Scholar 

  • Lörincz, A. and Buzsáki, G., “Two-phase computational model training long-term memories in the entorhinal-hippocampal region,” Ann. N. Y. Acad. Sci., 911, 83–111 (2000).

    PubMed  Google Scholar 

  • Louie, K. and Wilson, M. A., “Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep,” Neuron, 29, 145–156 (2001).

    CAS  PubMed  Google Scholar 

  • Manns, J. R., Zilli, E. A., Ong, K. C., et al., “Hippocampal CA1 spiking during encoding and retrieval: relation to theta phase,” Neurobiol. Learn. Mem., 87, 9–20 (2007).

    PubMed  Google Scholar 

  • Markram, H., Lübke, J., Frotscher, M., and Sakmann, B., “Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs,” Science, 275, 213–215 (1997).

    CAS  PubMed  Google Scholar 

  • Marr, D., “A theory for cerebral neocortex,” Proc. Roy. Soc. Lond. B. Biol. Sci, 176, 161–234 (1970).

    CAS  Google Scholar 

  • Mehta, M. R., “From synaptic plasticity to spatial maps and sequence learning,” Hippocampus, 25, 756–762 (2015).

    CAS  PubMed  Google Scholar 

  • Mitchell, S. J., Rawlins, J. N., Steward, O., and Olton, D. S., “Medial septal area lesions disrupt theta rhythm and cholinergic staining in medial entorhinal cortex and produce impaired radial arm maze behavior in rats,” J. Neurosci., 2, 292–302 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mizumori, S. J., Perez, G. M., Alvarado, M. C., et al., “Reversible inactivation of the medial septum differentially affects two forms of learning in rats,” Brain Res., 528, 12–20 (1990).

    CAS  PubMed  Google Scholar 

  • Mizuseki, K., Royer, S., Diba, K., and Buzsáki, G., “Activity dynamics and behavioral correlates of CA3 and CA1 hippocampal pyramidal neurons,” Hippocampus, 22, 1659–1680 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuseki, K., Sirota, A., Pastalkova, E., and Buzsáki, G., “Theta oscillations provide temporal windows for local circuit computation in the entorhinal-hippocampal loop,” Neuron, 64, 267–280 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montgomery, S. M., Betancur, M. I., and Buzsáki, G., “Behavior-dependent coordination of multiple theta dipoles in the hippocampus,” J. Neurosci., 29, 1381–1394 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moser, M. B., Rowland, D. C., and Moser, E. I., “Place cells, grid cells, and memory,” Cold Spring Harb. Perspect. Biol., 7, a021808 (2015).

    PubMed  PubMed Central  Google Scholar 

  • Nádasdy, Z., Hirase, H., Czurkó, A., et al., “Replay and time compression of recurring spike sequences in the hippocampus,” J. Neurosci., 19, 9497–9507 (1999).

    PubMed  PubMed Central  Google Scholar 

  • O’Keefe, J. and Recce, M. L., “Phase relationship between hippocampal place units and the EEG theta rhythm,” Hippocampus, 3, 317–330 (1993).

    PubMed  Google Scholar 

  • O’Keefe, J., “Place units in the hippocampus of the freely moving rat,” Exp. Neurol., 51, 78–109 (1976).

    PubMed  Google Scholar 

  • Patel, J., Fujisawa, S., Berényi, A., et al., “Traveling theta waves along the entire septotemporal axis of the hippocampus,” Neuron, 75, 410–417 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petsche, H. and Stumpf, C., “The origin of theta-rhythm in the rabbit hippocampus,” Wien. Klin. Wochenschr., 74, 696–700 (1962).

    CAS  PubMed  Google Scholar 

  • Pickenhain, L. and Klingberg, F., “Changes of electrophysiological and behavioural indicators during the delay period of conditioned reflexes in rats,” Act. Nerv. Super. (Praha), 9, 330 (1967).

  • Ponulak, F. and Hopfield, J. J., “Rapid, parallel path planning by propagating wavefronts of spiking neural activity,” Front. Comput. Neurosci., 7, 98 (2013).

  • Preobrazhenskaya, L. A., “Dependence of the electrical activity of the hippocampus on the probability of reinforcement of an alimentary conditional stimulus,” Neurosci. Behav. Physiol., 21, 296–302 (1991).

    CAS  PubMed  Google Scholar 

  • Quiroga, R. Q., Reddy, L., Kreiman, G., et al., “Invariant visual representation by single neurons in the human brain,” Nature, 435, 1102–1107 (2005).

    CAS  PubMed  Google Scholar 

  • Robinson, J., Manseau, F., Ducharme, G., et al., “Optogenetic activation of septal glutamatergic neurons drive hippocampal theta rhythms,” J. Neurosci., 36, 3016–3023 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson, T. E. and Whishaw, I. Q., “Effects of posterior hypothalamic lesions on voluntary behavior and hippocampal electroencephalograms in the rat,” J. Comp. Physiol. Psychol., 86, 768–786 (1974).

    CAS  PubMed  Google Scholar 

  • Sarnthein, J., Petsche, H., Rappelsberger, P., et al., “Synchronization between prefrontal and posterior association cortex during human working memory,” Proc. Natl. Acad. Sci. USA, 95, 7092–7096 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Si, B., Romani, S., and Tsodyks, M., “Continuous attractor network model for conjunctive position-by-velocity tuning of grid cells,” PLoS Comput. Biol., 10, e1003558 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Sinnamon, H. M., “Hippocampal theta activity and behavioral sequences in a reward-directed approach locomotor task,” Hippocampus, 15, 518–534 (2005a).

    CAS  PubMed  Google Scholar 

  • Sinnamon, H. M., “Hippocampal theta activity related to elicitation and inhibition of approach locomotion,” Behav. Brain Res., 160, 236–249 (2005b).

    PubMed  Google Scholar 

  • Skaggs, W. E. and McNaughton, B. L., “Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience,” Science, 271, 1870–1873 (1996).

    CAS  PubMed  Google Scholar 

  • Skaggs, W. E., McNaughton, B. L., Wilson, M. A., and Barnes, C. A., “Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences,” Hippocampus, 6, 149–172 (1996).

    CAS  PubMed  Google Scholar 

  • Sokolov, E. N., “Higher nervous functions; the orienting reflex,” Annu. Rev. Physiol., 25, 545–580 (1963).

    CAS  PubMed  Google Scholar 

  • Solovyeva, K. P., Karandashev, I. M., Zhavoronkov, A., and Dunin-Barkowski, W. L., “Models of innate neural attractors and their applications for neural information processing,” Front. Syst. Neurosci., 9, 178 (2015).

    PubMed  Google Scholar 

  • Somogyi, P., Katona, L., Klausberger, T., et al., “Temporal redistribution of inhibition over neuronal subcellular domains underlies state-dependent rhythmic change of excitability in the hippocampus,” Philos. Trans. R. Soc. Lond. B. Biol. Sci., 369, 2012.0518 (2014).

    Google Scholar 

  • Stella, F. and Treves, A., “Associative memory storage and retrieval: involvement of theta oscillations in hippocampal information processing,” Neural Plast., 2011, 683961 (2011).

  • Sullivan, D., Csicsvari, J., Mizuseki, K., et al., “Relationships between hippocampal sharp waves, ripples, and fast gamma oscillation: influence of dentate and entorhinal cortical activity,” J. Neurosci., 31, 8605–8616 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sweet, J. A., Eakin, K. C., Munyon, C. N., and Miller, J. P., “Improved learning and memory with theta-burst stimulation of the fornix in rat model of traumatic brain injury,” Hippocampus, 24, 1592–1600 (2014).

    PubMed  Google Scholar 

  • Tesche, C. D. and Karhu, J., “Theta oscillations index human hippocampal activation during a working memory task,” Proc. Natl. Acad. Sci. USA, 97, 919–924 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ulanovsky, N. and Moss, C. F., “Hippocampal cellular and network activity in freely moving echolocating bats,” Nat. Neurosci., 10, 224–233 (2007).

    CAS  PubMed  Google Scholar 

  • Vanderwolf, C. H., “Hippocampal electrical activity and voluntary movement in the rat,” Electroencephalogr. Clin. Neurophysiol., 26, 407–418 (1969).

    CAS  PubMed  Google Scholar 

  • Vanderwolf, C. H., “Neocortical and hippocampal activation relation to behavior: effects of atropine, eserine, phenothiazines, and amphetamine,” J. Comp. Physiol. Psychol., 88, 300–323 (1975).

    CAS  PubMed  Google Scholar 

  • Vertes, R. P., Hoover, W. B., and Viana Di Prisco, G., “Theta rhythm of the hippocampus: subcortical control and functional significance,” Behav. Cogn. Neurosci. Rev., 3, 173–200 (2004).

    PubMed  Google Scholar 

  • Vinogradova, O. S. and Dudaeva, K. I., “The comparator function of the hippocampus,” Dokl. Akad. Nauk. SSSR, 202, 241 (1972).

    Google Scholar 

  • Vinogradova, O. S., “Expression, control, and probable functional significance of the neuronal theta-rhythm,” Prog. Neurobiol., 45, 523–583 (1995).

    CAS  PubMed  Google Scholar 

  • Vinogradova, O. S., “Hippocampus as comparator: role of the two input and two output systems of the Hippocampus in selection and registration of information,” Hippocampus, 11, 578–598 (2001).

    CAS  PubMed  Google Scholar 

  • Vinogradova, O. S., The Hippocampus and Memory, Nauka, Moscow (1975).

    Google Scholar 

  • Wang, Y., Romani, S., Lustig, B., et al., “Theta sequences are essential for internally generated hippocampal firing fields,” Nat. Neurosci., 18, 282–288 (2015).

    CAS  PubMed  Google Scholar 

  • West, M. J. and Gundersen, H. J., “Unbiased stereological estimation of the number of neurons in the human hippocampus,” J. Comp. Neurol., 296, 1–22 (1990).

    CAS  PubMed  Google Scholar 

  • Wójtowicz, T. and Mozrzymas, J. W., “Diverse impact of neuronal activity at θ frequency on hippocampal long-term plasticity,” J. Neurosci. Res., 93, 1330–1344 (2015).

    PubMed  Google Scholar 

  • Wyble, B. P., Hyman, J. M., Rossi, C. A., and Hasselmo, M. E., “Analysis of theta power in hippocampal EEG during bar pressing and running behavior in rats during distinct behavioral contexts,” Hippocampus, 14, 662–674 (2004).

    PubMed  Google Scholar 

  • Yoshida, M. and Hayashi, H., “Emergence of sequence sensitivity in a hippocampal CA3–CA1 model,” Neural Netw., 20, 653–667 (2007).

    PubMed  Google Scholar 

  • Zhang, H. and Jacobs, J., “Traveling theta waves in the human hippocampus,” J. Neurosci., 35, 12477–12487 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zutshi, I., Brandon, M. P., Fu, M. L., et al., “Hippocampal neural circuits respond to optogenetic pacing of theta frequencies by generating accelerated oscillation frequencies,” Curr. Biol., 28, 1179–1188.e3 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Mysin.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 70, No. 3, pp. 314–325, May–June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mysin, I.E. The Functions of the Hippocampal θ Rhythm. Neurosci Behav Physi 50, 1176–1184 (2020). https://doi.org/10.1007/s11055-020-01019-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-020-01019-5

Keywords

Navigation