Skip to main content
Log in

Neuropsychological Functioning Associated with High-Altitude Exposure

  • Published:
Neuropsychology Review Aims and scope Submit manuscript

Abstract

This article focuses on neuropsychological functioning at moderate, high, and extreme altitude. This article summarizes the available literature on respiratory, circulatory, and brain determinants on adaptation to hypoxia that are hypothesized to be responsible for neuropsychological impairment due to altitude. Effects on sleep are also described. At central level, periventricular focal damages (leuko-araiosis) and cortical atrophy have been observed. Frontal lobe and middle temporal lobe alterations are also presumed. A review is provided regarding the effects on psychomotor performance, perception, learning, memory, language, cognitive flexibility, and metamemory. Increase of reaction time and latency of P300 are observed. Reduced thresholds of tact, smell, pain, and taste, together with somesthetic illusions and visual hallucinations have been reported. Impairment in codification and short-term memory are especially noticeable above 6,000 m. Alterations in accuracy and motor speed are identified at lower altitudes. Deficits in verbal fluency, language production, cognitive fluency, and metamemory are also detected. The moderating effects of personality variables over the above-mentioned processes are discussed. Finally, methodological flaws found in the literature are detailed and some applied proposals are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Abraini, J. H., Bouquet, C., Joulia, F., Nicolas, M., and Kriem, B. (1998). Cognitive performance during a simulated climb of Mount Everest: Implications of brain function and central adaptive processes under chronic hypoxia stress. Eur. J. Physiol. 436: 553–559.

    Google Scholar 

  • Adams, R. A., Victor, M., and Ropper, A. H. (1999). Trastornos metabólicos adquiridos del sistema nervioso [Acquired metabolic nervous system disorders]. Principios de Neurología (7th ed.) (pp. 961–967), McGraw Hill, Mexico DF.

    Google Scholar 

  • Agadzhanyan, N. A., Doronin, G. P., and Elfimov, A. I. (1972). Influence of pressure chamber training on conditioned chain motor reflexes. Zh. Vyssh. Nerv. Deyat. 22: 27–45.

    Google Scholar 

  • Anholm, J. D., Powles, A. C., Downey, R., Houston, C. S., Sutton, J. R., Bonnet, M. H., et al. (1992). Operation Everest II: Arterial oxygen saturation and sleep at extreme simulated altitude. Am. Rev. Respir. Dis. 145: 817–826.

    Google Scholar 

  • Anooshiravani, M., Dumont, L., Mardirosoff, C., and Soto-Debeuz, G. (1999). Brain magnetic resonance imaging (MRI) and neurological changes after a single high altitude climb. Med. Sci. Sports Exerc. 31: 969–972.

    Google Scholar 

  • Bahrke, M. S., and Shukitt-Hale, B. (1993). Effect of altitude on mood, behavior and cognitive functioning. Sports Med. 16: 97–125.

    Google Scholar 

  • Bakharev, V. D. (1981). Investigation of memory during adaptation to high mountain conditions. Hum. Physiol. 7: 409–414.

    Google Scholar 

  • Barach, A. L. (1944). Impairment in emotional control producing in both by lowering and raising the oxygen pressure in the atmosphere. Med. Clin. North Am. 28: 704–718.

    Google Scholar 

  • Bartholomew, C. J., Jensen, W., Petros, T. V., Ferraro, F. R., Fire, K. M., Biberdorf, D., et al. (1999). The effect of moderate levels of simulated altitude on sustained cognitive performance. Int. J. Aviat. Psychol. 9: 351–359.

    Google Scholar 

  • Basnyat, B. (1997). Seizure and hemiparesis at high-altitude outside the setting of acute mountain sickness. Wilderness Environ. Med. 8: 221–222.

    Google Scholar 

  • Basnyat, B. (2002). Case report: Delirium at high altitude. High Alt. Med. Biol. 3: 69–71.

    Google Scholar 

  • Basnyat, B., and Murdoch, D. R. (2003). High-altitude illness. Lancet. 361: 1967–1974.

    Article  PubMed  Google Scholar 

  • Baumgartner, R. W., Spyridopoulus, I., Bärtsch, P., Maggiorini, M., and Oelz, O. (1999). Acute mountain sickness is not related to cerebral blood flow: A decompression chamber study. J. Appl. Physiol. 86: 1578–1582.

    Google Scholar 

  • Bedard, M., Montplaisir, J., Richer, F., Rouleau, I., and Malo, J. (1991). Obstructive sleep apnea syndrome: pathogenesis of neuropsychological deficits. J. Clin. Exp. Neuropsychol. 13: 950–964.

    Google Scholar 

  • Berry, D., McConnel, J. W., Phillips, B. A., Carswell, C. M., Lamb, D. G., and Prine, B. C. (1989). Isocapnic hypoxemia and neuropsychological functioning. J. Clin. Exp. Neuropsychol. 11: 241–251.

    Google Scholar 

  • Bert, P. (1978). La Pression Barometrique [The barometric pressure]. In: Hichcock, M. A., Hichcock, F. A., and Colombus, O. H. (eds. and trans.), Undersea Medical Society, Bethesda, MD. (Original document published 1878)

    Google Scholar 

  • Bolmont, B., and Abraini, J. H. (2001). State-anxiety and low moods: Evidence for a single concept. Physiol. Behav. 74: 421–424.

    Google Scholar 

  • Bolmont, B., Bouquet, C., and Thullier, F. (2001). Relationship of personality traits with performance in RT, psychomotor ability, and mental efficiency during a 31-day simulated climb of Mount Everest in a hypobaric chamber. Percept. Mot. Skills 92: 1022–1030.

    Google Scholar 

  • Bolmont, B., Thullier, F., and Abraini, J. H. (2000). Relationship between mood states and performances in RT, psychomotor ability, and mental efficiency during 31-day gradual decompression in a hypobaric chamber from sea level to 8848 m equivalent altitude. Physiol. Behav. 71: 469–476.

    Google Scholar 

  • Bonnon, M., Nöel-Jorand, M. C., and Therme, P. (2000). Effects of different stay duration in attentional performance during two mountain expeditions. Aviat. Space Environ. Med. 71: 678–684.

    Google Scholar 

  • Bouquet, C., Gardette, B., Gortan, C., and Abraini, J. H. (1999). Psychomotor skills learning under chronic hypoxia. Neuroreport 10: 3093–3099.

    Google Scholar 

  • Bouquet, C., Gardette, B., Gortan, C., Therme, P., and Abraini, J. H. (2000). Color discrimination under chronic hypoxia conditions (simulated climb “Everest-Comex 97”). Percept. Mot. Skills 90: 169–179.

    Google Scholar 

  • Bradwell, A. R., Williams, D., Beazley, M., and Imray, C. H. E. (1999). Can acute mountain sickness be induced by exercise? In: Roach, R. C., Wagner, P. D., and Hackett, P. H. (eds.),Hypoxia: Into the Next Millennium (p. 368), Plenum/Kluwer Academic Publishing, New York.

    Google Scholar 

  • Brierley, J. B. (1976). Cerebral Hypoxia (Chapter II). In: Blackwood, W., and Corsellis, J. A. (eds.), Greenfield’s Neuropathology, Arnold, London.

    Google Scholar 

  • Brugger, P., Regard, M., Landis, T., and Oelz, O. (1999). Hallucinatory experiences in extreme altitude clambers. Neuropsychiatry Neuropsychol. Behav. Neurol. 12: 67–71.

    Google Scholar 

  • Buguet, A., Pivot, A., Montmayeur, A., and Tapie, P. (1994). Ambulatory sleep-wake recording in an acclimatized mountaineer over 8 days at high altitude. J. Wilderness Med. 5: 399–404.

    Google Scholar 

  • Burkett, P. R., and Perrin, W. F. (1976). Hypoxia and auditory thresholds. Aviat. Space Environ. Med. 47: 649–651.

    Google Scholar 

  • Bushov, Y. V., Makhnaham, A. V., and Protasov, K .T. (1994). Analysis of individual differences in human psychological reaction to combined hypoxic effect. Human Physiol. 19: 302–306.

    Google Scholar 

  • Cahoon, R. L. (1970). Vigilance performance under hypoxia. J. Appl. Psychol. 54: 479–483.

    Google Scholar 

  • Cahoon, R. L. (1972). Simple decision making at high altitude. Ergonomics 15: 157–164.

    Google Scholar 

  • Carretié, L., and Iglesias, J. (1995). Estudio electrofisiológico de la actividad cerebral relacionada con acontecimientos discretos [Electrophysiological study of brain activity related to enviromental events]. In: Carretié, L., and Iglesias, J. (eds.), Psicofisiología: Fundamentos Metodológicos (pp. 120–121), Pirámide, Madrid, Spain.

    Google Scholar 

  • Castelló-Roca, A. (1993). Hombre, Montaña y Medicina (p. 22), [Man, Mountains and Medicine]. Editor Service, Barcelona, Spain.

  • Cavaletti, G., Moroni, R., Garavaglia, P., and Tredici, G. (1987). Brain damage after high-altitude climbs without oxygen. Lancet 10: 101.

    Google Scholar 

  • Clark, C. F., Heaton, R. K., and Weins, A. N. (1983). Neuropsychological functioning after prolonged high altitude exposure in mountaineering. Aviat. Space Environ. Med. 54: 202–207.

    Google Scholar 

  • Clark, W. C., and Clark, S. B. (1980). Pain responses in Nepalese porters. Science 209: 410–412.

    Google Scholar 

  • Coote, J. H., Stone, B. M., and Tsang, G. (1992). Sleep of Andean high altitude natives. Eur. J. Appl. Physiol. 64: 178–181.

    Google Scholar 

  • Coote, J. H., Tsang, B., and Baker, A. (1993a). Respiratory changes and quality sleep in young high altitude dwellers in the Andes of Peru. Eur. J. Appl. Physiol. 66: 249–253.

    Google Scholar 

  • Coote, J. H., Tsang, B., and Baker, A. (1993b). Polycythemia and central sleep apnea in high altitude residents of the Andes. J. Physiol. 459: 749.

    Google Scholar 

  • Crews, W. D., Jeffreson, A. L., Bolduc, T., Elliott, J. B., Ferro, N. M., Broshek, D. K., et al. (2001). Neuropsychological dysfunction in patients suffering from end-stage chronic obstructive pulmonary disease. Arch. Clin. Neuropsychol. 16: 643–652.

    Google Scholar 

  • Crow, T. J., and Kelman, G. R. (1969). Physiological effects of mild hypoxia. J. Physiol. 24: 204.

    Google Scholar 

  • Crow, T., and Kelman, G. (1971). Effect of mild acute hypoxia on human short-term. Br. J. Anesth. 43: 548–552.

    Google Scholar 

  • Crow, T., and Kelman, G. (1973). Psychological effects of mild acute hypoxia. Br. J. Anesth. 43: 335–337.

    Google Scholar 

  • Cudaback, D. D. (1984). Four-km altitude effects on performance and health. Publ. Astronomical Soc. Pac. 96: 463–477.

    Google Scholar 

  • Chleide, E., Bruhwyler, J., and Mercier, M. (1991). Effect of chronic hypoxic treatment in the retention of fixed -interval responding. Physiol. Behav. 49: 465–470.

    Google Scholar 

  • Dahmea, B. (1996). Interoception of airway resistance in healthy and asthmatic subjects. Biol. Psychol. 43: 247–248.

    Google Scholar 

  • De Acosta, J. (1590). Historia Natural Y Moral de Las Indias, Libro III [Natural and morale history of America: Vol. 3]. Juan de León, Sevilla, Spain.

    Google Scholar 

  • Denison, D. M., Ledwith, F., Poulton, E. C. (1966). Complex reaction times at simulated cabin altitudes at 5000 feet and 8000 feetAerospace Med. 37: 1010–1013.

    Google Scholar 

  • Doughty, H. A., and Bearmore, C. (1994). Bleeding time at altitude. J. R. Soc. Med. 87: 317–319.

    Google Scholar 

  • Dunlap, K. (1918). Medical studies in aviation: IV. Psychologic observations and methods. J. Am. Med. Assoc. 71: 1392–1393.

    Google Scholar 

  • Echemendia, R. J., and Julian, L. J. (2001). Mild traumatic brain injury in sports: Neuropsychology’s contribution to a developing field. Neuropsychol. Rev. 11: 69–88.

    Google Scholar 

  • Ettinger, R. H., and Sttadon, J. E. (1982). Decreased feeding associated with acute hypoxia in rats. Physiol. Behav. 29: 455–458.

    Google Scholar 

  • Evans, W., and Wit, N. F. (1966). The interaction of high altitude and psychotropic drug action. Psychopharmacologua 10: 184–188.

    Google Scholar 

  • Farrace, S., Cenni, P., Tuozzi, G., Casagrande, M., Barbarito, B., and Peri, A. (1999). Endocrine and psychophysiological aspects of human adaptation to the extreme. Physiol. Behav. 66: 613–620.

    Google Scholar 

  • Findley, L., Barth, J., Powers, D., Wilhoit, S., Boyd, D., and Suratt, P. (1986). Cognitive impairments in patients with obstructive sleep apnea and associated hypoxemia. Chest 90: 696–690.

    Google Scholar 

  • Finesinger, J. E., Lindermann, E., Brazier, M. A. B., and Chapple, E. D. (1947). The effect of anoxia as measured by the electroencephalogram and the interaction chronogram of psychoneurotics patients. Am. J. Psychiatry. 103: 738–748.

    Google Scholar 

  • Fleisch, A., and Von Murant, A. (1944). Klimaphysiologische Untersuchungen in der Schweiz, Part I [Environmental physiology research in Switzerland, Part I]. Bemo Schwabe, Basel, Switzerland.

    Google Scholar 

  • Fleisch, A., and Von Murant, A. (1948). Klimaphysiologische Untersuchungen in Der Schweiz, Part II [Environmental physiology research in Switzerland, Part II]. Bemo Schwabe, Basel, Switzerland.

    Google Scholar 

  • Forster, H. V., Dempsey, J. A., Birnbaum, M. L., Reddan, W. G., Thoden, J. S., Grover, R. F., et al. (1971). Effect of chronic exposure to hypoxia on ventilatory response to CO2 and hypoxia. J. Appl. Physiol. 31: 586–592.

    Google Scholar 

  • Forster, P. J. (1985). Effects of different ascent profiles on performance at 4200 m elevation. Aviat. Space Environ. Med. 56: 758–764.

    Google Scholar 

  • Fowler, B., and Adams, J. (1993). Dissociation of the effects of alcohol and amphetamine on inert gas narcosis using reaction time and P300 latency. Aviat. Space Environ. Med. 64: 493–499.

    Google Scholar 

  • Fowler, B., Elcombe, D. D., Kelso, B., and Porlier, G. (1987). The threshold for hypoxia effects on perceptual-motor performance. Hum. Factors 29: 61–66.

    Google Scholar 

  • Fowler, B., and Grant, A. (2000). Hearing thresholds acute hypoxia and relationship to slowing in the auditory modality. Aviat. Space Environ. Med. 71: 946–949.

    Google Scholar 

  • Fowler, B., and Lindeis, A. E. (1992). The effect of hypoxia on auditory RT and P300 latency. Aviat. Space Environ. Med. 63: 976–981.

    Google Scholar 

  • Fowler, B., and Prlic, H. (1995). A comparison of visual and auditory RT and P300 latency thresholds to acute hypoxia. Aviat. Space Environ. Med. 66: 645–650.

    Google Scholar 

  • Fowler, B., Prlic, H., and Brabant, M. (1994). Acute hypoxia fails to influence two aspects of short-term memory: implications for the source of cognitive deficits. Aviat. Space Environ. Med. 65: 641–645.

    Google Scholar 

  • Fox, A. W., Monoson, P. K., and Morgan, C. D. (1989). Speech dysfunction of obstructive sleep apnea: A discriminant analysis of its descriptors. Chest 96: 589–585.

    Google Scholar 

  • Freixanet, M. (1991). Personality profile of subject engaged in high physical risk sports participants. Pers. Individual Differences 12: 1087–1093.

    Google Scholar 

  • Fried, R. (1995). The capnometer and oximeter in the biofeedback treatment of asthma and emphysema. Biol. Psychol. 41: 87.

    Google Scholar 

  • Garner, S. H., Sutton, J. R., Burse, R. L., McComas, A. J., Cymerman, A., and Houston, C. S. (1990). Operation Everest II: Neuromuscular performance under conditions of extreme simulated altitude. J. Appl. Physiol. 68: 1167–1172.

    Google Scholar 

  • Garrido, E. (1997). Altitud y Riesgo Neurológico: Alpinistas Europeos vs. Sherpas Del Himalaya [Altitude and neurological risk: Alpinists vs. Himalayan Sherpas]. Unpublished doctoral dissertation, University of Barcelona, Barcelona, Spain.

  • Garrido, E., and Botella, J. (1998). El mal de montaña [The mountain sickness]. Med. Clín. 110: 462–468.

    Google Scholar 

  • Garrido, E., and Javierre, C. (1996). Extreme altitude transient aphasia. Br. J. Sports Med. 30: 364.

    Google Scholar 

  • Garrido, E., Castelló, A., Ventura, J. L., Capdevilla, A., and Rodriguez, F. A. (1993). Cortical atrophy and other brain magnetic resonance imaging (MRI) changes after extremely high altitude climbs without oxigen. Int. J. Sport Med. 14: 232–234.

    Google Scholar 

  • Garrido, E., Javierre, C., Ventura, J. L., and Segura, R. (2000). Hallucinatory experiences at high altitude. Neuropsychiatry Neuropsychol. Beba. Neurol. 13: 148.

    Google Scholar 

  • Garrido, E., Segura, R., Capdevilla, A., Aldomá, J., Rodriguez, F. A., Javierre, C., et al. (1995). New evidence from magnetic resonance imaging of brain changes after climbs at extreme altitude. Eur. J. Appl. Physiol. 70: 477–481.

    Google Scholar 

  • Garrido, E., Segura, R., Capdevilla, A., Pujol, J., Javierre, C., and Ventura, J. L. (1996). Are Himalayan Sherpas better protected against brain damage associate with extreme altitude climbs? Clin. Sci. 90: 81–85.

    Google Scholar 

  • Gilbert, D. L. (1983). The first documented report of mountain sickness: The China or headache mountain story. Respir. Physiol. 52: 315–326.

    Google Scholar 

  • Gotoh, G., Meyer, J., and Takagi, Y. (1965). Cerebral effects of hyperventilation in man. Arch. Neurol. 12: 410–423.

    Google Scholar 

  • Gozal, D., Daniel, J. M., and Dohanich, G. P. (2001). Behavioral and anatomical correlates of chronic episodic hypoxia during sleep in rat. J. Neurosci. 21: 2442–2450.

    Google Scholar 

  • Grant, I., Prigatano, G. P., Heaton, R. K., McSweeney, A. J., Wright, E. C., and Adams, K. M. (1987). Progressive neuropsychological impairment and hypoxemia. Arch. Gen. Psychiatry 44: 999–1006.

    Google Scholar 

  • Green, R. G., and Morgan, D. R. (1985). The effects of mild hypoxia on a logical reasoning task. Aviat. Space Environ. Med. 56: 1004–1008.

    Google Scholar 

  • Griggs, R. C., and Sutton, J. R. (1992). Neurological manifestation of respiratory diseases. In Asbury, A. K., McKhann, G. M., and McDonald, W. I. (eds.), Disease of the Nervous System (pp. 1433–1439), Saunders, Philadelphia.

    Google Scholar 

  • Hackett, P. H., Hollingsmead, K., Roach, R., Schoene, R., and Mills, W. (1987). Cortical blindness in high altitude climbers and trekkers. A report of six cases. In: Sutton, J., Houston, C., and Coates, G. (eds.), Hypoxia and Cold (pp. 536–550), Praeger Press, New York.

    Google Scholar 

  • Hackett, P. H., and Rennie, D. (1976). The incidence, importance, and prophylaxis of acute mountain sickness. Lancet 27: 1149–1155.

    Google Scholar 

  • Hackett, P. H., Rennie, D., Hofmeister, S. E., Grover, R. F., and Reeves, J. T. (1982). Fluid retention and relative hypoventilation in acute mountain sickness. Respir. Physiol. 43: 321–329.

    Google Scholar 

  • Hackett, P. H., Roach, R., and Harrison, G. (1987). Respiratory stimulants and sleep periodic breathing at high altitude. Almitrine vs. acetazolamide. Am. Rev. Respir. Dis. 135: 896–898.

    Google Scholar 

  • Hackett, P. H., Yarnell, P. R., Hill, R., Reynard, K., Heit, J., and McCormick, J. (1998). High-altitude cerebral edema evaluated with magnetic resonance imaging. J. Am. Med. Assoc. 280: 1920–1925.

    Google Scholar 

  • Hansen, J. E., Harris, C. W., and Evans, W. O. (1967). Influence in elevation on origin, rate of ascent and a physical conditioning program on symptoms of acute mountain sickness. Mil. Med. 132: 585–592.

    Google Scholar 

  • Herzog, M. (1952). Annapurna, Premier 8000 [Annapurna, First 8,000]. Arthaud, Paris.

    Google Scholar 

  • Hillsman, D. (1996a). A visual biofeedback method to define and teach breathing patterns. Biol. Psychol. 43: 261.

    Google Scholar 

  • Hillsman, D. (1996b). Clinical experience with a visual method in COPD rehabilitation. Biol. Psychol. 43: 243–244.

    Google Scholar 

  • Hochachka, P. W., Clark, C. M., Matheson, G. O., Brown, W. D., Stone, C. K., Nicles, R. J., et al. (1999). Effects on regional brain metabolism of high-altitude hypoxia: A study of six US marines. Am. J. Physiol. 277: 314–319.

    Google Scholar 

  • Hochachka, P. W., Clark, C. M., Monge, C., Stanley, C., Brown, W. D., Stone, C. K., et al. (1996). Sherpa brain glucose metabolism and defense adaptations against chronic hypoxia. J. Appl. Physiol. 81: 1355–1361.

    Google Scholar 

  • Hopko, D. R., Ashcraft, M. H., Gute, J., Ruggiero, K. J., and Lewis, C. (1998). Mathematics anxiety and working memory: Support for the existence of a deficient inhibition mechanism. J. Anxiety Disord. 12: 343–355.

    Google Scholar 

  • Hornbein, T. F. (1992). Long term effects of high altitude on brain function. Int. J. Sports Med. 13: S43–S45.

    Google Scholar 

  • Hornbein, T. F., and Schoene, R. B. (2001). High Altitude: An Exploration of Human Adaptation, Marcel Dekker, New York.

    Google Scholar 

  • Hornbein, T. F., Townes, B. D., Shoene, R. B., Sutton, J. R., and Houston, C. S. (1989). The cost to the central nervous system of climbing to high extremely altitude. N. Engl. J. Med. 321: 1714–1719.

    Google Scholar 

  • Huppert, F. A. (1982). Memory impairment associated with chronic hypoxia. Thorax37: 858–860.

    Google Scholar 

  • Ikeda, M., Iwagana, M., and Seiwa, H. (1996). Test anxiety and working memory system. Percept. Mot. Skills 82: 1223–1231.

    Google Scholar 

  • Jack, S. J., and Ronan, K. R. (1998). Sensation seeking among high and low risk sports participants. Pers. Individual Differences 25: 1063–1083.

    Google Scholar 

  • Janowsky, J. S., Shimamura, A. P., and Squire, L. R. (1989). Memory and metamemory: comparisons between patients with frontal lobe lesions and amnesic patients. Psychobiology 17: 3–11.

    Google Scholar 

  • Janssen, J. (1890). Club Alpin Francais, Annuaire 1882–1887.

  • Jason, G., Pajurkova, E., and Lee, R. (1989). High altitude mountaineering and brain function: Neuropsychological testing of members of a Mount Everest expedition. Avia. Space Environ. Med. 60: 170–173.

    Google Scholar 

  • Jensen, J. B., Wright, A. D., Lassen, N. A., Harvey, T. C., Harvey, M. H., Winterborn, M. H., et al. (1990). Cerebral blood flow in acute mountain sickness. J. Appl. Phys. 69: 430–433.

    Google Scholar 

  • Johnson, R., Jr. (1988). The amplitude of P300 component of the event-related potential: Review and synthesis. In: Ackles, P., Jennings, J. R., and Coles, M. G. H. (eds.), Advances in Psychophysiology (pp. 69–137, Vol. 3), JAI Press, London.

    Google Scholar 

  • Johnson, T. S., and Rock, R. B. (1988). Acute mountain sickness. N. Engl. J. Med. 319: 841–845.

    Google Scholar 

  • Junqué, C., Pujol, J., Vendrell, P., Bruna, O., Jodar, M., Ribas, J. C., et al. (1990). Leuko-araiosis on magnetic resonance imaging and speed of mental processing. Arch. Neurol. 47: 151–156.

    Google Scholar 

  • Kales, A., Caldwell, A. B., Cadieux, R. J., Vela-Bueno, A, Ruch, L. G., and Mayes, S. D. (1985). Severe obstructive sleep apnea-II: Associated psychopathology and psychosocial consequences. J. Chronic Dis. 38: 427–434.

    Google Scholar 

  • Karliner, J. S., Sarnquist, F. F., Garbers, D. J., Peters, R. N., and West, J. B. (1985). The electrocardiogram at extreme altitude. Am. Heart J. 109: 505–513.

    Google Scholar 

  • Kawakami, I., Yoshikawea, T., Shida, A., Asanuma, Y., and Murao, M. (1982). Control of breathing in young twins. J. Appl. Physiol. 52: 537–542.

    Google Scholar 

  • Kazora, E., Filley, C. M., Julian, L. J., and Collum, C. M. (1999). Cognitive functioning in patients with chronic obstructive pulmonary normal controls. Neuropsychiatry, Neuropsychol. Behav. Neurol. 12: 178–183.

    Google Scholar 

  • Kelly, D. A., Claypoole, K. H., and Coppel, D. B. (1990). Sleep apnea syndrome: Symptomatology, associated features, and neurocognitive correlates. Neuropsychol. Rev. 1: 323–342.

    Google Scholar 

  • Kelman, G. R., Crow, T. J., and Bursill, A. E. (1969). Effect of mild hypoxia on mental performance assessed by a test of selective attention. Aerospace Med. 40: 301–303.

    Google Scholar 

  • Kennedy, R. S., Dunlap, W. P., Banderet, L. E., Smith, M. G., and Houston, C. S. (1989). Cognitive performance deficits in a simulated ascent climb of Mount Everest: Operation Everest II. Avia. Space Environ. Med. 60: 99–104.

    Google Scholar 

  • Khoo, M. C. K., Anholm, J. D., Ko, S., Downey, R., Powles, A. C. P., Sutton, J. R., et al. (1995). Dynamics of periodic breathing and arousal during sleep at extreme altitude. Respir. Physiol. 103: 33–43.

    Google Scholar 

  • Kida, M. (1997). Psychophysiological studies under simulated high altitude. Jpn. J. of Psychon. Sci. 16: 37–44.

    Google Scholar 

  • Kobrick, J. (1983). Effects of hypoxia on the luminance threshold for target detection. Avia. Space Environ. Med. 53: 112–115.

    Google Scholar 

  • Kobrick, J. L., and Appleton, B. (1971). Effects of extended hypoxia on visual performance and retinal vascular state. J. Appl. Physiol. 31: 357–362.

    Google Scholar 

  • Kobrick, J. L., Crohn, E., Shukitt, B., Houston, C. S., and Sutton, J. E. (1988). Operation Everest II: Lack of an effect of extreme altitude on visual contrast sensitivity. Avia. Space Environ. Med. 59: 160–164.

    Google Scholar 

  • Kobrick, J. L., Zwick, H., Witt, C. E., and Devine, J. A. (1984). Effects of extended hypoxia on night vision. Avia. Space Environ. Med. 55: 191–195.

    Google Scholar 

  • Koller, E. A., Bischoff, M., Buhrer, A., Felder, L., and Schopen, M. (1991). Respiratory, circulatory and neuropsychological responses to acute hypoxia in acclimatized and non acclimatized subjects. Eur. J. Appl. Physiol. 62: 67–72.

    Google Scholar 

  • Kramer, A. F., Coyne, J. T., and Strayer, D. L. (1993). Cognitive function at high altitude. Hum. Factors 35: 329–344.

    Google Scholar 

  • Krammar, P., Drinkwater, B., Folins, J., and Bedi, J. (1983). Ocular functions and incidence of acute mountain sickness in women at altitude. Avia., Space Environ. Med. 54: 116–120.

    Google Scholar 

  • Lahiri, S. (1984). Respiratory control in Andean and Hymalayan high altitude natives. In: J. B. West, and Lahiri, S. (eds.), High Altitude and Man (pp. 147–162), Williams and Wilkins, Baltimore.

    Google Scholar 

  • Lahiri, S., and Cherniack, N. S. (2001). Cellular and molecular mechanisms of O2 sensing with special reference to the carotid body (Chapter IV). In: T. H. Hornbein, and Schoene, R. B. (eds.), High Altitude: Exploration of Human Adaptation, Marcel Dekker, New York.

    Google Scholar 

  • Lahiri, S., and Data, P. G. (1992). Chemosensivity and regulation of ventilation during sleep at high altitude. Int. J. Sports Med. 13: S31–S33.

    Google Scholar 

  • Lahiri, S., Maret, K., and Sherpa, M. G. (1983). Dependence of high altitude sleep apnea on ventilatory sensivity to hypoxia. Respir. Physiol. 52: 281–301.

    Google Scholar 

  • Lahiri, S., Rozanov, C., and Cherniack, R. (2000). Altered structure of the carotid body at high altitude and associated chemoreflexes. High Alt. Med. Biol. 1: 64–74.

    Google Scholar 

  • Lahiri, S., Razanov, C., Roy, A., Storey, B., and Buerk, D. G., (2001). Regulation of oxygen sensing in peripheral arterial chemoreceptors. Int J Biochem. Cell. Biol. 33: 755–774.

    Google Scholar 

  • Leid, J., and Campagne, J. M. (2001). Color vision at very high altitude. Color Res. Appl. 26: S281–S283.

    Google Scholar 

  • Lezak, M. D. (1995). Neuropsychol Assess (3rd ed.), Oxford University Press, Oxford.

    Google Scholar 

  • Lieberman, P., Protopapas, A., and Kaniki, B. G. (1995). Speech production and cognitive deficit in Mount Everest. Aviat. Space Environ. Med. 66: 857–864.

    Google Scholar 

  • Litch, J. A., and Bishop, R. A. (1999). Transient global amnesia at high altitude. N. Engl. J Med. 318: 1444.

    Google Scholar 

  • Mackintosh, J. H., Thomas, D. J., Olive, J. E., Chesner, I. M., and Knight, R. J. E. (1988). The effect of altitude on tests of reaction time and alertness. Aviat. Space Environ. Med. 59: 246–248.

    Google Scholar 

  • Magni, G., Rupolo, G., Simini, G., DeLeo, D., and Rampazzo, M. (1985). Aspects of the psychology and personality of high altitude mountain climbers: A study on the members of the 1983 Italian expedition to K-2 (8,611m Karakorum). Int. J. Sports Psychol. 16: 12–19.

    Google Scholar 

  • Martin, L. (1999). All You Really Need to Know to Interpret Arterial Blood Gases, Lippincott Williams and Wilkins, Philadelphia.

    Google Scholar 

  • Martin, R. L., Watson, D. B., Smith, S. E., McAnally, K. I., and Emonson, D. L. (2000). Effect of normobaric hypoxia on sound localization. Aviat. Space Environ. Med. 71: 991–995.

    Google Scholar 

  • Massot i Palmers, J. (1911). El excursionismo como medio de desarrollo físico e intelectual en el niño [The exclusionism as a way for physical and intellectual development in the child]. Actas del I Congreso Excursionista Catalán, Catalonian Excursionist Association, Barcelona, Spain.

  • Masuyama, S., Kimura, H., Sugita, T., Kuriyama, T., Tatsumi, K., Kunimoto, F., et al. (1986). Control of ventilation in extreme-altitude climbers. J. Appl. Physiol. 61: 500–506.

    Google Scholar 

  • Matsuzawa, Y., Toshio, K., Kesisaku, F., Shinji, Y., Shiro, S., Keishi, K., et al. (1994). Nocturnal periodic breathing and arterial oxygen desaturation in acute mountain sickness. J. Wilderness Med. 5: 269–281.

    Google Scholar 

  • McCallum, W. C. (1988). Potential related to expectancy, preparation and motor activity. In Picton, T. W. (ed.), Handbook of Electroencephalography and Clinical Electrophysiology (pp. 427–535, Vol. 3), Elsevier, Amsterdam.

    Google Scholar 

  • McFarland, R. A. (1932). The psychological effects of oxygen deprivation (anoxemia) on human behavior. Arch. Psychol. 145: 1–135.

    Google Scholar 

  • McFarland, R. A. (1937a). Psychophysiological studies at high altitude in the Andes. J. Comp. Physiol. 23: 191–225.

    Google Scholar 

  • McFarland, R. A. (1937b) Psycho-physiological studies at high altitude in the Andes: I. The effects of rapid ascents by airplane and train. Comp. Psychol. 23: 191–225.

    Google Scholar 

  • McFarland, R. A. (1937c) Psycho-physiological studies at high altitude in the Andes: II. Sensory and motor responses during acclimatization. Comp. Psychol. 23: 227–258.

    Google Scholar 

  • McFarland, R. A. (1937d) Psycho-physiological studies at high altitude in the Andes: III. Mental and psycho-somatic responses during gradual adaptation. Comp. Psychol. 24: 147–187.

    Google Scholar 

  • McFarland, R. A. (1941). The internal environment and behavior. Am. J. Psychiatry 97: 868–877.

    Google Scholar 

  • McFarland, R. A. (1971). Human factors in relation to the development of pressurized cabins. Aerospace. Med. 12: 1303–1318.

    Google Scholar 

  • McFarland, R. A., and Barach, A. L. (1937). The response of psycho-neurotics to variation in oxygen tension. Am. J. Psychiatry 93: 1315–1341.

    Google Scholar 

  • McFarland, R. A., and Evans, J. N. (1939). Alterations in dark adaptations under reduced oxygen tensions. Am. J. Physiol. 127: 37–50.

    Google Scholar 

  • McLeod, C., and McLaughlin, K. (1995). Implicit and explicit memory bias in anxiety. Behav. Res. Ther. 33: 1–14.

    Google Scholar 

  • McSweeney, A. J., Grant, I., Heaton, R. K., Prigatano, G. P., and Adams, K. M. (1985). Relationship of neuropsychological status to everyday functioning in healthy chronically ill persons. J. Clin. Exp. Neuropsychol. 7: 281–291.

    Google Scholar 

  • Milne, D., and Gray, D. (1983). Evidence bearing on the generalizability of the laboratory findings relating to high-altitude mountaineering. Percept. Mot. Skills57: 172–174.

    Google Scholar 

  • Milledge, J. S. (1963). Electrocardiographic changes at high altitude. Br. Heart J. 25: 291–298.

    Google Scholar 

  • Milledge, J. S. (2002). Altitude deterioration. In: Viscor G., Ricart A., and Leal, C. (eds.), Proceedings of the Fifth World Congress on Mountain Medicine and High Altitude Physiology, Spain, 173–180.

  • Missoum, G., Rousnet, E., and Richalet, J. P. (1992). Control of anxiety and acute mountain sickness in Himalayan mountaineers. Int. J. Sports Med. 13: S37–S39.

    Google Scholar 

  • Moller, K., Paulson, O. B., Hornbein, T. F., Colier, W. N., Paulson, A. S., Roach, R. C., et al. (2002). Unchanged cerebral blood flow and oxidative metabolism after acclimatization to high altitude J. Cereb. Blood Flow 22: 118–126.

    Google Scholar 

  • Montgomery, A. B., Mills, J., and Luce, J. M. (1989). Incidence of acute mountain sickness at intermediate altitude. J. Am. Med. Assoc. 261: 732–734.

    Google Scholar 

  • Moore, L. G. (2000). Comparative human ventilatory adaptation to high altitude. Respir. Physiol. 121: 257–276.

    Google Scholar 

  • Moore, L. G., Curran-Everett, L., Droma, T. S., Groves, B. M., McCullough, R. E., McCullough, R. G., et al. (1992). Are Tibetans better adapted? Int. J. Sports Med. 13(Suppl. 1): S86–88.

    Google Scholar 

  • Morganti, A., Giusani, M., Ghio, F., Pierini, A., Savoia, M. T., and Cogo, A. (1994). Endotelin releasing stimuli and calcium antagonists in normal and pathological conditions. J. Hypertens. 12: 27–31.

    Google Scholar 

  • Nelson, M. (1982). Psychological testing at high altitude. Aviat. Space Environ. Med. 53: 122–126.

    Google Scholar 

  • Nelson, T. O., Dunlowsky, J., White, D. M., Steinberg, J., Townes, B. D., and Anderson, D. (1990). Cognition and metacognition at extreme altitudes on Mount Everest. J. Exp. Psychol. Gen. 119: 367–374.

    Google Scholar 

  • Nicolas, M., Thullier, F., Bouquet, C., Gardatte, B., Gortan, C., Joulia, F., et al. (1999). An anxiety and personality study during a 31-day period of chronic hypoxia in a hypobaric chamber. J. Environ. Psychol. 19: 407–414.

    Google Scholar 

  • Nicolas, M., Thullier, F., Bouquet, C., Gardatte, B., Gortan, C., Joulia, F., et al. (2000). A study of mood changes and personality during a 31-day of chronic hypoxia in a hypobaric chamber (Everest-Comex, 1997). Psychol. Rep. 86: 119–126.

    Google Scholar 

  • Nicholson, A. N., and Wright, C. M. (1975). Effect of mild hypoxia on delayed differentiation in the monkey (Macaca mulatta). Exp. Neurol. 47: 535–543.

    Google Scholar 

  • Nöel-Jorand, M. C., Baggard, D., and Plaghki, L. (1996). Pain perception under chronic high-altitude hypoxia. Eur. J. Neurosci. 8: 2075–2079.

    Google Scholar 

  • Nöel-Jorand, M. C., and Burnet, H. (1996). The sensation of respiration in men experiencing high-altitude chronic hypoxia. Biol. Psychol. 43: 1–12.

    Google Scholar 

  • Nöel-Jorand, M. C., Joulia, F., and Braggard, D. (2001). Personality factors, stoicism and motivation in subjects under hypoxic stress in extreme environments. Aviat. Space Environ. Med. 72: 391–399.

    Google Scholar 

  • Oelz, O., Howald, H., Di Prampero, P. E., Hoppeler, M., Classen, H., Jenni, R., et al. (1986). Physiological profiles of world-class high altitude climbers. J. Appl. Physiol. 60: 1734–1742.

    Google Scholar 

  • Padawer, W. J., and Levine, F. N. (1992). Exercise-induce analgesia: Fact or artifact? Pain 48: 131–135.

    Google Scholar 

  • Peña-Casanova, J., Hernandez, M. T., and Jarne, A. (1997). Técnicas neuropsicológicas [Neuropsychological techniques]. In G. Buela-Casal, and Sierra, C. (eds.), Manual de Evaluación Psicológica: Fundamentos, Técnicas y Aplicaciones (pp. 421–454), Siglo XXI, Madrid, Spain.

    Google Scholar 

  • Peñaloza, D., and Echeverria, E. (1957). Electrocardiographic observations on ten subjects at se a level and during one year of residence at high altitudes. Am. Heart J. 54: 811–822.

    Google Scholar 

  • Petiet, C. A. (1988). Neurobehavioural and psychosocial functioning of women exposed to high altitude mountaineering. Percept. Mot. Skills67: 443–452.

    Google Scholar 

  • Phillips, L. M., and Pace, N. (1966). Performance changes at moderated high altitude: short term memory measured by free recall. Psychol. Rep. 19: 655–665.

    Google Scholar 

  • Pichiule, P., Chavez, J. C., Boero, J., and Arregui, A. (1996). Chronic hypoxia induces modification on the N-methyl-D-aspartate receptor in rat brain. Neurosci. Lett. 218: 83–86.

    Google Scholar 

  • Pinel, J. P. (2001). Tratornos cerebrovasculares [Cerebrovascular disorders]. Biopsicología(pp. 160–162), Petrice Hall, Madrid, Spain.

    Google Scholar 

  • Plaghki, L., Delisde, D., and Godfraind, J. M. (1994). Heterotopic nociceptive conditioning stimuli and mental task modulate differently the perceptual and physiological correlates of short CO$_{2}$ laser stimuli. Pain 57: 181–185.

    Google Scholar 

  • Plutarch . (1912). Alexander and Caesar, Loeb classics, Heinemann, London.

    Google Scholar 

  • Prigatano, G. P., Parson, O., Wright, E., Levin, D. C., and Hawryluk, D. (1983). Neuropsychological test performance in mildly hipoxemic patients with chronic obstructive pulmonary disease. J. Consult. Clin. Psychol. 51: 108–116.

    Google Scholar 

  • Ravenhill, T. H. (1913). Some experiences of mountain sickness in the Andes. J. Trop. Med. Hyg. 16: 313–320.

    Google Scholar 

  • Reed, L. J., Marsden, P., Lasserson, D., Sheldon, N., Lewis, P., Stanhope, N., et al. (1999). FDG-PET analysis and findings in amnesia resulting from hypoxia. Memory 7: 599–612.

    Google Scholar 

  • Regard, M., Landis, T., Casey, J., Maggiorini, M., Bartsch, P., and Oelz, O. (1991). Cognitive changes at high altitude on healthy climbers developing acute mountain sickness. Aviat. Space Environ. Med. 62: 291–295.

    Google Scholar 

  • Regard, M., Oelz, O., Brugger, and Landis, T. (1989). Persistent cognitive impairment in climbers after repeated exposure to extreme altitude. Neurology 39: 210–213.

    Google Scholar 

  • Reite, M., Jackson, D., Cahoon, R. L., and Weil, J. W. (1975). Sleep physiology at high altitude. Electroencephalogr. Clin. Neurophysiol. 38: 463–471.

    Google Scholar 

  • Richalet, J. P., Duval-Arnould, G., Darnaud, B., Keromes, A., and Rutgers, V. (1988). Modification of color vision in the green-red axis in acute and chronic hypoxia explored with a portable analoscope. Aviat. Space Environ. Med. 59: 620–623.

    Google Scholar 

  • Richalet, J. P., Souberbielle, J. C., Antezana, A. M., Dechaux, M., Le Trong, J. L., Bienvenu, A., et al. (1994). Control of erythropoiesis in humans during prolonged exposure to the altitude of 6,542 m. Am. J. Physiol. 266: 756–764.

    Google Scholar 

  • Roach, R. C., and Hackett, P. H. (2001). Frontiers of hypoxia research: acute mountain sickness. J. Exp. Biol. 204: 3161–3170.

    Google Scholar 

  • Roach, R. C., Icenogle, M., Hinghofer-Szalkay, H., Maes, D., Sandoval, D., Robergs, R., et al. (2000). Exercise exacerbates acute mountain sickness at simulated high altitude. J. Appl. Physiol. 88: 581–585.

    Google Scholar 

  • Roach, R., Bärtsch, P., and Oelz, O. (1993). The Lake Louise acute mountain sickness scoring system. In: Sutton, J., Houston, G., and Coates, G. (eds.), Hypoxia and Molecular Biology (pp. 272–274), Queen City Printers, Burlington, VT.

    Google Scholar 

  • Rodas, G., Javierre, C., Garrido, E., Segura, R., and Ventura, J. L. (1998). Normoxic ventilatory response in lowlander and Sherpa elite climbers. Respir. Physiol. 113: 57–64.

    Google Scholar 

  • Ruttledge, H. (1934). Everest 1933: The Unfinished Adventure, (pp. 164–166), Hodder and Stoughton, London.

    Google Scholar 

  • Ryn, Z. (1971). Psycopathology in alpinism. Acta. Med. Pol. 12: 453–467.

    Google Scholar 

  • Ryn, Z. (1988). Psycopathology in mountaineering: Mental disturbance under high-altitude stress. Int. J. Sports Med. 9: 163–169.

    Google Scholar 

  • Saito, S., Nishihara, F., Takazawa, T., Kanai, M., Aso, C., Shiga, T., et al. (1999). Exercise-induced cerebral deoxygenation among untrained trekkers at moderate altitudes. Arch. Environ. Health. 54: 271–276.

    Google Scholar 

  • Salorio, C. F., White, D. A., Piccirillo, J., Duntley, S. P., and Uhles, M. L. (2002). Learning, memory and executive control on individuals with obstructive sleep apnea syndrome. J. Clin. Exp. Neuropsychol. 24: 93–100.

    Google Scholar 

  • Samaja, M., Brenna, L., Allibardi, S., and Cerretelli, P. (1993). Human red blood cell aging at 5050 m altitude: a role during adaptation to hipoxia. J. Appl. Physiol. 75: 1696–1701.

    Google Scholar 

  • Santolaya, R. B., Lahiri, S., Alfaro, R. T. Y., Schoene, R. B. (1989). Respiratory adaptations in the highest inhabitants and highest Sherpa mountaineers. Respir. Physiol. 77: 253–262.

    Google Scholar 

  • Saul, G. D., Lukina, W. J., Brakebush, S. C., Wilmot, D. E., and Tammelin, B. R. (2002). Voluntary Hyperventilation into a Simple Mixing Chamber Relieves High Altitude Hypoxia. Aviat. Space. Environ. Med. 73: 404–407.

    Google Scholar 

  • Savourey, G., Moirant, C., Eterradossi, E. Y., and Bittel, J. (1995). Acute mountain sickness relates to sea-level partial pressure oxygen. Eur. J. Appl. Physiol. 70: 469–476.

    Google Scholar 

  • Schoene, R. B. (1982). Control of ventilation in climbers to extreme altitude. J. Appl. Physiol. 53: 886–890.

    Google Scholar 

  • Schoene, R. B. (1999). The brain at high altitude. Wilderness Environ. Med. 10: 93–96.

    Google Scholar 

  • Schoene, R. B. (2001). Limits of human lung function at high altitude. J. Exp. Biol. 204: 3121–3127.

    Google Scholar 

  • Schoene, R. B., Lahiri, S., Hackett, R. M., Petters J. R., Milledge, J. S., Pizzo, C. J., et al. (1984). Relationship of hypoxic ventilatory response to exercise performance in Mount Everest. J. Appl. Physiol. 56: 1478–1483.

    Google Scholar 

  • Schousboe, A., Belhage, B., and Frandsen, A. (1997). Role of Ca++ and second messengers in excitatory aminoacid receptors mediated neurodegeneration. Clin. Neurosci. 4: 191–198.

    Google Scholar 

  • Schulze, G., Coper, H., and Faehndrich, Ch. (1990). Adaptation capacity of biogenic amines turnover to hypoxia in different brain areas of old rats. Neurochem. Int. 17: 281–289.

    Google Scholar 

  • Selvamurthy, W., Raju, V. R., and Ranganathan, S. (1986). Sleep patterns at an altitude of 3500 meters. Int. J. Biometereology 30: 123–135.

    Google Scholar 

  • Sharma, V., Malhorta, M., and Baskaran, A. (1975). Variations in psychomotor efficiency during prolonged stay at high altitude. Ergonomics 18: 511–516.

    Google Scholar 

  • Shephard, R. J. (1956). Physiological changes and psychomotor performance during acute hypoxia. J. Appl. Physiol. 9: 343–351.

    Google Scholar 

  • Shipton, E. (1943). Upon that Mountain, Hodder and Stoughton, London, p. 129.

    Google Scholar 

  • Shlim, D. R., Hackett, P. H., Houston, C., Steele, P., Nelson, D., and Hultgren, H. N. (1995). Diplopia at high altitude. Wilderness Environ. Med. 6: 341.

    Google Scholar 

  • Shock, N. W. (1942). The effects on learning of repeated exposures to lowered oxygen tension of inspired air. J. Comp. Psychol. 34: 55–63.

    Google Scholar 

  • Shukitt, B., and Banderet, L. E. (1988). Mood states at 1600 and 4300 meters terrestrial altitude. Aviat, Space Environ. Med. 59: 530–532.

    Google Scholar 

  • Shukitt-Hale, B., Banderet, L. E., and Lieberman, H. R. (1991). Relationships between symptoms, moods, performance, and acute mountain sickness at 4,700 meters. Aviat, Space Environ. Med. 62: 865–869.

    Google Scholar 

  • Shukitt-Hale, B., Banderet, L. E., and Lieberman, H. R. (1998). Elevation-dependent symptom, mood, and performance changes produced by exposure to hypobaric hypoxia. Int. J. Aviat. Psychol. 8: 319–334.

    Google Scholar 

  • Shukitt-Hale, B., Kadar, T., Marlowe, B. E., Stillman, M. J., Galli, R. L., Levy, A., et al. (1996). Morphological alterations in the hippocampus following hypobaric hypoxia. Hum. Exp. Toxicol. 15: 312–319.

    Google Scholar 

  • Shukitt-Hale, B., Rauch, T. M., and Foutch, R. (1990). Altitude symptomatology and mood states during a climb to 3600 meters. Aviat, Space Environ. Med. 61: 225–228.

    Google Scholar 

  • Shukitt-Hale, B., Stillmann, M. J., Levy, A., Devine, J. A., and Lieberman, H. R. (1993). Nimodipine prevents the in vivo decrease in hippocampal extracellular acetylcholine produced by hypobaric hypoxia. Brain Res. 621: 291–295.

    Google Scholar 

  • Shukitt-Hale, B., Stillmann, M. J., Welch, D. I., Levy, A., Devine, J. A., and Lieberman, H. R. (1994). Hypobaric hypoxia impairs spatial memory in an elevation-dependent fashion. Behav. Neural. Biol. 62: 244–253.

    Google Scholar 

  • Simon, R. P. (1995). CNS response to hypoxia. In: Sutton, J. R., Houston, C. S., and Coates, G. (eds.), Hypoxia and the Brain Proceedings of the Ninth International Hypoxia Symposium, Queen City Printers, Burlington, VT.

    Google Scholar 

  • Smith, V. C., Ernest, J. T., and Pokorny, J. (1976). Effect of hypoxia on FM-100-hue test performance. Modif. Probl. Ophthalmol. 17: 246–256.

    Google Scholar 

  • Song, S. Y., Asaji, T., Tanizaki, Y., Fujimaki, T., Matsutani, M., and Okeda, R. (1986). Cerebral thrombosis at altitude: Its pathogenesis and the problems of prevention an treatment. Aviat, Space Environ. Med. 57: 71–76.

    Google Scholar 

  • Steingart, A., Hachinski, V. C., Lau, C., Fox, A. J., Diaz, F., Cape, R., et al. (1987). Cognitive and neurological findings in subjects with diffuse white matter lucencies on computed tomographic scan (leuko-araiosis). Arch. Neurol. 44: 32–35.

    Google Scholar 

  • Stivalet, P., Leifflen, D., Poquin, D., Savourey, G., Launay, J., Barraud, P. A., et al. (2000). Positive expiratory pressure as a method for preventing the impairment of attentional processes by hypoxia. Ergonomics 43: 474–485.

    Google Scholar 

  • Stuss, D. T., Peterkin, D. A., Guzman, D. A., Guzman, C., and Troyer, A. K. (1997). Chronic obstructive pulmonary disease: effects of hypoxia on neurological and neuropsychological measures. J. Clin. Exp. Neurpshychology 19: 515–524.

    Google Scholar 

  • Sutton, J. R., Houston, C. S., Mansell, A. L., McFadden, M. D., Hackett, P. H., Rigg, J. R. A., et al. (1987). Effect of acetazolamide in hypoxemia during sleep at high altitude. N. Engl. J. Med. 301: 1329–1331.

    Google Scholar 

  • Sutton, J. R., Reeves, J. T., Wagner, P. D., Groves, B. M., Cymerman, A., Malconian, M. K., et al. (1988). Operation Everest II: Oxygen transport during exercise at extreme simulated altitude. J. Appl. Physiol. 64: 1309–1321.

    Google Scholar 

  • Takagi, M., and Watanabe, S. (1999). Two different components of contingent negative variation (CNV) and their relation to changes in reaction time under hypobaric hypoxic conditions. Aviat. Space Environ. Med. 70: 30–34.

    Google Scholar 

  • Telakivi, T., Kajaste, S., Partinen, M., Brander, P., and Nyholm, A. (1993). Cognitive function in obstructive sleep apnea. Sleep16: S74–S75.

    Google Scholar 

  • Timiras, P. S., Krum, A. A., and Pace, N. (1957). Body and organ weights of rats during acclimatization to an altitude of 12470 feet. Am. J. Physiol. 191: 598–604.

    Google Scholar 

  • Tissandier, G. (1875). Le Voyage Grande Hauteur du Ballon Le Zenith [A flight in Le Zenith baloon]. La Nat. 3: 334–337.

    Google Scholar 

  • Townes, B., Hornbein, T., Schoene, R., Sarnquist, F., and Grant, I. (1984). Human cerebral function at extreme altitude. In: West, J. B., and Lahiri, S. (eds.), High Altitude and Man(pp. 31–36), American Physiological Society, Bethesda.

    Google Scholar 

  • Van Diest, I., Stegen, K., Woestijne, K. P., Schippers, N., and Bergh, O. (2000). Hyperventilation and attention: effects of hypocapnia on performance in a Stoop task. Biol. Psychol. 53: 233–252.

    Google Scholar 

  • Viapiano, M. S., Mitridate de Novara, A. M., Fiszer de Plazas, S., and Bozzini, C. E. (2001). Prolonged exposure to hypobaric hypoxia transiently reduces GABA (A) receptor number in mice cerebral cortex. Brain Res. 894: 31–36.

    Google Scholar 

  • Vingrys, A. J., and Garner, L. F. (1987). The effect of moderate level of hypoxia on human color vision. Documents of Ophthalmol. 66: 171–185.

    Google Scholar 

  • Virués, J., Segui, D., and Buela-Casal, G. (2002). Possible dissociation between attention and memory impairments related to moderate high altitude. High Alt. Med. Biol. 3: S35.

    Google Scholar 

  • Waldfogel, S., Finesinger, J. E., and Verzeano, M. (1950). The effect of low oxygen on psychological performance tests in psychoneurotic patients and normal controls. Psychosom. Med. 12: 244–249.

    Google Scholar 

  • Watson, D. B., Martin, R. L., McAnally, K. I., Smith, S. E., and Emonson, D. L. (2000). Effect of normobaric hypoxia on auditory sensitivity. Aviat. Space Environ. Med. 71: 791–797.

    Google Scholar 

  • Wesensten, N. J., Crowley, J. B., and Thomas, K. G. (1993). Effects of simulated high altitude exposure on long latency event-related brain potentials and performance. Aviat. Space Environ. Med. 64: 30–36.

    Google Scholar 

  • West, J. B. (1984). Human physiology at extreme high altitudes on Mount Everest. Science323: 784–788.

    Google Scholar 

  • West, J. B. (1986). Do climbs to extreme altitude cause brain damage. Lancet 16: 387–388.

    Google Scholar 

  • West, J. B., Boyer, S. J., and Graber, D. J. (1983a). Maximal exercise at extreme altitude on Mount Everest. J. Appl. Physiol. 55: 688–698.

    Google Scholar 

  • West, J. B., Hackett, P. H., Maret, K. H., Milledge, J. S., Peters, R. M., Pizzo, C. J., et al. (1983b). Pulmonary gas exchange on the summit of mount Everest. J. Appl. Physiol. 55: 678–687.

    Google Scholar 

  • West, J. B., and Mathieu-Costello, O. (1992). High altitude pulmonary edema is caused by stress failure of pulmonary capillaries. Int. J. Sports Med. 13: 54–58.

    Google Scholar 

  • Wickramasinghe, H., and Anholm, J. D. (1999). Sleep and breathing at high altitude. Sleep Breath 3: 89–102.

    Google Scholar 

  • Wilmer, W. H., and Berens, C. (1918). Medical studies in aviation: V. The effect of altitude on ocular functions. J. Am. Med. Assoc. 71: 1394–1398.

    Google Scholar 

  • Zarewski, P., Marusic, I., Zolotic, S., Bunjevac, T., and Vukosav, Z. (1998). Contribution of Arnett’s inventory of sensation seeking ant Zuckerman’s Sensation Seeking Scale to the differentiation of athletes engaged in high and low risk sports. Pers. Individual Differences25: 763–768.

    Google Scholar 

  • Zola-Morgan, S., Squire, L. R., and Amaral, D. G. (1986). Human amnesia and the medial temporal region: enduring impairment following a bilateral lesion limited to field CA1 on the hippocampus. J Neurosci. 6:2950–2967.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Virués-Ortega.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Virués-Ortega, J., Buela-Casal, G., Garrido, E. et al. Neuropsychological Functioning Associated with High-Altitude Exposure. Neuropsychol Rev 14, 197–224 (2004). https://doi.org/10.1007/s11065-004-8159-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11065-004-8159-4

KEY WORDS:

Navigation