Skip to main content
Log in

Analysis of Sensory Information by Neurons in the Sensorimotor and Visual Cortex in Rabbits with a Rhythmic Protective Dominant

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

A series of experiments was performed to analyze the linked activity of neurons recorded simultaneously in the sensorimotor and visual areas of the cortex in rabbits with a defensive dominant in the CNS. The dominant focus was formed in the CNS using threshold electrical stimulation of the left paw at a frequency of 0.5 Hz. The analysis showed that trained animals responded to the tone by twitching the paw only when functional connections formed closed circuits, with a variety of different configurations, providing for circulation of rhythmic information, in the intervals between tests. In addition, these studies showed that this information was retained for weeks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amassian, V. E. and Stewart, M., “Motor cortical and other cortical interneuronal networks that generate very high frequency waves,” Suppl. Clin. Neurophysiol., 56, 119–142 (2003).

    Article  Google Scholar 

  • Bogdanov, A. V. and Galashina, A. G., “Analysis of linked spike activity in pairs of neurons in microstructures in the cerebral cortex,” Ros. Fiziol. Zh. im. I. M. Sechenova, 86, No. 5, 497–506 (2000).

    CAS  Google Scholar 

  • Bogdanov, A. V. and Galashina, A. G., “Linked sensorimotor cortex neuron activity in rabbits in a defensive dominant and ‘animal hypnosis,’” Zh. Vyssh. Nerv. Deyat. I. P. Pavlova, 58, No. 2,183–193 (2008).

    CAS  Google Scholar 

  • Bogdanov, A. V. and Galashina, A. G., “Time distribution of linked spike activity between rabbit sensorimotor cortex neurons in a rhythmic motor dominant,” Zh. Vyssh. Nerv. Deyat. I. P. Pavlova, 48, No. 4, 630–639 (1998).

    CAS  Google Scholar 

  • Bogdanov, A. V. and Galashina, A. G., “Transmission of encoded information across neuronal systems using a rhythmic motor dominant as an example,” Zh. Vyssh. Nerv. Deyat. I. P. Pavlova, 49, No. 6, 971–984 (1999).

    CAS  Google Scholar 

  • Bogdanov, A. V. and Galashina, A. G., Functional Connections of Motor Cortex Neurons in Learning (Temporospatial Organization),, Nauka, Moscow (2003).

    Google Scholar 

  • Brecht, M., Singer W, and Engel, A. K., “Patterns of synchronization in the superior colliculus of anesthetized cats,” J. Neurosci., 19, No. 9, 3567–3579 (1999).

    Article  CAS  Google Scholar 

  • Chang, E. Y., Morris, K. F., Shannon, R., and Lindsey, B. G. J., “Repeated sequences of interspike intervals in baroresponsive respiratory related neuronal assemblies of the cat brain stem,” Neurophysiology, 84, No. 3, 1136–1148 (2000).

    Article  CAS  Google Scholar 

  • Chawla, D., Lumer, E. D., and Friston, K. J., “The relationship between synchronization among neuronal populations and their mean activity levels,” Neural. Comput., 11, No. 6, 1389–1411 (1999).

    Article  CAS  Google Scholar 

  • Cobb, S. R., Buhl, E. H., Halasy, K., Paulsen, O., and Somogyi, P., “Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons,” Nature, 378, No. 6552, 75–78 (1995).

    Article  CAS  Google Scholar 

  • Donoghue, J. P., Sanes, J. N., Hatsopoulos, N. G., and Gaal, G., “Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements,” J. Neurophysiol., 79, No. 1, 159–173 (1998).

    Article  CAS  Google Scholar 

  • Galashina, A. G, and Bogdanov, A. V., “The distribution in time and space of linked spikes in closed neuronal circuits in the rabbit sensorimotor cortex (a rhythmic defensive dominant),” Zh. Vyssh. Nerv. Deyat. I. P. Pavlova, 62, No. 2, 197–207 (2012).

    CAS  Google Scholar 

  • Gochin, P. M., Colombo, M., Dolfrnan, G. A., Gerstein, G. L., and Gross, C. G., “Neural ensemble coding in inferior temporal cortex,” J. Neurophysiol., 71, No. 6, 2325–2337 (1994).

    Article  CAS  Google Scholar 

  • Gochin, P. M., Miller, E. K., Gross, C. G., and Gerstein, G. L., “Functional interactions among neurons in inferior temporal cortex of the awake macaque,” Exp. Brain Res., 84, No. 3, 505–516 (1991).

    Article  CAS  Google Scholar 

  • Ikegaya, Y., Aaron, G., Cossart, R., Aronov, D., Lampl, I., Ferster, D., and Yuste, R., “Synfire chains and cortical songs: temporal modules of cortical activity,” Science, 304, No. 5670, 559–564 (2004).

    Article  CAS  Google Scholar 

  • Kreiman, G., Krahe, R., Metzner, W., Koch, C., and Gabbiani, F., “Robustness and variability of neuronal coding by amplitude-sensitive afferents in the weakly electric fish eigenmannia,” J. Neurophysiol., 84, No. 1, 189–204 (2000).

    Article  CAS  Google Scholar 

  • Kretzberg, J., Warzecha, A. K., and Egelhaaf, M., “Neural coding with graded membrane potential changes and spikes,” J. Comput. Neurosci., 11, No. 2, 153–164 (2001).

    Article  CAS  Google Scholar 

  • Lestienne, R. and Tuckwell, H. C., “The significance of precisely replicating pattern in mammalian CNS spike trains,” Neuroscience, 82, No. 2, 315–336 (1998).

    Article  CAS  Google Scholar 

  • Maciunas, K., Snipas, M., Paulauskas, N., and Bukauskas, F. F., “Reverberation of excitation in neuronal networks interconnected through voltage-gated gap junction channels,” J. Gen. Physiol., 147, No. 3, 273–288 (2016).

    Article  Google Scholar 

  • Maldonado, P. E., Friedman-Hill, S., and Gray, C. M., “Dynamics of striate cortical activity in the alert macaque: II. Fast time scale synchronization,” Cereb. Cortex, 10, No. 11, 1117–1131 (2000).

    Article  CAS  Google Scholar 

  • Nadasdy, Z., “Spike sequences and their consequences,” J. Physiol. Paris, 94, No. 5–6, 505–524 (2000).

    Article  CAS  Google Scholar 

  • Nirenberg, S. and Latham, P. E., “Decoding neuronal spike trains: how important are correlations?,” Proc. Natl. Acad. Sci. USA, 100, No. 12, 7348–7353 (2003).

    Article  CAS  Google Scholar 

  • Raastad, M. and Kiehn, O., “Spike coding during locomotor network activity in ventrally located neurons in the isolated spinal cord from neonatal rat,” J. Neurophysiol., 83, No. 5, 2825–2834 (2000).

    Article  CAS  Google Scholar 

  • Reich, D. S., Victor, J. D., Knight, B. W., Ozaki, T., and Kaplan, E., “Response variability and timing precision of neuronal spike trains in vivo,” J. Neurophysiol., 77, No. 5, 2836–2841 (1997).

    Article  CAS  Google Scholar 

  • Roman, F. S., Truchet, B., Chaillan, F. A., Marchetti, E., and Soumireu-Mourat, B., “Olfactory associative discrimination: a model for studying modifications of synaptic efficacy in neuronal networks supporting long-term memory,” Rev. Neuroscience, 15, No. 1, 1–17 (2004).

    Article  Google Scholar 

  • Romo, R., Hernandez, A., Zainos, A., and Salinas, E., “Correlated neuronal discharges that increase coding efficiency during perceptual discrimination,” Neuron, 38, No. 4, 649–657 (2003).

    Article  CAS  Google Scholar 

  • Rusinov, V. S., “The dominant as a factor in trace formation in the central nervous system,” in: Mechanisms of Memory, Nauka, Leningrad (1987), pp. 197–233.

  • Schlecht, S. J. and Habets, E. A., “Time-varying feedback matrices in feedback delay networks and their application in artificial reverberation,” J. Acoust. Soc. Am., 138, No. 3, 1389–98 (2015).

    Article  Google Scholar 

  • Shu, Y., Hasenstaub, A., and McCormick, D. A., “Turning on and off recurrent balanced cortical activity,” Nature, 423, No. 6937, 288–293 (2003).

    Article  CAS  Google Scholar 

  • Slama, M. C. and Delgutte, B., “Neural coding of sound envelope in reverberant environments,” J. Neurosci., 35, No. 10, 4452–68 (2015).

    Article  CAS  Google Scholar 

  • Tetko, I. V. and Villa, A. E., “A pattern grouping algorithm for analysis of spatiotemporal patterns in neuronal spike trains. 2. Application to simultaneous single unit recordings,” J. Neurosci. Meth., 105, No. 1, 15–24 (2001).

    Article  CAS  Google Scholar 

  • Tiesinga, P. H. and Sejnowski, T. J., “Rapid temporal modulation of synchrony by competition in cortical interneuron networks,” Neural. Comput., 16, No. 2, 251–275 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Galashina.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 67, No. 3, pp. 312–321, May–June, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galashina, A.G., Bogdanov, A.V. & Sakharov, D.S. Analysis of Sensory Information by Neurons in the Sensorimotor and Visual Cortex in Rabbits with a Rhythmic Protective Dominant. Neurosci Behav Physi 48, 999–1005 (2018). https://doi.org/10.1007/s11055-018-0661-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-018-0661-x

Keywords

Navigation