Skip to main content
Log in

Specific Modulation by Sound of Primary Visual Cortex Neuron Responses to Light Stimuli of Different Intensities in Rabbits

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Experiments were performed on four European rabbits (Orictolagus cuniculus) and included extracellular recordings of a total of 92 neurons. The first series of experiments recorded the responses of 63 neurons to substitution of visual stimuli presented in pairs (pairs with intensities of 0.28 and 1; 1 and 3; 3 and 6; 6 and 8.5; 8.5 and 14; 14 and 17; and 17 and 20 cd/m2). The same stimulus substitutions were then presented with sound (70 dB, 2000 Hz, 40 msec). Neurons did not respond directly to the sound. Two groups of neurons were found. Responses to “light + sound” complexes (in the interval 40–100 msec from the moment of stimulus substitution) increased by a mean 41% (p < 0.0001) at the lowest stimulus intensities in neurons of group 1 (31%). As light intensity increased, discharges in response to the complex decreased to or even below the level of responses to light. Neurons of group 2 (19%) showed the opposite properties: at low light intensities, responses to complexes were comparable with or even smaller than responses to light, while at high intensities (14–20 cd/m2) responses were significantly different (p < 0.05) from responses to light (by 20–39%). The next series of experiments reconstructed the sensory vector spaces on the basis of the responses to 29 neurons to light stimuli of eight different intensities and “sound + light” complexes. Sound was also found to have a double action on the sensory spaces of complexes. Some neurons showed marked increases in the angular distance between the two lowest-intensity stimuli (0.28 and 1 cd/m2), while others showed an increase in the angular distance for the highest intensities. These changes in the structure of the spaces were consisted with the neuron groups identified in the first two series. Comparison of the dynamics of neuron responses and the amplitudes of evoked potentials in the same stimulation conditions showed that there was significant similarity. Thus, these data lead to the conclusion that modulation of visual cortex neuron activity by sound occurs in a complex, nonlinear manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ch. A. Izmailova, S. A. Isaichev, S. G. Korshunova, and E. N. Sokolov, “Specification of the color and brightness components of visual evoked potentials in humans,” Zh. Vyssh. Nerv. Deyat., 48, No. 5, 777–787 (1998).

    Google Scholar 

  2. V. B. Polyanskii, D. E. Alymkulov, D. V. Evtikhin, et al., “Responses of rabbit visual cortex neurons to changes in the orientation and intensity of visual stimuli,” Zh. Vyssh. Nerv. Deyat., 60, No. 1, 32–43 (2010).

    Google Scholar 

  3. V. B. Polyanskii, D. E. Alymkulov, D. V. Evtikhin, and B. V. Chernyshev, “Sound improves the discrimination of the weakest light intensities in the rabbit visual cortex,” Zh. Vyssh. Nerv. Deyat., 61, No. 5, 595–695 (2011).

    Google Scholar 

  4. V. B. Polyanskii, D. E. Alymkulov, E. N. Sokolov, et al., “Reflection of changes in line orientation and intensity in rabbit visual cortex evoked potentials,” Zh. Vyssh. Nerv. Deyat., 58, No. 6, 688–699 (2008).

    Google Scholar 

  5. V. B. Polyanskii, D. V. Evtikhin, and E. N. Sokolov, “Calculation of color and brightness differences by rabbit visual cortex neurons,” Zh. Vyssh. Nerv. Deyat., 55, No. 1, 60–70 (2005).

    Google Scholar 

  6. V. B. Polyanskii, G. L. Ruderman, E. E. Voronezhskaya, and I. V. Isaev, “Sound-specific neurons in the cat visual cortex,” Zh. Vyssh. Nerv. Deyat., 38, No. 3, 546–549 (1988).

    Google Scholar 

  7. E. N. Sokolov, Perception and Conditioned Reflexes. A New View [in Russian], “Psychology” Educational Methodological Collection, Moscow (2003).

  8. B. L. Allman, L. P. Keniston, and M. A. Meredith, “Subthreshold auditory inputs to extrastriate visual neurons are responsive to parametric changes in stimulus quality: sensory-specific versus non-specific encoding,” Brain Res., 1242, 95–101 (2008).

    Article  PubMed  CAS  Google Scholar 

  9. B. L. Allman, L. P. Keniston, and M. A. Meredith, “Not just for bimodal neurons anymore: the contribution of unimodal neurons to cortical multisensory processing,” Brain Topogr., 21, No. 3–4, 157–167 (2009).

    Article  PubMed  Google Scholar 

  10. N. Bolognini, I. Senna, A. Maravita, et al., “Auditory enhancement of visual phosphene perception: the effect of temporal and spatial factors and of stimulus intensity,” Neurosci. Lett., 477, No. 3, 109–114 (2010).

    Article  PubMed  CAS  Google Scholar 

  11. E. Budinger, P. Heil, A. Hess, and H. Scheich, “Multisensory processing via early cortical stages: connections of the primary auditory cortical field with other sensory systems,” Neurosci., 143, No. 4, 1065–1083 (2006).

    Article  CAS  Google Scholar 

  12. S. Clavagnier, A. Falchier, and H. Kennedy, “Long-distance feedback projections to area V1: implications of multisensory integration, spatial awareness, and visual consciousness,” Cogn. Affect. Behav. Neurosci., 4, No. 2, 117–126 (2004).

    Article  PubMed  Google Scholar 

  13. D. V. Evtikhin,V. B. Polianskii, D. E. Alymkulov, and E. N. Sokolov, “Coding of luminance and color differences on neurons in the rabbit’s visual system,” Spanish J. Psychol., 11, No. 2, 349–362 (2008).

    Google Scholar 

  14. A. Falchier, S. Clavagnier, P. Barone, and H. Kennedy, “Anatomical evidence of multimodal integration in primate striate cortex,” J. Neurosci., 22, No. 13, 5749–5759 (2002).

    PubMed  CAS  Google Scholar 

  15. R. R. Fay, Hearing in Vertebrates, a Psychophysiological Datebook, Hill-Fay Associates, Winnetka, Illinois (1988), pp. 379–380.

    Google Scholar 

  16. M. C. Fishman and C. R. Michael, “Integration of auditory information in the cat’s visual cortex,” Vision Res., 13, No. 8, 1415–1419 (1973).

    Article  PubMed  CAS  Google Scholar 

  17. J. J. Foxe and C. E. Schroeder, “The case for feedforward multisensory convergence during early cortical processing,” Neuroreport, 16, No. 5, 419–423 (2005).

    Article  PubMed  Google Scholar 

  18. A. A. Ghazanfar and C. E. Schroeder, “Is neocortex essentially multisensory?” Trends Cogn. Sci., 10, No. 6, 278–285 (2006).

    Article  PubMed  Google Scholar 

  19. C. Kayser and N. K. Logothetis, “Do early sensory cortices integrate cross-modal information?” Brain Struct. Funct., 212, No. 2, 121–132 (2007).

    Article  PubMed  Google Scholar 

  20. Q. Liu, J. Qiu, J. Yang, et al., “The effect of visual reliability on auditory-visual integration: an event-related potential study,” Neuroreport, 18, No. 17, 1861–1865 (2007).

    Article  PubMed  CAS  Google Scholar 

  21. T. Lomo and A. Mollica, “Activity of single units in the primary optic cortex in the unanaesthetized rabbit during visual, acoustic, olfactory and painful stimulation,” Arch. Ital. Biol., 100, No. 1, 86–120 (1962).

    Google Scholar 

  22. A. Meienbrock, M. J. Naumer, O. Doehrmann, et al., “Retinotopic effects during spatial audio-visual integration,” Neuropsychologia, 45, No. 3, 531–539 (2007).

    Article  PubMed  CAS  Google Scholar 

  23. F. Morrell, “Specificity of non-visual input to visual cortical neurons,” EEG Clin. Neurophysiol., 31, No. 4, 413–414 (1971).

    Article  Google Scholar 

  24. F. Morrell, “Visual system’s view of acoustic space,” Nature, 238, No. 5358, 44–46 (1972).

    Article  PubMed  CAS  Google Scholar 

  25. K. S. Rockland and H. Ojima, “Multisensory convergence in calcarine visual areas in macaque monkey,” Int. J. Psychophysiol., 50, No. 1–2, 19–26 (2003).

    Article  PubMed  Google Scholar 

  26. V. Romei, M. M. Murray, L. B. Merabet, and G. Thut, “Occipital transcranial magnetic stimulation has opposing effects on visual and auditory stimulus: implications for multisensory interactions,” J. Neurosci., 27, No. 43, 11465–11472 (2007).

    Article  PubMed  CAS  Google Scholar 

  27. L. Shams,Y. Kamitan, S. Thompson, and S. Shimoto, “Sound alters visual evoked potentials in humans,” Neuroreport, 12, No. 17, 3849–3852 (2001).

    Article  PubMed  CAS  Google Scholar 

  28. D. N. Spinelli, A. Starr, and T. W. Barrett, “Auditory specificity in unit recording from cat’s visual cortex,” Exp. Neurol., 22, No. 1, 75–84 (1968).

    Article  PubMed  CAS  Google Scholar 

  29. B. E. Stein, N. London, L. K. Wilkinson, and D. D. Price, “Enhancement of perceived visual intensity by auditory stimuli: A psychophysical analysis,” J. Cogn. Neurosci., 8, No. 6, 497–506 (1996).

    Article  PubMed  CAS  Google Scholar 

  30. A. M. Wyrwitz, N. Chen, L. Li, et al., “fMRI of visual system activation in conscious rabbit,” Magn. Reson. Med., 44, No. 3, 474–478 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Polyanskii.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 62, No. 4, pp. 440–452, July–August, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polyanskii, V.B., Alymkulov, D.E., Evtikhin, D.V. et al. Specific Modulation by Sound of Primary Visual Cortex Neuron Responses to Light Stimuli of Different Intensities in Rabbits. Neurosci Behav Physi 43, 1058–1067 (2013). https://doi.org/10.1007/s11055-013-9850-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-013-9850-9

Keywords

Navigation