Skip to main content
Log in

Correlation between the Activities of Sensorimotor and Visual Cortex Neurons during Formation of a Cryptic Focus of Excitation (a defensive dominant) in the Cortical Representation of the Forelimb in Rabbits

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Cross-correlation analysis was used to study the interaction of neurons in the sensorimotor and visual areas of the cortex in rabbits with cryptic foci of excitation formed in the representation area of the forelimb; the role of sensorimotor cortex neurons responding to light in this interaction was also studied. The results showed that in rabbits with cryptic foci of excitation, sensorimotor cortex neurons responding to light stimuli showed correlational relationships with cells in the visual cortex significantly more frequently than neurons not responding to light, while visual cortex neurons significantly more frequently formed correlational relationships with sensorimotor cortex neurons not responding to the stimulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Babmindra, T. A. Bragina, I. P. Ionov, and N. R. Nurtdinov, Structure and Models of Neuronal Complexes of the Brain [in Russian], Nauka, Leningrad (1988).

    Google Scholar 

  2. A. V. Bogdanov and A. G. Galashina, Functional Connections of Motor Cortex Neurons in Learning: Temporospatial Organization [in Russian], Nauka, Moscow (2003).

    Google Scholar 

  3. O. Z. Bomshtein, “Studies of changes in the responses of visual cortex neurons to flashes of light in anodic depolarization of the sensorimotor cortex,” in: Electrical Activity of the Brain during the Formation of Simple Forms of Temporal Links [in Russian], V. S. Rusinov (ed.), Nauka, Moscow (1972), pp. 63–73.

    Google Scholar 

  4. L. L. Voronin and V. I. Skrebitskii, “Extra- and intracellular studies of the responses of motor cortex neurons in conscious rabbits to sound and light stimuli,” Zh. Vyssh. Nerv. Deyat., 17, No. 3, 523–533 (1967).

    CAS  Google Scholar 

  5. A. G. Galashina and A. V. Bogdanova, “Assessment of the effectiveness of interactions of rabbit sensorimotor cortex neurons before and after creation of a defensive dominant,” Zh. Vyssh. Nerv. Deyat., 50, No. 4, 608–611 (2000).

    CAS  Google Scholar 

  6. M. N. Zhadin, B. V. Bakharev, and L. P. Yakupova, “Cross-correlation analysis of the activity of visual cortex cells separate by different distances in conscious rabbits,” Zh. Vyssh. Nerv. Deyat., 36, No. 3, 529–537 (1986).

    CAS  Google Scholar 

  7. M. N. Zhadin, A. M. Melekhova, I. Ya. Podolskii, and G. I. Shulgina, “Neuron interactions as the basis for the spatial synchronization of the EEG,” in: Spatial Synchronization of Brain Biopotentials [in Russian], M. N. Livanov (ed.), Nauka, Moscow (1973), pp. 105–128.

    Google Scholar 

  8. T. D. Lipenetskaya and A. A. Sokolova, “Neuron activity in the rabbit motor cortex on creation of a dominant focus,” Zh. Vyssh. Nerv. Deyat., 19, No. 7, 783–792 (1969).

    Google Scholar 

  9. A. K. Malikova, “Evoked cat motor cortex responses to light and sound stimuli,” Zh. Vyssh. Nerv. Deyat., 23, No. 4, 836–844 (1973).

    CAS  Google Scholar 

  10. G. Kh. Merzhanova and S. A. Varashkevich, “The nature of interneuronal connections of the visual and sensorimotor areas of the cortex in animals in different functional states,” Zh. Vyssh. Nerv. Deyat., 31, No. 3, 637–639 (1981).

    Google Scholar 

  11. L. A. Novikova and V. I. Belyaev, “Effects of functional involvement of visual afferentation on cortical and reticular formation electrical activity in rabbits,” Zh. Vyssh. Nerv. Deyat., 13, No. 4, 715–725 (1963).

    CAS  Google Scholar 

  12. G. N. Oleinik and E. S. Mikhailova, “Baseline and evoked activity of neurons in the visual area of the cortex in a mutant mouse strain,” Neirofiziologiya, 8, No. 6, 56 8–574 (1976).

    CAS  Google Scholar 

  13. A. G. Rumyantseva, M. M. Svinov, and P. I. Kalinin, “Excitability of the sensorimotor and visual neocortex in the presence of a motor dominant,” in: Electrophysiological Studies of Stationary Activity in the Brain [in Russian], M. N. Livanov (ed.), Nauka, Moscow (1983), pp. 93–102.

    Google Scholar 

  14. V. G. Skrebitskii and E. G. Shkolnik-Yarros, “The representation of the visual analyzer in the cerebral cortex,” Zh. Vyssh. Nerv. Deyat., 14, No. 2, 278–286 (1964).

    Google Scholar 

  15. D. A. Farber and E. O. Volkova, “The multisensory properties of neurons in the sensorimotor cortex in rabbits during early ontogeny,” Zh. Vyssh. Nerv. Deyat., 20, No. 4, 628–636 (1970).

    CAS  Google Scholar 

  16. D. S. Barth, N. Goldberg, B. Brett, and S. Di, “The spatiotemporal organization of auditory, visual, and auditory-visual evoked potentials in rat cortex,” Brain Res., 678, No. 1–2, 177–190 (1995).

    Article  PubMed  Google Scholar 

  17. M. S. Beauchamp, N. E. Yasar, R. E. Frye, and T. Ro, “Touch, sound and vision in human superior temporal sulcus,” Neuroimage, 41, No. 3, 1011–1020 (2008).

    Article  PubMed  Google Scholar 

  18. C. Cappe and P. Barone, “Heteromodal connections supporting multisensory integration at low levels of cortical processing in the monkey,” Eur. J. Neurosci., 22, No. 11, 2886–2902 (2005).

    Article  PubMed  Google Scholar 

  19. P. Cazard and P. Buser, “Sensory responses recorded at the level of the motor cortex in the rabbit,” EEG Clin. Neurophysiol., 15, 403–412 (1963).

    Article  CAS  Google Scholar 

  20. H. T. Chang, “Cortical response to stimulation at lateral geniculate body and the potentiation thereof by continuous illumination of retina,” J. Neurophysiol., 15, No. 1, 5–26 (1952).

    PubMed  CAS  Google Scholar 

  21. J. W. Dickson and G. L. Gerstein, “Interaction between neurons in auditory cortex of the cat,” J. Neurophysiol., 37, No. 6, 1239–1261 (1974).

    PubMed  CAS  Google Scholar 

  22. A. Falchier, S. Clavagnier, P. Barone, and H. Kennedy, “Anatomical evidence of multimodal integration in primate striate cortex,” J. Neurosci., 22, No. 13, 5749–5759 (2002).

    PubMed  CAS  Google Scholar 

  23. J. W. Lewis and D. V. Van Essen, “Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey,” J. Comp. Neurol., 428, No. 1, 112–137 (2000).

    Article  PubMed  CAS  Google Scholar 

  24. J. Mishra, A. Martinez, and S. A. Hillyard, “Cortical processes underlying sound-induced flash fusion,” Brain Res., 1242, 102–115 (2008).

    Article  PubMed  CAS  Google Scholar 

  25. A. Mohedano-Moriano, A. Martinez-Marcos, M. Muñoz, et al., “Reciprocal connections between olfactory structures and the cortex of the rostral superior temporal sulcus in the Macaca fascicularis monkey,” Eur. J. Neurosci., 22, No. 10, 2503–2518 (2005).

    Article  PubMed  CAS  Google Scholar 

  26. C. Pantev, C. Lappe, S. C. Herholz, and L. Trainor, “Auditorysomatosensory integration and cortical plasticity in musical training,” Ann. N.Y. Acad. Sci., 1169, 143–150 (2009).

    Article  PubMed  Google Scholar 

  27. P. R. Roelfsema, A. K. Engel, P. König, and W. Singer, “Visuomotor integration is associated with zero time-lag synchronization among cortical areas,” Nature, 385, No. 6612, 157–161 (1997).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Karamysheva.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 61, No. 1, pp. 67–74, January–February, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karamysheva, N.N., Bogdanov, A.V., Galashina, A.G. et al. Correlation between the Activities of Sensorimotor and Visual Cortex Neurons during Formation of a Cryptic Focus of Excitation (a defensive dominant) in the Cortical Representation of the Forelimb in Rabbits. Neurosci Behav Physi 42, 561–566 (2012). https://doi.org/10.1007/s11055-012-9601-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-012-9601-3

Keywords

Navigation