Skip to main content
Log in

Contractile and Electrical Activity of Neurons on Exposure to Colchicine

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The aim of the present work was to study the contractile activity of traumatized nerve cell processes and to attempt to inhibit their retraction using a solution of colchicine. Experiments were performed on living isolated neurons from freshwater mollusks (Lymnaea stagnalis and Planorbis corneus vulgaris), which were studied in phase contrast conditions using time-lapse microvideo recordings. Contractile activity of nerve cell processes was seen in 92% of cases in control conditions in Ringer’s solution. Colchicine inhibited nerve process contraction in 86% of neurons. Experiments addressing neuron electrical activity were performed on leech Retzius neurons. Incubation of ganglia in colchicine solution was found to increase the frequency of spontaneous spike activity from 0.22 to 0.75 spikes/sec. The amplitude of spontaneous potentials decreased from 46.9 to 37 mV, the threshold decreased by 18%, the duration of spontaneous spikes increased from 4.3 to 7.1 msec, and the latent period of responses to stimuli increased from 25.0 to 37.9 msec. In conditions of stimulation at 7–10 Hz, neurons generated spike activity at higher frequencies than in control conditions. Thus, our experiments showed that colchicine can inhibit the contractile activity of traumatized nerve cell processes, keeping the electrically excitable membrane in a satisfactory condition. It follows that attempts can be made in vivo to produce partial inhibition of nerve fiber contraction, thus preventing increases in neuron diastasis, which prevent surgical approximation to the point of contact and promote the development of massive scars at transection sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Alberts, D. Bray, R. Lewis, et al., Molecular Biology of the Cell [Russian translation], Mir, Moscow (19904), Vol. 3.

    Google Scholar 

  2. Yu. M. Vasil’ev, “The cell as an architectural wonder,” Sorosov. Obrazovat. Zh., No. 2, 9–11 (1996).

  3. N. Yu. Vasyagina, S. S. Sergeeva, O. S. Sotnikov, et al., “Effects of cytochalasin B on the contractive activity of damaged nerves,” Tsitologiya, 54, No. 9, 671–672 (2012).

    Google Scholar 

  4. N. N. Kamiya, Protoplasmic Streaming [Russian translation], Mir, Moscow (1962).

    Google Scholar 

  5. Kh. Koshtoyants, Basic Comparative Physiology [in Russian], Vol. II, Comparative Physiology of the Nervous System [in Russian], USSR Academy of Sciences Press, Moscow (1957).

    Google Scholar 

  6. S. S. Sergeeva, “Electrophysiological studies of the topography of axodendritic synapses of Retzius neurons in leeches,” Ros. Fiziol. Zh., 84, No. 10, 117–120 (1995).

    Google Scholar 

  7. O. S. Sotnikov, N. Yu. Vasyagin, G. I. Rybakova, and S. V. Chepur, “Attempts to inhibit nerve process contraction in medium lacking calcium ions,” Byull. Eksperim. Biol., 149, No. 2, 232–235 (2010).

    Google Scholar 

  8. T. A. Uzbekova, I. A. Chernova, V. I. Savchuk, et al., “Methods of applying colchicine to the rat vagus nerve using selective action of neuron axonal transport,” Byull. Eksperim. Biol., 92, No. 11, 631–634 (1981).

    CAS  Google Scholar 

  9. C. E. Aguilar, M. A. Bisby, E. Cooper, et al., “Evidence that transport of trophic factors is involved in the regulation of peripheral nerve fields in salamanders,” J. Physiol., 234, No. 2, 449–464 (1973).

    PubMed  CAS  Google Scholar 

  10. R. Bai, X. F. Pei, O. Boyé, et al., “Identification of cysteine 354 of beta-tubulin as part of the binding site for the A ring of colchicine,” Biol. Chem., 271, No. 21, 12639–12645 (1996).

    Article  CAS  Google Scholar 

  11. A. Bouron, “Colchicine affects protein kinase C-induced modulation of synaptic transmission in cultured hippocampal pyramidal cells,” FEBS Lett., 404, No. 2–3, 221–226. (1997).

    Article  PubMed  CAS  Google Scholar 

  12. K. Bracey, M. Ju, C. Tian, et al., “Tubulin as a binding partner of the heag2 voltage-gated potassium channel,” J. Membr. Biol., 222, No. 3, 115–125 (2008).

    Article  PubMed  CAS  Google Scholar 

  13. P. Coulon, H. J. Wüsten, P. Hochstrate, et al., “Swelling-activated chloride channels in leech Retzius neurons,” J. Exp. Biol., 211, No. 4, 630–641 (2008).

    Article  PubMed  CAS  Google Scholar 

  14. J. Gordiner, R. Overall, and J. Marc, “The microtubule cytoskeleton acts as a key downstream effector of neurotransmitter signaling,” Synapse, 65, 249–256 (2011).

    Article  Google Scholar 

  15. Y. He, W. Yu, and P. W. Baas, “Microtubule reconfiguration during axonal retraction induced by nitric oxide,” J. Neurosci., 22, 5982–5991 (2002).

    PubMed  CAS  Google Scholar 

  16. S. T. Hou, S. X. Jiang, and R. A. Smith, “Permissive and repulsive cues and signaling pathways of axonal outgrowth and regeneration,” Jnt. Rev. Cell Mol. Biol., 267, 125–181 (2008).

    Article  CAS  Google Scholar 

  17. S. H. Huang,Y. I. Wang, G. F. Tseng, et al., “Active endocytosis and microtubule remodeling restore compressed pyramidal neuron morphology in rat cerebral cortex,” Cell Mol. Neurobiol., 32, No. 7, 1079–1087 (2012).

    Article  PubMed  CAS  Google Scholar 

  18. J. J. Li, S. H. Lee, D. K. Kim, et al., “Colchicine attenuates inflammatory cell infiltration and extracellular matrix accumulation in diabetic neuropathy,” Am. J. Physiol. Renal Physiol., 297, No. 1, 200–209 (2009).

    Article  Google Scholar 

  19. L. Luo and D. D. M. O’Leary, “Axon retraction and degeneration in development and disease,” Annu. Rev. Neurosci., 28, 127–156 (2005).

    Article  PubMed  CAS  Google Scholar 

  20. G. Matsumoto, “A proposed membrane model for generation of sodium currents in quid giant axons,” J. Theor. Biol., 107, 649–666 (1984).

    Article  PubMed  CAS  Google Scholar 

  21. S. L. Mironov and D. W. Richter, “Cytoskeleton mediates inhibition of the fast Na+ current in respiratory brainstem neurons during hypoxia,” Eur. J. Neurosci., 11, No. 5, 1831–1834 (1999).

    Article  PubMed  CAS  Google Scholar 

  22. D. T. Moran and F. G. Varela, “Microtubules and sensory transduction,” Proc. Natl. Acad. Sci. USA, 68, No. 4, 757–760 (1971).

    Article  PubMed  CAS  Google Scholar 

  23. C. Sayas, A. Ariaens, B. Ponsioen, et al., “GSK-3 is activated by the tyrosine kinase Pyk2 during LPA1-mediated neurite retraction,” Mol. Biol. Cell, 17, No. 4, 1834–18944 (2006).

    Article  PubMed  CAS  Google Scholar 

  24. R. Schafer and P. D. Reagan, “Colchicine reversibly inhibits electrical activity in arthropod mechanoreceptors,” J. Neurobiol., 12, No. 2, 155–166 (1981).

    Article  PubMed  CAS  Google Scholar 

  25. Y. Solak, H. Atalay, I. Polat, et al., “Colchicine treatment in autosomal dominant polycystic kidney disease: many points in common,” Med. Hypoth., 74, No. 2, 314–317 (2010).

    Article  CAS  Google Scholar 

  26. C. C. Speidel, “The experimental induction of visible structural changes in single nerve fibers in living frog tadpoles,” Cold Spring. Harbor Symp. Quant. Biol., 4, 13–17 (1936).

    Article  CAS  Google Scholar 

  27. A. Tandon, M. Bachoo, P. Weldon, et al., “Effect of colchicine application to preganglionic axons on choline acetyltransferase activity and acetylcholine content and release in the superior cervical ganglion,” J. Neurochem., 66, No. 3, 1033–1041.

  28. R. I. Watts, E. D. Hoopfer, and L. Luo, “Axon pruning during Drosophila metamorphosis. Evidence for local degeneration and requirement of the ubiquitin-proteasome system,” Neuron, 38, 871–885 (2003).

    Article  PubMed  CAS  Google Scholar 

  29. L. A. White, P. W. Baas, and S. R. Heidemann, “Microtubule stability in severed axons,” J. Neurocytol., 16, 775–784 (1987).

    Article  PubMed  CAS  Google Scholar 

  30. R. Wong and I. W. Lichtman, “Synapse elimination,” in: Fundamentals of Neuroscience, Academic Press, San Diego (2003)., pp. 533–554.

    Google Scholar 

  31. K. M. Yamada, B. S. Spooner, H. K. Wessells, et al., “Microfilaments and microtubules,” Proc. Natl. Acad. Sci. USA, 66, 1206–1212 (1970).

    Article  PubMed  CAS  Google Scholar 

  32. X-F. Zhang, A. W. Schaefer, D. T. Bernette, et al., “Rho-dependent contractile responses in the neuronal growth cone are independent of classical peripheral retrograde actin flow,” Neuron, 40, No. 5, 931–944 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Sotnikov.

Additional information

Translated from Morfologiya, Vol. 142, No. 6, pp. 25–29, November–December, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sergeeva, S.S., Vasyagina, N.Y., Sotnikov, O.S. et al. Contractile and Electrical Activity of Neurons on Exposure to Colchicine. Neurosci Behav Physi 43, 1092–1096 (2013). https://doi.org/10.1007/s11055-013-9854-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-013-9854-5

Keywords

Navigation