Skip to main content

Regulation of Aquaporin-2 Trafficking

  • Chapter
Aquaporins

Principal cells lining renal collecting ducts control the fine-tuning of body water homeostasis by regulating water reabsorption through the water channels aquaporin-2 (AQP2), aquaporin-3 (AQP3), and aquaporin-4 (AQP4). While the localization of AQP2 is subject to regulation by arginine-vasopressin (AVP), AQP3 and AQP4 are constitutively expressed in the basolateral plasma membrane. AVP adjusts the amount of AQP2 in the plasma membrane by triggering its redistribution from intracellular vesicles into the plasma membrane. This permits water entry into the cells and water exit through AQP3 and AQP4. The translocation of AQP2 is initiated by an increase in cAMP following V2R activation through AVP. The AVP-induced rise in cAMP activates protein kinase A (PKA), which in turn phosphorylates AQP2, and thereby triggers the redistribution of AQP2. Several proteins participating in the control of cAMP-dependent AQP2 trafficking have been identified; for example, A kinase anchoring proteins (AKAPs) tethering PKA to cellular compartments; phosphodiesterases (PDEs) regulating the local cAMP level; cytoskeletal components such as F-actin and microtubules; small GTPases of the Rho family controlling cytoskeletal dynamics; motor proteins transporting AQP2-bearing vesicles to and from the plasma membrane for exocytic insertion and endocytic retrieval; SNAREs inducing membrane fusions, hsc70, a chaperone, important for endocytic retrieval. In addition, cAMP-independent mechanisms of translocation mainly involving the F-actin cytoskeleton have been uncovered. Defects of AQP2 trafficking cause diseases such as nephrogenic diabetes insipidus (NDI), a disorder characterized by a massive loss of hypoosmotic urine.

This review summarizes recent data elucidating molecular mechanisms underlying the trafficking of AQP2. In particular, we focus on proteins involved in the regulation of trafficking, and physiological and pathophysiological stimuli determining the cellular localization of AQP2. The identification of proteins and protein—protein interactions may lead to the development of drugs targeting AQP2 trafficking. Such drugs may be suitable for the treatment of diseases associated with dysregulation of body water homeostasis, including NDI or cardiovascular diseases (e.g., chronic heart failure) where the AVP level is elevated, inducing excessive water retention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Agre P (2006) The aquaporin water channels. Proc Am Thorac Soc 3:5–13

    Article  PubMed  CAS  Google Scholar 

  • Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, Engel A, Nielsen S (2002) Aquaporin water channels—from atomic structure to clinical medicine. J Physiol 542:3–16

    Article  PubMed  CAS  Google Scholar 

  • Ali F, Guglin M, Vaitkevicius P, Ghali JK (2007) Therapeutic potential of vasopressin receptor antagonists. Drugs 67:847–858

    Article  PubMed  CAS  Google Scholar 

  • Andersson KE, Arner B (1972) Effects of DDAVP, a synthetic analogue of vasopressin, in patients with cranial diabetes insipidus. Acta Med Scand 192:21–27

    PubMed  CAS  Google Scholar 

  • Aronson AS, Andersson KE, Bergstrand CG, Mulder JL (1973) Treatment of diabetes insipidus in children with DDAVP, a synthetic analogue of vasopressin. Acta Paediatr Scand 62:133–140

    Article  PubMed  CAS  Google Scholar 

  • Barile M, Pisitkun T, Yu MJ, Chou CL, Verbalis MJ, Shen RF, Knepper MA (2005) Large scale protein identification in intracellular aquaporin-2 vesicles from renal inner medullary collecting duct. Mol Cell Proteomics 4:1095–1106

    Article  PubMed  CAS  Google Scholar 

  • Bichet DG (1996) Vasopressin receptors in health and disease. Kidney Int 49:1706–1711

    Article  PubMed  CAS  Google Scholar 

  • Bichet DG (2006) Nephrogenic diabetes insipidus. Adv Chronic Kidney Dis 13:96–104

    Article  PubMed  Google Scholar 

  • Bichet DG, Ruel N, Arthus MF, Lonergan M (1990) Rolipram, a phosphodiesterase inhibitor, in the treatment of two male patients with congenital nephrogenic diabetes insipidus. Nephron 56:449–450

    Article  PubMed  CAS  Google Scholar 

  • Boccalandro C, de Mattia F, Guo DC, Xue L, Orlander P, King TM, Gupta P, Deen PMT, Lavis VR, Milewicz DM (2004) Characterization of an aquaporin-2 water channel gene mutation causing partial nephrogenic diabetes insipidus in a Mexican family: evidence of increased frequency of the mutation in the town of origin. J Am Soc Nephrol 15:1223–1231

    Article  PubMed  CAS  Google Scholar 

  • Bouley R, Breton S, Sun TX, McLaughlin M, Nsumu NN, Lin HY, Ausiello DA, Brown D (2000) Nitric oxide and atrial natriuretic factor stimulate cGMP-dependent membrane insertion of aquaporin 2 in renal epithelial cells. J Clin Invest 106:1115–1126

    Article  PubMed  CAS  Google Scholar 

  • Bouley R, Pastor-Soler N, Cohen O, McLaughlin M, Breton S, Brown D (2005) Stimulation of AQP2 membrane insertion in renal epithelial cells in vitro and in vivo by the cGMP phospho-diesterase inhibitor sildenafil citrate (Viagra). Am J Physiol Renal Physiol 288:F1103–F1112

    Article  PubMed  CAS  Google Scholar 

  • Bourguet J, Chevalier J, Hugon JS (1976) Alterations in membrane-associated particle distribution during antidiuretic challenge in frog urinary bladder epithelium. Biophys J 16:627–639

    PubMed  CAS  Google Scholar 

  • Bretscher A (1999) Regulation of cortical structure by the ezrin—radixin—moesin protein family. Curr Opin Cell Biol 11:109–116

    Article  PubMed  CAS  Google Scholar 

  • Bretscher A, Edwards K, Fehon RG (2002) ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol 3:586–599

    Article  PubMed  CAS  Google Scholar 

  • Brown D (2003) The ins and outs of aquaporin-2 trafficking. Am J Physiol Renal Physiol 284:F893–F901

    PubMed  CAS  Google Scholar 

  • Brown D, Orci L (1983) Vasopressin stimulates formation of coated pits in rat kidney collecting ducts. Nature 302:253–255

    Article  PubMed  CAS  Google Scholar 

  • Canfield MC, Tamarappoo BK, Moses AM, Verkman AS, Holtzman EJ (1997) Identification and characterization of aquaporin-2 water channel mutations causing nephrogenic diabetes in-sipidus with partial vasopressin response. Hum Mol Genet 6:1865–1871

    Article  PubMed  CAS  Google Scholar 

  • Carmosino M, Procino G, Tamma G, Mannucci R, Svelto M, Valenti G (2007) Trafficking and phosphorylation dynamics of AQP4 in histamine-treated human gastric cells. Biol Cell 99:25–36

    Article  PubMed  CAS  Google Scholar 

  • Caron E (2003) Cellular functions of the Rap1 GTP-binding protein: a pattern emerges. J Cell Sci 116:435–440

    Article  PubMed  CAS  Google Scholar 

  • Carroll P, Al Mojalli H, Al Abbad A, Al Hassoun I, Al Hamed M, Al Amr R, Butt AI, Meyer BF (2006) Novel mutations underlying nephrogenic diabetes insipidus in Arab families. Genet Med 8:443–447

    Article  PubMed  CAS  Google Scholar 

  • Champigneulle A, Siga E, Vassent G, Imbert-Teboul M (1993) V2-like vasopressin receptor mobilizes intracellular Ca2+ in rat medullary collecting tubules. Am J Physiol Renal Physiol 265:F35–F45

    CAS  Google Scholar 

  • Chang HC, Newmyer SL, Hull MJ, Ebersold M, Schmid SL, Mellman I (2002) Hsc70 is required for endocytosis and clathrin function in Drosophila. J Cell Biol 159:477–487

    Article  PubMed  CAS  Google Scholar 

  • Chappell TG, Welch WJ, Schlossman DM, Palter KB, Schlesinger MJ, Rothman JE (1986) Un-coating ATPase is a member of the 70 kilodalton family of stress proteins. Cell 45:3–13

    Article  PubMed  CAS  Google Scholar 

  • Chou CL, Rapko SI, Knepper MA (1998) Phosphoinositide signaling in rat inner medullary collecting duct. Am J Physiol Renal Physiol 274:F564–F572

    CAS  Google Scholar 

  • Chou CL, Yip KP, Michea L, Kador K, Ferraris JD, Wade JB, Knepper MA (2000) Regulation of aquaporin-2 trafficking by vasopressin in the renal collecting duct. Roles of Ryanodine-Sensitive Ca2+ Stores and Calmodulin. J Biol Chem 275:36839–36846

    Article  PubMed  CAS  Google Scholar 

  • Chou CL, Christensen BM, Frische S, Vorum H, Desai RA, Hoffert JD, de Lanerolle P, Nielsen S, Knepper MA (2004) Non-muscle myosin II and myosin light chain kinase are downstream targets for vasopressin signaling in the renal collecting duct. J Biol Chem 279:49026–49035

    Article  PubMed  CAS  Google Scholar 

  • Coffey AK, O'Sullivan DJ, Homma S, Dousa TP, Valtin H (1991) Induction of intramembranous particle clusters in mice with nephrogenic diabetes insipidus. Am J Physiol 261:F640–F646

    PubMed  CAS  Google Scholar 

  • Cohen SI, Fitzgerald MG, Fourman P, Griffiths WJ, De Wardener HE (1957) Polyuria in hyper-parathyroidism. Q J Med 26:423–431

    PubMed  CAS  Google Scholar 

  • Cooper DM (2005) Compartmentalization of adenylate cyclase and camp signaling. Biochem Soc Trans 33:1319–1322

    Article  PubMed  CAS  Google Scholar 

  • Deen PM, Verdijk MA, Knoers NV, Wieringa B, Monnens LA, van Os CH, Van Oost BA (1994) Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science 264:92–95

    Article  PubMed  CAS  Google Scholar 

  • Deen PM, Croes H, van Aubel RA, Ginsel LA, van Os CH (1995) Water channels encoded by mutant aquaporin-2 genes in nephrogenic diabetes insipidus are impaired in their cellular routing. J Clin Invest 95:2291–2296

    Article  PubMed  CAS  Google Scholar 

  • Deen PM, van Aubel RA, van Lieburg AF, van Os CH (1996) Urinary content of aquaporin 1 and 2 in nephrogenic diabetes insipidus. J Am Soc Nephrol 7:836–841

    PubMed  CAS  Google Scholar 

  • Deen PM, Rijss JP, Mulders SM, Errington RJ, van Baal J, van Os CH (1997) Aquaporin-2 trans-fection of Madin—Darby canine kidney cells reconstitutes vasopressin-regulated transcellular osmotic water transport. J Am Soc Nephrol 8:1493–1501

    PubMed  CAS  Google Scholar 

  • de Mattia F, Savelkoul PJ, Bichet DG, Kamsteeg EJ, Konings IB, Marr N, Arthus MF, Lonergan M, van Os CH, van der SP, Robertson G, Deen PM (2004) A novel mechanism in recessive nephrogenic diabetes insipidus: wild-type aquaporin-2 rescues the apical membrane expression of intracellularly retained AQP2-P262L. Hum Mol Genet 13:3045–3056

    Article  PubMed  CAS  Google Scholar 

  • de Mattia F, Savelkoul PJM, Kamsteeg EJ, Konings IBM, van der Sluijs P, Mallmann R, Oksche A, Deen PMT (2005) Lack of arginine vasopressin-induced phosphorylation of aquaporin-2 mutant AQP2-R254L explains dominant nephrogenic diabetes insipidus. J Am Soc Nephrol 16:2872–2880

    Article  PubMed  CAS  Google Scholar 

  • Dousa TP, Barnes LD (1974) Effects of colchicine and vinblastine on the cellular action of vaso-pressin in mammalian kidney. A possible role of microtubules. J Clin Invest 54:252–262

    Article  PubMed  CAS  Google Scholar 

  • Duong VH, Bens M, Vandewalle A (1998) Differential effects of aldosterone and vasopressin on chloride fluxes in transimmortalized mouse cortical collecting duct cells. J Membr Biol 164: 79–90

    Article  Google Scholar 

  • Earley LE, Orloff J (1962) The mechanism of antidiuresis associated with the administration of hydrochlorothiazide to patients with vasopressin-resistant diabetes insipidus. J Clin Invest 41:1988–1997

    Article  PubMed  CAS  Google Scholar 

  • Ecelbarger CA, Chou CL, Lolait SJ, Knepper MA, DiGiovanni SR (1996) Evidence for dual signaling pathways for V2 vasopressin receptor in rat inner medullary collecting duct. Am J Physiol Renal Physiol 270:F623–F633

    CAS  Google Scholar 

  • Edwards CR, Kitau MJ, Chard T, Besser GM (1973) Vasopressin analogue DDAVP in diabetes insipidus: clinical and laboratory studies. Br Med J 3:375–378

    Article  PubMed  CAS  Google Scholar 

  • Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635

    Article  PubMed  CAS  Google Scholar 

  • Fenton RA, Moeller HB, Hoffert JD, Yu MJ, Nielsen S, Knepper MA (2008) Acute regulation of aquaporin-2 phosphorylation at Ser-264 by vasopressin. Proc Natl Acad Sci U S A 105: 3134–3139

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara TM, Morgan K, Bichet DG (1995) Molecular biology of diabetes insipidus. Annu Rev Med 46:331–343

    Article  PubMed  CAS  Google Scholar 

  • Furuno M, Uchida S, Marumo F, Sasaki S (1996) Repressive regulation of the aquaporin-2 gene. Am J Physiol Renal Physiol 271:F854–F860

    CAS  Google Scholar 

  • Fushimi K, Uchida S, Hara Y, Hirata Y, Marumo F, Sasaki S (1993) Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature 361:549–552

    Article  PubMed  CAS  Google Scholar 

  • Garcia F, Kierbel A, Larocca MC, Gradilone SA, Splinter P, Larusso NF, Marinelli RA (2001) The water channel aquaporin-8 is mainly intracellular in rat hepatocytes, and its plasma membrane insertion is stimulated by cyclic AMP. J Biol Chem 276:12147–12152

    Article  PubMed  CAS  Google Scholar 

  • Gheorghiade M, Niazi I, Ouyang J, Czerwiec F, Kambayashi JI, Zampino M, Orlandi C (2003) Vasopressin V2-receptor blockade with tolvaptan in patients with chronic heart failure: results from a double-blind, randomized trial. Circulation 107:2690–2696

    Article  PubMed  CAS  Google Scholar 

  • Gill JR Jr, Bartter FC (1961) On the impairment of renal concentrating ability in prolonged hyper-calcemia and hypercalciuria in man. J Clin Invest 40:716–722

    Article  PubMed  CAS  Google Scholar 

  • Goji K, Kuwahara M, Gu Y, Matsuo M, Marumo F, Sasaki S (1998) Novel mutations in aquaporin-2 gene in female siblings with nephrogenic diabetes insipidus: evidence of disrupted water channel function. J Clin Endocrinol Metab 83:3205–3209

    Article  PubMed  CAS  Google Scholar 

  • Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514

    Article  PubMed  CAS  Google Scholar 

  • Hansen SH, Casanova JE (1994) Gs alpha stimulates transcytosis and apical secretion in MDCK cells through camp and protein kinase A. J Cell Biol 126:677–687

    Article  PubMed  CAS  Google Scholar 

  • Hasler U, Mordasini D, Bens M, Bianchi M, Cluzeaud F, Rousselot M, Vandewalle A, Feraille E, Martin PY (2002) Long term regulation of aquaporin-2 expression in vasopressin-responsive renal collecting duct principal cells. J Biol Chem 277:10379–10386

    Article  PubMed  CAS  Google Scholar 

  • Henn V, Edemir B, Stefan E, Wiesner B, Lorenz D, Theilig F, Schmitt R, Vossebein L, Tamma G, Beyermann M, Krause E, Herberg FW, Valenti G, Bachmann S, Rosenthal W, Klussmann E (2004) Identification of a novel A-kinase anchoring protein 18 isoform and evidence for its role in the vasopressin-induced aquaporin-2 shuttle in renal principal cells. J Biol Chem 279:26654– 26665

    Article  PubMed  CAS  Google Scholar 

  • Hochberg Z, Van Lieburg A, Even L, Brenner B, Lanir N, Van Oost BA, Knoers NV (1997) Autosomal recessive nephrogenic diabetes insipidus caused by an aquaporin-2 mutation. J Clin Endocrinol Metab 82:686–689

    Article  PubMed  CAS  Google Scholar 

  • Hoffert JD, Pisitkun T, Wang G, Shen RF, Knepper MA (2006) Quantitative phosphoproteomics of vasopressin-sensitive renal cells: regulation of aquaporin-2 phosphorylation at two sites. Proc Natl Acad Sci USA 103:7159–7164

    Article  PubMed  CAS  Google Scholar 

  • Hoffert JD, Nielsen J, Yu MJ, Pisitkun T, Schleicher SM, Nielsen S, Knepper MA (2007) Dynamics of aquaporin-2 serine-261 phosphorylation in response to short-term vasopressin treatment in collecting duct. Am J Physiol Renal Physiol 292:F691–F700

    Article  PubMed  CAS  Google Scholar 

  • Holmgren K, Magnusson KE, Franki N, Hays RM (1992) ADH-induced depolymerization of F-actin in the toad bladder granular cell: a confocal microscope study. Am J Physiol 262:C672– C677

    PubMed  CAS  Google Scholar 

  • Homma S, Gapstur SM, Coffey A, Valtin H, Dousa TP (1991) Role of camp-phosphodiesterase isozymes in pathogenesis of murine nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 261:F345–F353

    CAS  Google Scholar 

  • Hundsrucker C, Krause G, Beyermann M, Prinz A, Zimmermann B, Diekmann O, Lorenz D, Stefan E, Nedvetsky P, Dathe M, Christian F, McSorley T, Krause E, McConnachie G, Herberg FW, Scott JD, Rosenthal W, Klussmann E (2006) High-affinity AKAP7delta-protein kinase A interaction yields novel protein kinase A-anchoring disruptor peptides. Biochem J 396:297–306

    Article  PubMed  CAS  Google Scholar 

  • Iolascon A, Aglio V, Tamma G, D'Apolito M, Addabbo F, Procino G, Simonetti MC, Montini G, Gesualdo L, Debler EW, Svelto M, Valenti G (2007) Characterization of two novel missense mutations in the AQP2 gene causing nephrogenic diabetes insipidus. Nephron Physiol 105:33–41

    Article  CAS  Google Scholar 

  • Ishikawa S, Okada K, Saito T (1988) Arginine vasopressin increases cellular free calcium concentration and adenosine 3′,5′-monophosphate production in rat renal papillary collecting tubule cells in culture. Endocrinology 123:1376–1384

    PubMed  CAS  Google Scholar 

  • Jo I, Ward DT, Baum MA, Scott JD, Coghlan VM, Hammond TG, Harris HW (2001) AQP2 is a substrate for endogenous PP2B activity within an inner medullary AKAP-signaling complex. Am J Physiol Renal Physiol 281:F958–F965

    PubMed  CAS  Google Scholar 

  • Kachadorian WA, Wade JB, DiScala VA (1975) Vasopressin: induced structural change in toad bladder luminal membrane. Science 190:67–69

    Article  PubMed  CAS  Google Scholar 

  • Kamsteeg EJ, Bichet DG, Konings IBM, Nivet H, Lonergan M, Arthus MF, van Os CH, Deen PMT (2003) Reversed polarized delivery of an aquaporin-2 mutant causes dominant nephrogenic diabetes insipidus. J Cell Biol 163:1099–1109

    Article  PubMed  CAS  Google Scholar 

  • Kamsteeg EJ, Hendriks G, Boone M, Konings IB, Oorschot V, van der SP, Klumperman J, Deen PM (2006) Short-chain ubiquitination mediates the regulated endocytosis of the aquaporin-2 water channel. Proc Natl Acad Sci USA 103:18344–18349

    Article  PubMed  CAS  Google Scholar 

  • Katsura T, Ausiello DA, Brown D (1996) Direct demonstration of aquaporin-2 water channel recycling in stably transfected LLC-;PK1 epithelial cells. Am J Physiol Renal Physiol 270:F548– F553

    CAS  Google Scholar 

  • Katsura T, Gustafson CE, Ausiello DA, Brown D (1997) Protein kinase A phosphorylation is involved in regulated exocytosis of aquaporin-2 in transfected LLC-PK1 cells. Am J Physiol 272:F817–F822

    PubMed  CAS  Google Scholar 

  • Kennedy GC, Crawford JD (1961) A comparison of the effects of adrenalectomy and of chloroth-iazide in experimental diabetes insipidus. J Endocrinol 22:77–86

    Article  PubMed  CAS  Google Scholar 

  • King LS, Kozono D, Agre P (2004) From structure to disease: the evolving tale of aquaporin biology. Nat Rev Mol Cell Biol 5:687–698

    Article  PubMed  CAS  Google Scholar 

  • Klussmann E, Maric K, Wiesner B, Beyermann M, Rosenthal W (1999) Protein kinase A anchoring proteins are required for vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells. J Biol Chem 274:4934–4938

    Article  PubMed  CAS  Google Scholar 

  • Klussmann E, Maric K, Rosenthal W (2000) The mechanisms of aquaporin control in the renal collecting duct. Rev Physiol Biochem Pharmacol 141:33–95

    Article  PubMed  CAS  Google Scholar 

  • Klussmann E, Tamma G, Lorenz D, Wiesner B, Maric K, Hofmann F, Aktories K, Valenti G, Rosenthal W (2001) An inhibitory role of Rho in the vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells. J Biol Chem 276:20451–20457

    Article  PubMed  CAS  Google Scholar 

  • Kooistra MR, Dube N, Bos JL (2007) Rap1: a key regulator in cell-cell junction formation. J Cell Sci 120:17–22

    Article  PubMed  CAS  Google Scholar 

  • Konoshita T, Kuroda M, Kawane T, Koni I, Miyamori I, Tofuku Y, Mabuchi H, Takeda R (2004) Treatment of congenital nephrogenic diabetes insipidus with hydrochlorothiazide and amiloride in an adult patient. Horm Res 61:63–67

    Article  PubMed  CAS  Google Scholar 

  • Kuwahara M (1998) Aquaporin-2, a vasopressin-sensitive water channel, and nephrogenic diabetes insipidus. Intern Med 37:215–217

    Article  PubMed  CAS  Google Scholar 

  • Kuwahara M, Iwai K, Ooeda T, Igarashi T, Ogawa E, Katsushima Y, Shinbo I, Uchida S, Terada Y, Arthus MF, Lonergan M, Fujiwara TM, Bichet DG, Marumo F, Sasaki S (2001) Three families with autosomal dominant nephrogenic diabetes insipidus caused by aquaporin-2 mutations in the C-terminus. Am J Hum Genet 69:738–748

    Article  PubMed  CAS  Google Scholar 

  • Leaf A, Hays RM (1962) Permeability of the isolated toad bladder to solutes and its modification by vasopressin. J Gen Physiol 45:921–932

    Article  PubMed  CAS  Google Scholar 

  • Lee YJ, Song IK, Jang KJ, Nielsen J, Frokiaer J, Nielsen S, Kwon TH (2007) Increased AQP2 targeting in primary cultured IMCD cells in response to angiotensin II through AT1 receptor. Am J Physiol Renal Physiol 292:F340–F350

    Article  PubMed  CAS  Google Scholar 

  • Legesse-Miller A, Zhang S, Santiago-Tirado FH, Van Pelt CK, Bretscher A (2006) Regulated phosphorylation of budding yeast's essential myosin V heavy chain, Myo2p. Mol Biol Cell 17:1812–1821

    Article  PubMed  CAS  Google Scholar 

  • Lemmens-Gruber R, Kamyar M (2006) Vasopressin antagonists. Cell Mol Life Sci 63:1766–1779

    Article  PubMed  CAS  Google Scholar 

  • Levi M, Peterson L, Berl T (1983) Mechanism of concentrating defect in hypercalcemia. Role of polydipsia and prostaglandins. Kidney Int 23:489–497

    CAS  Google Scholar 

  • Lin SH, Bichet DG, Sasaki S, Kuwahara M, Arthus MF, Lonergan M, Lin YF (2002) Two novel aquaporin-2 mutations responsible for congenital nephrogenic diabetes insipidus in Chinese families. J Clin Endocrinol Metab 87:2694–2700

    Article  PubMed  CAS  Google Scholar 

  • Lorenz D, Krylov A, Hahm D, Hagen V, Rosenthal W, Pohl P, Maric K (2003) Cyclic AMP is sufficient for triggering the exocytic recruitment of aquaporin-2 in renal epithelial cells. EMBO Rep 4:88–93

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Sun TX, Bouley R, Blackburn K, McLaughlin M, Brown D (2004) Inhibition of endocytosis causes phosphorylation (S256)-independent plasma membrane accumulation of AQP2. Am J Physiol Renal Physiol 286:F233–F243

    Article  PubMed  CAS  Google Scholar 

  • Lu HAJ, Sun TX, Matsuzaki T, Yi XH, Eswara J, Bouley R, McKee M, Brown D (2007) Heat shock protein 70 interacts with aquaporin-2 and regulates its trafficking. J Biol Chem 282:28721– 28732

    Article  PubMed  CAS  Google Scholar 

  • Lynch MJ, Hill EV, Houslay MD (2006) Intracellular targeting of phosphodiesterase-4 underpins compartmentalized camp signaling. Curr Top Dev Biol 75:225–259

    Article  PubMed  CAS  Google Scholar 

  • Maeda Y, Han JS, Gibson CC, Knepper MA (1993) Vasopressin and oxytocin receptors coupled to Ca2+ mobilization in rat inner medullary collecting duct. Am J Physiol Renal Physiol 265:F15–F25

    CAS  Google Scholar 

  • Maric K, Oksche A, Rosenthal W (1998) Aquaporin-2 expression in primary cultured rat inner medullary collecting duct cells. Am J Physiol 275:F796–F801

    PubMed  CAS  Google Scholar 

  • Marples D, Barber B, Taylor A (1996) Effect of a dynein inhibitor on vasopressin action in toad urinary bladder. J Physiol 490:(Pt 3):767–774

    PubMed  CAS  Google Scholar 

  • Marples D, Schroer TA, Ahrens N, Taylor A, Knepper MA, Nielsen S (1998) Dynein and dynactin colocalize with AQP2 water channels in intracellular vesicles from kidney collecting duct. Am J Physiol 274:F384–F394

    PubMed  CAS  Google Scholar 

  • Marr N, Kamsteeg EJ, van Raak M, van Os CH, Deen PM (2001) Functionality of aquaporin-2 missense mutants in recessive nephrogenic diabetes insipidus. Pflugers Arch 442:73–77

    Article  PubMed  CAS  Google Scholar 

  • Marr N, Bichet DG, Hoefs S, Savelkoul PJM, Konings IBM, de Mattia F, Graat MPJ, Arthus MF, Lonergan M, Fujiwara TM, Knoers NVAM, Landau D, Balfe WJ, Oksche A, Rosenthal W, Muller D, van Os CH, Deen PMT (2002) Cell-biologic and functional analyses of five new aquaporin-2 missense mutations that cause recessive nephrogenic diabetes insipidus. J Am Soc Nephrol 13:2267–2277

    Article  PubMed  CAS  Google Scholar 

  • Moses AM, Scheinman SJ, Oppenheim A (1984) Marked hypotonic polyuria resulting from nephrogenic diabetes insipidus with partial sensitivity to vasopressin. J Clin Endocrinol Metab 59:1044–1049

    PubMed  CAS  Google Scholar 

  • Mulders SM, Knoers NV, van Lieburg AF, Monnens LA, Leumann E, Wuhl E, Schober E, Ri-jss JP, van Os CH, Deen PM (1997) New mutations in the AQP2 gene in nephrogenic diabetes insipidus resulting in functional but misrouted water channels. J Am Soc Nephrol 8:242–248

    PubMed  CAS  Google Scholar 

  • Mulders SM, Bichet DG, Rijss JPL, Kamsteeg EJ, Arthus MF, Lonergan M, Fujiwara M, Morgan K, Leijendekker R, van der Sluijs P, van Os CH, Deen PMT (1998) An aquaporin-2 water channel mutant which causes autosomal dominant nephrogenic diabetes insipidus is retained in the golgi complex. J Clin Invest 102:57–66

    Article  PubMed  CAS  Google Scholar 

  • Nedvetsky PI, Stefan E, Frische S, Santamaria K, Wiesner B, Valenti G, Hammer JA, III, Nielsen S, Goldenring JR, Rosenthal W, Klussmann E (2007) A role of myosin Vb and Rab11-FIP2 in the aquaporin-2 shuttle. Traffic 8:110–123

    Article  PubMed  CAS  Google Scholar 

  • Nejsum LN, Zelenina M, Aperia A, Frokiaer J, Nielsen S (2005) Bidirectional regulation of AQP2 trafficking and recycling: involvement of AQP2-S256 phosphorylation. Am J Physiol Renal Physiol 288:F930–F938

    Article  PubMed  CAS  Google Scholar 

  • Newmyer SL, Schmid SL (2001) Dominant-interfering Hsc70 mutants disrupt multiple stages of the clathrin-coated vesicle cycle in vivo. J Cell Biol 152:607–620

    Article  PubMed  CAS  Google Scholar 

  • Nielsen S (2002) Renal aquaporins: an overview. BJU Int 90:(Suppl 3):1–6

    Article  PubMed  CAS  Google Scholar 

  • Nielsen S, DiGiovanni SR, Christensen EI, Knepper MA, Harris HW (1993) Cellular and subcel-lular immunolocalization of vasopressin-regulated water channel in rat kidney. Proc Natl Acad Sci U S A 90:11663–11667

    Article  PubMed  CAS  Google Scholar 

  • Nielsen S, Chou C, Marples D, Christensen EI, Kishore BK, Knepper MA (1995) Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci U S A 92:1013–1017

    Article  PubMed  CAS  Google Scholar 

  • Noda Y, Horikawa S, Katayama Y, Sasaki S (2004a) Water channel aquaporin-2 directly binds to actin. Biochem Biophys Res Commun 322:740–745

    Article  CAS  Google Scholar 

  • Noda Y, Horikawa S, Furukawa T, Hirai K, Katayama Y, Asai T, Kuwahara M, Katagiri K, Kinashi T, Hattori M, Minato N, Sasaki S (2004b) Aquaporin-2 trafficking is regulated by PDZ-domain containing protein SPA-1. FEBS Lett 568:139–145

    Article  CAS  Google Scholar 

  • Noda Y, Horikawa S, Katayama Y, Sasaki S (2005) Identification of a multiprotein “motor” complex binding to water channel aquaporin-2. Biochem Biophys Res Commun 330:1041–1047

    Article  PubMed  CAS  Google Scholar 

  • Oksche A, Moller A, Dickson J, Rosendahl W, Rascher W, Bichet DG, Rosenthal W (1996) Two novel mutations in the aquaporin-2 and the vasopressin V2 receptor genes in patients with congenital nephrogenic diabetes insipidus. Hum Genet 98:587–589

    Article  PubMed  CAS  Google Scholar 

  • Pearl M, Taylor A (1983) Actin filaments and vasopressin-stimulated water flow in toad urinary bladder. Am J Physiol 245:C28–C39

    PubMed  CAS  Google Scholar 

  • Phillips ME, Taylor A (1989) Effect of nocodazole on the water permeability response to vaso-pressin in rabbit collecting tubules perfused in vitro. J Physiol 411:529–544

    PubMed  CAS  Google Scholar 

  • Phillips ME, Taylor A (1992) Effect of colcemid on the water permeability response to vasopressin in isolated perfused rabbit collecting tubules. J Physiol 456:591–608

    PubMed  CAS  Google Scholar 

  • Pimplikar SW, Simons K (1993) Regulation of apical transport in epithelial cells by a Gs class of heterotrimeric G protein. Nature 362:456–458

    Article  PubMed  CAS  Google Scholar 

  • Procino G, Carmosino M, Marin O, Brunanti AM, Contri A, Pinna LA, Mannucci R, Nielsen S, Tae H, Svelto M, Valenti G (2003) Ser-256 phosphorylation dynamics of aquaporin 2 during maturation from the endoplasmic reticulum to the vesicular compartment in renal cells. FASEB J 17:1886–1888

    PubMed  CAS  Google Scholar 

  • Procino G, Carmosino M, Tamma G, Gouraud S, Laera A, Riccardi D, Svelto M, Valenti G (2004) Extracellular calcium antagonizes forskolin-induced aquaporin 2 trafficking in collecting duct cells. Kidney Int 66:2245–2255

    Article  PubMed  CAS  Google Scholar 

  • Sands JM, Naruse M, Baum M, Jo I, Hebert SC, Brown EM, Harris HW (1997) Apical extracellular calcium/polyvalent cation-sensing receptor regulates vasopressin-elicited water permeability in rat kidney inner medullary collecting duct. J Clin Invest 99:1399–1405

    Article  PubMed  CAS  Google Scholar 

  • Schrier RW (2007) Aquaporin-related disorders of water homeostasis. Drug News Perspect 20:447–453

    Article  PubMed  CAS  Google Scholar 

  • Simon H, Gao Y, Franki N, Hays RM (1993) Vasopressin depolymerizes apical F-actin in rat inner medullary collecting duct. Am J Physiol 265:C757–C762

    PubMed  CAS  Google Scholar 

  • Sohara E, Rai T, Yang SS, Uchida K, Nitta K, Horita S, Ohno M, Harada A, Sasaki S, Uchida S (2006) Pathogenesis and treatment of autosomal-dominant nephrogenic diabetes insipidus caused by an aquaporin 2 mutation. Proc Natl Acad Sci U S A 103:14217–14222

    Article  PubMed  CAS  Google Scholar 

  • Star RA, Nonoguchi H, Balaban R, Knepper MA (1988) Calcium and cyclic adenosine monophos-phate as second messengers for vasopressin in the rat inner medullary collecting duct. J Clin Invest 81:1879–1888

    Article  PubMed  CAS  Google Scholar 

  • Stefan E, Wiesner B, Baillie GS, Mollajew R, Henn V, Lorenz D, Furkert J, Santamaria K, Nedvetsky P, Hundsrucker C, Beyermann M, Krause E, Pohl P, Gall I, MacIntyre AN, Bachmann S, Houslay MD, Rosenthal W, Klussmann E (2007) Compartmentalization of camp-dependent signaling by phosphodiesterase-4D is involved in the regulation of vasopressin-mediated water reabsorption in renal principal cells. J Am Soc Nephrol 18:199–212

    Article  PubMed  CAS  Google Scholar 

  • Stork PJ, Dillon TJ (2005) Multiple roles of Rap1 in hematopoietic cells: complementary versus antagonistic functions. Blood 106:2952–2961

    Article  PubMed  CAS  Google Scholar 

  • Szaszak M, Christian F, Rosenthal W, Klussmann E (2008) Compartmentalized camp signaling in regulated exocytic processes in non-neuronal cells. Cell Signal 20:590–601

    Article  PubMed  CAS  Google Scholar 

  • Tajika Y, Matsuzaki T, Suzuki T, Ablimit A, Aoki T, Hagiwara H, Kuwahara M, Sasaki S, Takata K (2005) Differential regulation of AQP2 trafficking in endosomes by microtubules and actin filaments. Histochem Cell Biol 124:1–12

    Article  PubMed  CAS  Google Scholar 

  • Tajima T, Okuhara K, Satoh K, Nakae J, Fujieda K (2003) Two novel aquaporin-2 mutations in a sporadic Japanese patient with autosomal recessive nephrogenic diabetes insipidus. Endocr J 50:473–476

    Article  PubMed  CAS  Google Scholar 

  • Tamarappoo BK, Verkman AS (1998) Defective aquaporin-2 trafficking in nephrogenic diabetes insipidus and correction by chemical chaperones. J Clin Invest 101:2257–2267

    Article  PubMed  CAS  Google Scholar 

  • Tamma G, Klussmann E, Maric K, Aktories K, Svelto M, Rosenthal W, Valenti G (2001) Rho inhibits camp-induced translocation of aquaporin-2 into the apical membrane of renal cells. Am J Physiol Renal Physiol 281:F1092–F1101

    PubMed  CAS  Google Scholar 

  • Tamma G, Klussmann E, Procino G, Svelto M, Rosenthal W, Valenti G (2003a) cAMP-induced AQP2 translocation is associated with RhoA inhibition through RhoA phosphorylation and interaction with RhoGDI. J Cell Sci 116:1519–1525

    Article  CAS  Google Scholar 

  • Tamma G, Wiesner B, Furkert J, Hahm D, Oksche A, Schaefer M, Valenti G, Rosenthal W, Klussmann E (2003b) The prostaglandin E2 analogue sulprostone antagonizes vasopressin-induced antidiuresis through activation of Rho. J Cell Sci 116:3285–3294

    Article  CAS  Google Scholar 

  • Tamma G, Carmosino M, Svelto M, Valenti G (2005a) Bradykinin signaling counteracts camp-elicited aquaporin 2 translocation in renal cells. J Am Soc Nephrol 16:2881–2889

    Article  CAS  Google Scholar 

  • Tamma G, Klussmann E, Oehlke J, Krause E, Rosenthal W, Svelto M, Valenti G (2005b) Actin remodeling requires ERM function to facilitate AQP2 apical targeting. J Cell Sci 118:3623– 3630

    Article  CAS  Google Scholar 

  • Tamma G, Procino G, Strafino A, Bononi E, Meyer G, Paulmichl M, Formoso V, Svelto M, Valenti G (2007) Hypotonicity induces aquaporin-2 internalization and cytosol-to-membrane translo-cation of ICLn in renal cells. Endocrinology 148:1118–1130

    Article  PubMed  CAS  Google Scholar 

  • Tasken K, Aandahl EM (2004) Localized effects of camp mediated by distinct routes of protein kinase A. Physiol Rev 84:137–167

    Article  PubMed  CAS  Google Scholar 

  • Tietz PS, McNiven MA, Splinter PL, Huang BQ, Larusso NF (2006) Cytoskeletal and motor proteins facilitate trafficking of AQP1-containing vesicles in cholangiocytes. Biol Cell 98:43–52

    Article  PubMed  CAS  Google Scholar 

  • Valenti G, Frigeri A, Ronco PM, D'Ettorre C, Svelto M (1996) Expression and functional analysis of water channels in a stably AQP2-transfected human collecting duct cell line. J Biol Chem 271:24365–24370

    Article  PubMed  CAS  Google Scholar 

  • Valenti G, Procino G, Carmosino M, Frigeri A, Mannucci R, Nicoletti I, Svelto M (2000) The phos-phatase inhibitor okadaic acid induces AQP2 translocation independently from AQP2 phospho-rylation in renal collecting duct cells. J Cell Sci 113:1985–1992

    PubMed  CAS  Google Scholar 

  • van Balkom BW, Savelkoul PJ, Markovich D, Hofman E, Nielsen S, van der SP, Deen PM (2002) The role of putative phosphorylation sites in the targeting and shuttling of the aquaporin-2 water channel. J Biol Chem 277:41473–41479

    Article  PubMed  CAS  Google Scholar 

  • van Lieburg AF, Verdijk MA, Knoers VV, van Essen AJ, Proesmans W, Mallmann R, Monnens LA, Van Oost BA, van Os CH, Deen PM (1994) Patients with autosomal nephrogenic diabetes insipidus homozygous for mutations in the aquaporin 2 water-channel gene. Am J Hum Genet 55:648–652

    PubMed  Google Scholar 

  • Vargas-Poussou R, Forestier L, Dautzenberg MD, Niaudet P, Dechaux M, Antignac C (1998) Mutations in the vasopressin V2 receptor and aquaporin-2 genes in twelve families with congenital nephrogenic diabetes insipidus. Adv Exp Med Biol 449:387–390

    PubMed  CAS  Google Scholar 

  • Vossenkamper A, Nedvetsky PI, Wiesner B, Furkert J, Rosenthal W, Klussmann E (2007) Micro-tubules are needed for the perinuclear positioning of aquaporin-2 after its endocytic retrieval in renal principal cells. Am J Physiol Cell Physiol 293:C1129–C1138

    Article  PubMed  CAS  Google Scholar 

  • Wade JB, Kachadorian WA (1988) Cytochalasin B inhibition of toad bladder apical membrane responses to ADH. Am J Physiol 255:C526–C530

    PubMed  CAS  Google Scholar 

  • Wong W, Scott JD (2004) AKAP signaling complexes: focal points in space and time. Nat Rev Mol Cell Biol 5:959–970

    Article  PubMed  CAS  Google Scholar 

  • Woo J, Chae YK, Jang SJ, Kim MS, Baek JH, Park JC, Trink B, Ratovitski E, Lee T, Park B, Park M, Kang JH, Soria JC, Lee J, Califano J, Sidransky D, Moon C (2008) Membrane trafficking of AQP5 and camp dependent phosphorylation in bronchial epithelium. Biochem Biophys Res Commun 366:321–327

    Article  PubMed  CAS  Google Scholar 

  • Xu DL, Martin PY, Ohara M, St John J, Pattison T, Meng X, Morris K, Kim JK, Schrier RW (1997) Upregulation of aquaporin-2 water channel expression in chronic heart failure rat. J Clin Invest 99:1500–1505

    Article  PubMed  CAS  Google Scholar 

  • Yip KP (2002) Coupling of vasopressin-induced intracellular Ca2+ mobilization and apical exocy-tosis in perfused rat kidney collecting duct. J Physiol 538:891–899

    Article  PubMed  CAS  Google Scholar 

  • Yip KP (2006) Epac-mediated Ca(2+) mobilization and exocytosis in inner medullary collecting duct. Am J Physiol Renal Physiol 291:F882–F890

    Article  PubMed  CAS  Google Scholar 

  • Yamaki M, McIntyre S, Murphy JM, Swinnen JV, Conti M, Dousa TP (1993) ADH resistance of LLC-pk1 cells caused by overexpression of camp-phosphodiesterase type-IV. Kidney Int 43:1286–1297

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enno Klussmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nedvetsky, P.I., Tamma, G., Beulshausen, S., Valenti, G., Rosenthal, W., Klussmann, E. (2009). Regulation of Aquaporin-2 Trafficking. In: Beitz, E. (eds) Aquaporins. Handbook of Experimental Pharmacology, vol 190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79885-9_6

Download citation

Publish with us

Policies and ethics