Skip to main content

Advertisement

Log in

Effects of Hypoxia on the Characteristics of Auditory Perception in Humans

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The effects of normobaric hypoxic hypoxia (single-session and interval training) on the sensory-cognitive features of auditory perception in humans were studied. Audibility thresholds (pure tone audiograms) were determined, along with the psychophysical properties of auditory analysis (detection of pauses in the sound signal, discrimination of rhythm, extraction of the target word in “verbal cocktail” conditions), and the volume of short-term auditory memory before and after hypoxia. Qualitative and quantitative changes were found in measures of the subjects’ sensitivity, memory, and reaction speed. A positive effect of interval hypoxic training on the processes of auditory perception was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Agadzhanyan, The Body and its Gaseous Habitat, Meditsina, Moscow (1972).

    Google Scholar 

  2. A. C. Guyton and J. E. Hall, Textbook of Medical Physiology [Russian translation], Logosfera, Moscow (2008).

    Google Scholar 

  3. K. N. Dudkin, in I. P. Pavlov and the Neurophysiology of Cognitive Processes, Pavlov Institute of Physiology, Russian Academy of Sciences (2007), pp. 209–225.

  4. A. Z. Kolchinskaya, Oxygen. Physical State and Work Capacity, Naukova Dumka, Kiev (1991).

  5. I. V. Koroleva, E. A. Ogorodnikova, S. P. Pak, et al., “Methodological approaches to assessing the dynamics of the development of audioverbal perception in children with cochlear implants,” Ros. Otorinolaringol, No. 3, 75–85 (2013).

    Google Scholar 

  6. F. Z. Meerson, Adaptive Medicine: Mechanisms and Protective Effects of Adaptation, Hypoxia Medical, Moscow (1993).

    Google Scholar 

  7. E. A. Ogorodnikova, I. V. Koroleva, V. V. Lyublinskaya, and S. P. Pak, “A computer training system for the rehabilitation of audioverbal perception in patients after cochlear implantation surgery,” Ros. Otorinolaringol, No. 1, 342–347 (2008).

    Google Scholar 

  8. E. A. Ogorodnikova, I. V. Koroleva, S. P. Pak, and A. A. Balyakova, “Development and assessment of the time characteristics of sound signals in patients with cochlear implants using instrumented methods,” Ros. Otorinolaringol, No. 2, 91–97 (2010).

    Google Scholar 

  9. A. V. Starokha, Yu. A. Khandazhapova, and M. V. Soldatenko, “Impaired hemodynamics of the vertebral arteries as an etiopathogenetic mechanism for the development and progression of neurosensory deafness,” Ros. Otorinolaringol, No. 6, 3641 (2004).

  10. R. B. Strelkov, Normobaric Hypoxytherapy (methodological recommendations of the Ministry of Health of the Russian Federation), PAIMS, Moscow (2001).

    Google Scholar 

  11. I. B. Ushakov, V. M. Usov, M. V. Dvornikov, and I. V. Bukhtiyarov, “Contemporary aspects of the challenge of hypoxia and the practice of altitude physiology and aviation medicine,” in: Challenges of Hypoxia: Molecular, Physiotherapy, and Medical Aspects, L. D. Luk’yanova and I. B. Ushakov (eds.), Istoki, Moscow (2004), pp. 170–200.

    Google Scholar 

  12. V. G. Troll’ and V. V. Vishnyakov, “Barotherapy and interval hypoxic training in the treatment of sensorineural deafness,” Vestn. Otorinolaringol., No. 3, 39–42 (2009).

  13. D. Asmaro, J. Mayall, and S. Ferguson, “Cognition at altitude: impairment in executive and memory processes under hypoxic conditions,” Aviat. Space Environ. Med., 84, No. 11, 1159–1165 (2013).

    Article  PubMed  Google Scholar 

  14. P. R. Burkett and W. F. Perrin, “Hypoxia and auditory thresholds,” Aviat. Space Environ. Med., 47, No. 6, 649–651 (1976).

    CAS  PubMed  Google Scholar 

  15. A. Conway, M. Kane, M. Bunting, et al., “Working memory span tasks: A methodological review and user’s guide,” Psychonom. Bull. Rev., 12, No. 5, 769–786 (2005).

    Article  Google Scholar 

  16. S. Dziennis, R. Reif, Zh. Zhongwei, et al., “Effect of hypoxia on cochlear blood flow in mice evaluated using Doppler optical microangiography,” J. Biomed. Optics, 17, No. 10, 106003 (2012).

  17. B. Fowler, J. Banner, and J. Pogue, “The slowing of visual processing by hypoxia,” Ergonomics, 36, No. 6, 727–735 (1993).

  18. B. Fowler and A. Grant, “Hearing thresholds under acute hypoxia and relationship to slowing in the auditory modality,” Aviat. Space Environ. Med., 71, No. 9, 946–949 (2000).

    CAS  PubMed  Google Scholar 

  19. S. Giet, P. Jansing, and T. Kupper, “Hypoxia and hearing – what do we really know?” Med. Sportiva, 16, No. 2, 79–80 (2012).

    Article  Google Scholar 

  20. P. W. Hochachka, “Defense strategies against hypoxia and hypothermia,” Science, 231, No. 4735, 234–241 (1986).

  21. S. Karachuk, A. O. Oner, S. Goktas, et al., “Color vision changes in young subjects acutely exposed to 3,000 m altitude,” Aviat. Space Environ. Med., 75, No. 4, 364–366 (2004).

    Google Scholar 

  22. M. Kida and A. Imai, “Cognitive performance and event-related brain potentials under simulated high altitudes,” J. Appl. Physiol., 74, 1735–1741 (1993).

    CAS  PubMed  Google Scholar 

  23. S. J. Klein, E. S. Mendelson, and T. J. Gallagher, “The effects of reduced oxygen intake on auditory threshold shifts in a quiet environment,” J. Comp. Physiol. Psychol., 54, 401–404 (1961).

    Article  CAS  PubMed  Google Scholar 

  24. K. Lamm and W. Arnold, “Noise-induced cochlear hypoxia is intensity dependent, correlates with hearing loss and precedes reduction of cochlear blood flow,” Audiol. Neurootol., 1, No. 3, 148–160 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. S. Legg, A. Gilbey, A. Raman, et al., “Effect of mild hypoxia on working memory, complex logical reasoning and risk judgment,” Int. J. Aviat. Psychol., 24, No. 2, 126–140 (2014).

    Article  Google Scholar 

  26. P. Lieberman, A. Protopapas, and B. G. Kanki, “Speech production and cognitive deficits on Mt Everest,” Aviat. Space Environ. Med., 66, No. 9, 857–864 (1995).

    CAS  PubMed  Google Scholar 

  27. K. I. McAnally, D. B. Watson, R. L. Martin, and B. Singh, “Effect of hypobaric hypoxia on auditory sensitivity,” Aviat. Space Environ. Med., 74, No. 12, 1251–1255 (2003).

    PubMed  Google Scholar 

  28. R. A. McFarland, “Psycho-physiological studies at high altitude in the Andes. Sensory and motor responses during acclimatization,” J. Comp. Psychol., 23, 227–258 (1937).

    Article  Google Scholar 

  29. C. Neuhaus and J. Hinkelbein, “Cognitive responses to hypobaric hypoxia: implications for aviation training,” Psychol. Res. Behav. Manag., 10, No. 7, 297–302 (2014).

    Article  Google Scholar 

  30. F. A. Petrassi, P. D. Hodkinson, P. L. Walters, and S. J. Gaydos, “Hypoxic hypoxia at moderate altitudes: review of the state of the science,” Aviat. Space Environ. Med., 83, No. 10, 975–984 (2012).

    Article  PubMed  Google Scholar 

  31. I. J. Russell and E. M. Cowley, “The influence of transient asphyxia on the receptor potentials in inner hair tells of the guinea pig cochlea,” Hear. Res., 11, 373–384 (1983).

    Article  CAS  PubMed  Google Scholar 

  32. G. L. Semenza, “Hypoxia-inducible factor in physiology and medicine,” Cell, 148, No. 3, 399–408 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. S. B. Singh, L. Thakur, J. P. Anand, et al., “Effect of chronic hypobaric hypoxia on components of human related potential,” Indian J. Med. Res., 120, 94–99 (2004).

    CAS  PubMed  Google Scholar 

  34. D. Vecchi, F. Morgagni, A. G. Guadagno, and M. Lucertini, “Visual function at altitude under night vision assisted conditions,” Aviat. Space Environ. Med., 85, No. 1, 60–65 (2014).

    Article  PubMed  Google Scholar 

  35. J. Virues-Ortega, G. Buela-Casal, E. Garrido, and B. Alcazar, “Neuropsychological functioning associated with high-altitude exposure,” Neuropsychol. Rev., 14, 197–224 (2004).

    Article  PubMed  Google Scholar 

  36. D. S. Ward, S. B. Karan, and J. J. Pandit, “Hypoxia: developments in basic science, physiology and clinical studies,” Anaesthesia, Supplement 2, 19–26 (2011).

  37. D. B. Watson, R. L. Martin, K. I. McAnally, et al., “Effect of normobaric hypoxia on auditory sensitivity,” Aviat. Space Environ. Med., 71, No. 8, 791–797 (2000).

    CAS  PubMed  Google Scholar 

  38. R. Westerman, “Hypoxia familiarization training by the reduced oxygen breathing method,” J. Aviat. Med., 5, 11–15 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Ogorodnikova.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 101, No. 12, pp. 1414–1426, December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogorodnikova, E.A., Stolyarova, E.I., Pak, S.P. et al. Effects of Hypoxia on the Characteristics of Auditory Perception in Humans. Neurosci Behav Physi 47, 466–473 (2017). https://doi.org/10.1007/s11055-017-0423-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-017-0423-1

Keywords

Navigation