Skip to main content
Log in

From Quantum to Integrative Physiology

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Physiology studies the functions of the various organs and systems, along with the nature of their regulation in supporting the functioning of the body as a whole. The nervous and endocrine systems respond to stimuli and causality plays a key role in their activity. The physicochemical conditions of internal body fluids provide the background and serve as active modulators of their regulatory functions. The formation of local regulatory molecules (autacoids) is based largely on probabilistic events. There are grounds for the suggestion that the appearance of regulatory molecules during the formation of regulatory systems in cellular evolution was based on statistically probable quantum events: random appearance in cells during the metabolism of peptides and lipids, hydrolysis of larger molecules to fragments, and quanta which acquired physiological activity as regulators of functions. In terms of their adaptive value, Darwinian mechanisms recorded these processes in the genome as the mechanism of polypeptide synthesis by reading the genome was fixed. The formation of multicellular organisms was accompanied by the establishment of regulatory systems and their integration under the aegis of the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. K. Anokhin, Biology and Neurophysiology of the Conditioned Reflex [in Russian], Meditsina, Moscow (1968).

    Google Scholar 

  2. J. Barcroft, Basic Features of the Architecture of Physiological Functions [Russian translation], GIBML, Moscow, Leningrad (1937).

    Google Scholar 

  3. N. P. Veselkin and Yu. V. Natochin, “Messenger multiplicity: its possible functional significance in the evolution of regulatory systems,” Zh. Evolyuts. Biokhim. Fiziol., 27, No. 6, 785–795 (1991).

    CAS  Google Scholar 

  4. A. K. Guyton and J. Hall, Textbook of Medical Physiology [Russian translation], Logosfera, Moscow (2008).

    Google Scholar 

  5. A. A. Zavarzin and A. V. Rumyantsev, Histology [in Russian], Medgiz, Moscow (1946).

    Google Scholar 

  6. “Integrative Physiology,” International Physiome Project: Conf. Proc., Ekaterinburg (2004).

  7. E. M. Kreps, Cell Membrane Lipids: Evolution of Brain Lipids. The Adaptive Functions of Lipids [in Russian], Nauka, Leningrad (1981).

    Google Scholar 

  8. E. M. Kreps, My Interesting Life. Selected Works [in Russian], Nauka, St. Petersburg (2007).

    Google Scholar 

  9. A. A. Kuznetsova and Yu. V. Natochin, “Studies of the development of renal function and its regulation in children on the background of pathological processes,” Zh. Evolyuts. Biokhim. Fiziol., 41, No. 3, 277–284 (2005).

    CAS  Google Scholar 

  10. A. I. Malomuzh and E. E. Nikolskii, “Non-quantum transmitter release: myth or reality?” Usp. Fiziol. Nauk., 41, No. 2, 27–43 (2010).

    PubMed  CAS  Google Scholar 

  11. O. Moroz, Is Truth Beautiful? Znanie, Moscow (1982).

    Google Scholar 

  12. O. V. Natochin, The Ion-Regulating Function of the Kidneys, Nauka, Leningrad (1976).

    Google Scholar 

  13. O. V. Natochin, “News on the nature of regulation in the human body,” Vestnik Rus. Akad. Nauk., 70, No. 1, 21–35 (2000).

    Google Scholar 

  14. Yu. V. Natochin, “Architecture of physiological functions: the same basis, new boundaries,” Ros. Fiziol. Zh. im. I. M. Sechenova, 88, No. 2, 129–143 (2002).

    CAS  Google Scholar 

  15. Yu. V. Natochin, “The appearance of membranes,” in: Questions in the Origin of Life [in Russian], PIN Russian Academy of Sciences, Moscow (2009), pp. 215–228.

    Google Scholar 

  16. Yu. V. Natochin, T. A. Kanashkina, D. Mordvintsev, and E. I. Shakhmatova, “Vasopressin receptors: structure and stimulation of L-desaminoarginine-vasotocin in rats,” Ros. Fiziol. Zh. im. I. M. Sechenova, 93, No. 6, 625–634 (2007).

    CAS  Google Scholar 

  17. Yu. V. Natochin and N. A. Mukhin, Introduction to Nephrology [in Russian], GEOTAR, Moscow (2007).

    Google Scholar 

  18. Yu. V. Natochin and E. I. Shakhmatova, “A hypothesis of the origin of the hydro-osmotic effect of arginine vasotocin,” Dokl. Ros. Akad. Nauk., 389, No. 3, 413–416 (2003).

    Google Scholar 

  19. Scientific Session on the Problems of Academician I. P. Pavlov’s Physiology Lectures June 28 – July 4, 1950, Verbatim Record [in Russian], USSR Academy of Sciences Press, MV (1950).

  20. L. A. Orbeli, “Physiology of the kidneys,” in: L. A. Orbeli: Selected Works [in Russian], Nauka, Moscow, Leningrad (1966), Vol. 4, pp. 85–106.

    Google Scholar 

  21. I. P. Pavlov, Selected Works [in Russian], Meditsina, Moscow (1999).

    Google Scholar 

  22. I. P. Pavlov, “A method for collecting urine,” Ezhened. Clin. Gaz., No. 30, 479–480 (1883).

    Google Scholar 

  23. A. A. Rempel, “Quantum dots in technology and medicine,” Vestn. UrO Ros. Akad. Nauk., No. 2, 45–51 (2010).

    Google Scholar 

  24. A. Yu. Rozanov, “Pseudomorphoses of microbes in meteorites,” in: Questions in the Origin of Life [in Russian], PIN Russian Academy of Sciences, Moscow (2009), pp. 158–165.

    Google Scholar 

  25. J. A. Whitworth and J. R. Lawrence (eds.), Handbook of Nephrology [Russian translation], Meditsina, Moscow (2000).

    Google Scholar 

  26. E. D. Sverdlov, A View of Life through the Window of the Genome [in Russian], Nauka, Moscow (2009), Vol. 1.

    Google Scholar 

  27. M. G. Sergeeva and A. T. Varfolomeeva, The Arachidonic Acid Cascade [in Russian], Narodnoe Obrazovanie, Moscow (2006).

    Google Scholar 

  28. I. M. Sechenov, Selected Works [in Russian], USSR Academy of Sciences Press, Moscow (1952), Vol. 1.

    Google Scholar 

  29. K. V. Sudakov, Reflexes and Functional Systems [in Russian], Ya. Mudryi Novgorod State University Press, Novgorod (1997).

    Google Scholar 

  30. Yu. V. Natochin (ed.), Physiology of Water-Salt Balance and the Kidneys [in Russian], Nauka, Leningrad (1993).

    Google Scholar 

  31. V. M. Pokrovskii and G. F. Korotko (eds.), Human Physiology: Handbook, Meditsina, Moscow (2007).

    Google Scholar 

  32. J. Griffin and S. Ojeda (eds.), Physiology of the Endocrine System [Russian translation], BINOM Laboratoriya Znanii, Moscow (2008).

    Google Scholar 

  33. D. L. Firsov, R. G. Parnova, and Yu. V. Natochin, “Free arachidonic acid as a messenger and modulator in the mechanism of the hydroosmotic effect of vasopressin,” Dokl. Akad. Nauk., 325, No. 6, 1252–1254 (1992).

    PubMed  CAS  Google Scholar 

  34. R. M. Khaitov, G. A. Ignatieva, and I. G. Sidorovich, Immunology in Health and Disease: A Handbook [in Russian], Meditsina, Moscow (2010).

    Google Scholar 

  35. E. Shrödinger, What is Life from the Point of View of Physics?, GIPL, Moscow (1947).

    Google Scholar 

  36. P. Agre, L. S. King, M. Yasui,W. B. Guggino, O. P. Ottersen,Y. Fujiyoshi, A. Engel, and S. Nielsen, “Aquaporins water channels – from atomic structure to clinical medicine,” J. Physiol., 542, 3–6 (2002).

    Article  PubMed  CAS  Google Scholar 

  37. C. Bernard, Leçons sur les Phénomènes de la Vie Communs aux Animaux et aux Vegetaux, J. B. Balliére et Fils, Paris (1878).

    Google Scholar 

  38. Z. T. Bloomgarten, “Incretin concepts,” Diabetes Care, 33, No. 2, 20–25 (2010).

    Article  Google Scholar 

  39. W. B. Cannon, “Organization for physiological homeostasis,” Physiol. Rev., 9, 399–431 (1929).

    Google Scholar 

  40. R. M. Case, D. Eisner, A. Gurney, O. Jones, S. Muallem, and A. Verkhratsky, “Evolution of calcium homeostasis: from birth of the first cell to an omnipresent signalling system,” Cell Calcium, 42, 345–350 (2007).

    Article  PubMed  CAS  Google Scholar 

  41. N. Farman and B. Bocchi, “Mineralcorticoid selectivity: molecular and cellular aspects,” Kidney Int., 57, No. 4, 1364–1369 (2000).

    Article  PubMed  CAS  Google Scholar 

  42. J. W. Fisher, “Erythropoietin: physiology and pharmacology update,” Exp. Biol. Med., 228, No. 1, 1–14 (2003).

    CAS  Google Scholar 

  43. V. T. Ivanov and O. N. Yatskin, “Peptidomics: a logical sequel to proteomics,” Exp. Rev. Proteomics, 2, No. 4, 463–473 (2005).

    Article  CAS  Google Scholar 

  44. D. E. Kohan, “The renal medullary endothelin system in control of sodium and water excretion and systemic blood pressure,” Curr. Opin. Nephrol. Hypertens., 15, No. 1, 34–40 (2006).

    Article  PubMed  CAS  Google Scholar 

  45. C. P. Landowski,Y. Suzuki, and M. Hediger, “The mammalian transporter families,” in: Seldin and Giebischs the Kidney. Physiology and Pathophysiology, R. J. Alpern and St. C. Hebert (eds.), Elsevier, Amsterdam (2008), pp. 91–146.

    Chapter  Google Scholar 

  46. G. E. Linthorst, C. C. Folman, R. W. van Olden, and A. E. von dem Borne, “Plasma thrombopoietin levels in patients with chronic renal failure,” Hemat. J., 3, No. 1, 38–42 (2002).

    Article  CAS  Google Scholar 

  47. Yu. V. Natochin and T. V. Chernigovskaya, “Evolutionary physiology: history, principles,” Comp. Biochem. Physiol., 118A, 63–79 (1997).

    Article  CAS  Google Scholar 

  48. P. I. Nedvetsky, A. Tammag, S. Beulhausen, G. Valentig,W. Rosenthal, and E. Klussmann, “Regulation of aquaporin-2 trafficking,” Handb. Exp. Pharmacol., 190, 133–157 (2009).

    Article  PubMed  CAS  Google Scholar 

  49. D. Noble, “Claude Bernard: the first systems biologist, and the future of physiology,” Exp. Physiol., 93, No. 1, 16–26 (2008).

    Article  PubMed  Google Scholar 

  50. D. Noble and C. A. R. Boyd, “The challenge of integrative physiology,” in: The Logic of Life, C. A. R. Boyd and D. Noble (eds.), Oxford University Press, Oxford (1993), pp. 1–13.

    Google Scholar 

  51. H. A. Praetorius, and J. Leipziger, “Intrarenal purinergic signaling in the control of renal tubular transport,” Annu. Rev. Physiol., 72, 377–393 (2010).

    Article  PubMed  CAS  Google Scholar 

  52. J. Smolders, J. Damoiseaux, P. Menheere, and R. Hupperts, “Vitamin D as an immune modulator in multiple sclerosis. A review,” J. Neuroimmunol., 194, No. 1–2, 7–17 (2008).

    Article  PubMed  CAS  Google Scholar 

  53. E. C. von Rosenvinge and J. P. Raufman, “Gastrointestinal peptides and regulation of gastric acid secretion,” Curr. Opin. Endocrinol. Diabetes Res., 17, No. 1, 40–43 (2010).

    Google Scholar 

  54. J. A. Williams, “Regulation of acinar cell function in the pancreas,” Curr. Opin. Gastroenterol., 26, No. 5, 478–483 (2010).

    Article  PubMed  Google Scholar 

  55. U. Windhorst, “Regulatory principles in physiology,” in: Comprehensive Human Physiology. From Cellular Mechanisms to Integration, R. Gregor and U. Windhorst (eds.), Springer, Berlin (1996), pp. 21–42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Natochin.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 96, No. 11, pp. 1043–1061, November, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Natochin, Y.V. From Quantum to Integrative Physiology. Neurosci Behav Physi 42, 271–284 (2012). https://doi.org/10.1007/s11055-012-9563-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-012-9563-5

Keywords

Navigation