Skip to main content
Log in

Characteristics of the Formation of Memories Relating to Fear in Mice with Depression- and Schizophrenia-Like Phenotypes: Effects of Gender and Age

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

We report here a comparative analysis of the acquisition of a conditioned passive avoidance reaction in mice of the mutant strains DISC1-Q31L and DISC1-L100P and mice of the control strain C57Bl/6NCr1 and detection of the effects of gender and age on learning. DISC1-L100P mice showed impairments to associative learning to avoid the dangerous dark sector of the apparatus regardless of gender and age. In DISC1-Q31L mice, the fear memory trace formed only in young males. A deficit of aversive learning was demonstrated in old mice of all the strains tested, with identically lower levels of learning ability in female DISC1-Q31L and C57Bl/6NCr1 mice than males. These characteristics of learning avoidance provide an additional argument for regarding DISC1-L100P mice as a genetic model of a schizophrenia-like state and DISC1-Q31L mice as a model of a depression-like state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Bel’nik, R. U. Ostrovskaya, and I. I. Poletaeva, “Genotype-dependent behavioral characteristics in mice in cognitive tests. The effects of Noopept,” Zh. Vyssh. Nerv. Deyat., 57, No. 6, 721–728 (2007).

    Google Scholar 

  2. N. I. Dubrovina, D. R. Zinov’ev, and D. V. Zinov’eva, “Extinction of a conditioned passive avoidance reaction in mice of different strains,” Zh. Vyssh. Nerv. Deyat., 60, No. 6, 712–718 (2010).

    CAS  Google Scholar 

  3. N. I. Dubrovina and D. R. Zinov’ev, “The contribution of GABA receptors to extinction of a memory trace in health and a depression-like state,” Ros. Fiziol. Zh., 93, No. 11, 1285–1291 (2007).

    CAS  Google Scholar 

  4. D. A. Bangasser and R. J. Valentino, “Sex differences in stress-related psychiatric disorders: neurobiological perspectives,” Front. Neuroendocrinol., 35, No. 3, 303–319 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. A. Beuzen and C. Belzung, “Link between emotional memory and anxiety states: A study by principal component analysis,” Physiol. Behav., 58, 111–118 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. M. M. Bolton, C. F. Heaney, J. J. Sabbagh, et al., “Deficits in emotional learning and memory in an animal model of schizophrenia,” Behav. Brain Res., 233, No. 1, 35–44 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  7. G. W. Bothe, V. J. Bolivar, M. J. Vedder, and J. G. Geistfeld, “Behavioral differences among fourteen inbred mouse strains commonly used as disease models,” Comp. Med., 55, No. 4, 326–334 (2005).

    CAS  PubMed  Google Scholar 

  8. S. J. Clapcote, T. V. Lipina, J. K. Millar, et al., “Behavioral phenotypes of Disc1 missense mutations in mice,” Neuron, 54, No. 3, 387–402 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. C. Dalla and T. J. Shors, “Sex differences in learning processes of classical and operant conditioning,” Physiol. Behav., 97, No. 2, 229–238 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. N. C. Donner and C. A. Lowry, “Sex differences in anxiety and emotional behavior,” Pflügers Arch., 465, No. 5, 601–626 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. M. R. Farrell, D. R. Sengelaub, and C. L. Wellman, “Sex differences and chronic stress effects on the neural circuitry underlying fear conditioning and extinction,” Physiol. Behav., 122, 208–215 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. G. E. Fenton, A. K. Pollard, D. M. Halliday, et al., “Persistent prelimbic cortex activity contributes to enhanced learned fear in females,” Learn. Mem., 21, No. 2, 55–60 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. A. R. Gobinath, R. Mahmound, and L. A. Galea, “Influence of sex and stress exposure across the lifespan on endophenotypes of depression: focus on behavior, glucocorticoids, and hippocampus,” Front. Neurosci., 8, 420 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. T. J. Gould and O. R. Feiro, “Age-related deficits in the retention of memories for cued fear conditioning are reversed by galantamine treatment,” Behav. Brain Res., 165, No. 2, 160–171 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. C. A. Hartley and E. A. Phelps, “Changing fear: the neurocircuitry of emotion regulation,” Neuropsychopharmacology, 35, No. 1, 136–146 (2010).

    Article  PubMed  Google Scholar 

  16. T. Hikida, N. J. Gamo, and A. Sawa, “DISC1 as a therapeutic target for mental illnesses,” Expert Opin. Ther. Targets, 16, No. 12, 1151–1160 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. L. H. Jacobson and J. F. Cryan, “Genetic approaches to modeling anxiety in animals,” Curr. Top. Behav. Neurosci., 2, 161–201 (2010).

    Article  PubMed  Google Scholar 

  18. C. C. Kaczorowski and J. F. Disterholt, “Memory deficits are associated with impaired ability to modulate neuronal excitability in middle-aged mice,” Learn. Mem., 16, No. 6, 362–366 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  19. S. A. Karisson, K. Haziri, E. Hansson, et al., “Effects of sex and gonadectomy on social investigation and social recognition in mice,” BMC Neurosci., 16, 83 (2015).

    Article  Google Scholar 

  20. J. A. Kennard and D. S. Woodruff-Pak, “Age sensitivity of behavioral tests and brain substrates of normal aging in mice,” Front. Aging Neurosci., 3, No. 9, 1–22 (2011).

    Google Scholar 

  21. S. Keum, J. Park, A. Kim, et al., “Variability in empathic fear response among 11 inbred strains of mice,” Genes Brain Behav., 15, No. 2, 231–242 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. N. Kokras and C. Dalla, “Sex differences in animal models of psychiatric disorders,” Br. J. Pharmacol., 171, No. 20, 4595–4619 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. F. H. Lee, M. P. Fadel, K. Preston-Maher, et al., “Discl point mutations in mice affect development of the cerebral cortex,” J. Neurosci., 31, No. 9, 3197–3206 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. T. V. Lipina, O. Kaidanovich-Beilin, S. Patel, et al., “Genetic and pharmacological evidence for schizophrenia-related Discl interaction with GSK-3,” Synapse, 65, No. 3, 234–248 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. T. V. Lipina, M. Wang, F. Liu, and J. C. Roder, “Synergistic interactions between PDE4B and GSK-3: DISC1 mutant mice,” Neuropharmacology, 62, No. 3, 1252–1262 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. T. V. Lipina, P. J. Fletcher, F. H. Lee, et al., “Disrupted-in-schizophrenia-1/Gln3lLeu polymorphism results in social anhedonia associated with monoaminergic imbalance and reduction of CREB and P-arrestin-1,2 in the nucleus accumbens in a mouse model of depression,” Neuropsychopharmacology, 38, No. 3, 423–436 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. T. V. Lipina and J. C. Roder, “Disrupted-in-schizophrenia-1 (DISC1) interactome and mental disorders: impact of mouse models,” Neurosci. Biobehav. Rev., 45, 271–294 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Y. Luo, J. Zhou, M. X. Li, et al., “Reversal of aging-related emotional memory deficits by norepinephrine via regulating the stability of surface AMPA receptors,” Aging Cell, 14, No. 2, 170–179 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. A. March, D. Borchelt, T. Golde, and C. Janus, “Differences in memory development among C57BL/6NCrl, 129S2/SvPasCrl, and FVB/NCrl mice after delay and trace fear conditioning,” Comp. Med., 64, No. 1, 4–12 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. T. P. O’Leary, R. K. Gunn, and R. E. Brown, “What are we measuring when we test strain differences in anxiety in mice?” Behav. Genet., 43, No. 1, 34–50 (2013).

    Article  PubMed  Google Scholar 

  31. D. J. Porteous, J. K. Millar, N. J. Brandon, and A. Sawa, “DISC1 at 10: connecting psychiatric genetics and neuroscience,” Trends Mol. Med., 17, No. 12, 699–706 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. A. M. Ribeiro, F. F. Barbosa, M. R. Godinho, et al., “Sex differences in aversive memory in rats: possible role of extinction and reactive emotional factors,” Brain Cogn., 74, No. 2, 145–151 (2010).

    Article  PubMed  Google Scholar 

  33. R. R. Rozeske, S. Valerio, F. Chaudun, and C. Herry, “Prefrontal neuronal circuits of contextual fear conditioning,” Genes Brain Behav., 14, No. 1, 22–36 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. J. N. Samsom and A. H. Wong, “Schizophrenia and depression co-morbidity: What we have learned from animal models,” Front. Psychiatry, 6, 13 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. L. A. Schimanski and P. V. Nguyen, “Multidisciplinary approaches for investigating the mechanisms of hippocampus-dependent memory: a focus on inbred mouse strains,” Neurosci. Biobehav. Rev., 28, 463–483 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. H. Shoji, K. Toyama, Y. Takamiya, et al., “Comprehensive behavioral analysis of ENU-induced Disc1-Q31L and Disc1-L100P mutant mice,” BMC Res. Notes, 5, 108 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. H. Shoji, K. Takao, S. Hattori, and T. Miyakawa, “Age-related changes in behavior in C57BL/6J mice from young adulthood to middle age,” Mol. Brain, 9, No. 1, 11 (2016).

  38. P. Singer, J. Feldon, and B. K. Yee, “Are DBA/2 mice associated with schizophrenia-like endophenotypes? A behavioural contrast with C57BL/6 mice,” Psychopharmacology (Berl.), 206, No. 4, 677–698 (2009).

    Article  CAS  Google Scholar 

  39. M. E. Tipps, J. D. Raybuck, K. J. Buck, and K. M. Lattal, “Delay and trace fear conditioning in C57BL/6 and DBA/2 mice: issues of measurement and performance,” Learn. Mem., 21, No. 8, 380–393 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. V. Voikar, A. Polus, E. Vasar, and H. Rauvala, “Long-term individual housing in C57BL/6J and DBA/2 mice: assessment of behavioral consequences,” Genes Brain Behav., 4, No. 4, 240–252 (2005).

  41. Y. M. Wilson, T. C. Brodnicki, A. J. Lawrence, and M. Murphy, “Congenic mouse strains enable discrimination of genetic determinants contributing to fear and fear memory,” Behav. Genet., 41, No. 2, 278–287 (2011).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Dubrovina.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 103, No. 1, pp. 10–21, January, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubrovina, N.I., Khrapova, M.V. & Lipina, T.V. Characteristics of the Formation of Memories Relating to Fear in Mice with Depression- and Schizophrenia-Like Phenotypes: Effects of Gender and Age. Neurosci Behav Physi 48, 488–495 (2018). https://doi.org/10.1007/s11055-018-0590-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-018-0590-8

Keywords

Navigation