Skip to main content
Log in

Changes in the High-Frequency Activity of Rabbit Brain Biopotentials in the State of “Animal Hypnosis”

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Spectral EEG analysis studies showed that in the state of “animal hypnosis,” the known increase in the power of biopotentials in the delta frequency range (0.3–3 Hz) and decrease in the theta range (4–8 Hz) were accompanied by an increase in the sigma range (12–17 Hz) by a factor of 2–4 and a decrease in the gamma range by a factor of 1.5–2, particularly in the band 40–70 Hz. These changes were more marked in the anterior areas of the cerebral cortex. The effects of the hypnotic state on pharmacologically (ketamine) induced increases in gamma activity of cortical origin were studied. Administration of subanesthetic doses of ketamine to rabbits induced motor arousal, while brain electrical activity showed longlasting (up to 2 h) increases in gamma activity. Creation of the hypnotic state on the background of ketamine produced a virtually instantaneous rearrangement of the power spectrum, which sharp increases in values in the slow-wave frequency range and a decrease in gamma activity, which returned to the baseline level. Thus, creation of the hypnotic state eliminated the specific ketamine-induced rearrangements of biopotentials, suggesting that animal hypnosis has stabilizing and to some extent protective effects in behavioral states accompanied by hyperlocomotion and stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Dumenko, High-Frequency EEG Components and Operant Learning [in Russian], Nauka, Moscow (2006).

    Google Scholar 

  2. R. A. Pavlygina, E. V. Rusinova, G. Ya. Roshchina, V. I. Korolev, V. I. Davydov, A. V. Bogdanov, and A. G. Galashina, “The nature of animal hypnosis,” Prob. Neirokibernitiki, Rostov-na-Donu, No. 1, 69–72 (2005).

  3. E. V. Rusinovo and G. Ya. Roshchina, “Interactions of the electrical activity of the sensorimotor cortex and hippocampus in ‘animal hypnosis’ in rabbits,” Zh. Vyssh. Nerv. Deyat., 50, No. 4, 600–607 (2000).

    Google Scholar 

  4. E. V. Rusinovo and G. Ya. Roshchina, “Intercentral reticulo-cortical relationships in electrical activity during the state of animal hypnosis in rabbits,” Zh. Vyssh. Nerv. Deyat., 52, No. 3, 341–346 (2002).

    Google Scholar 

  5. P. V. Simonov, “The nature and physiological mechanisms of animal hypnosis,” in: The Brain and Behavior [in Russian], Nauka, Moscow (1990), pp. 16–22.

    Google Scholar 

  6. N. D. Sorokina, G. V. Selitskii, and N. S. Kositsyn, “Neurobiological studies of brain bioelectrical activity in the gamma rhythm range in humans,” Usp. Fiziol. Nauk., 37, No. 3, 3–10 (2006).

    PubMed  CAS  Google Scholar 

  7. E. Basar, C. Basar-Eroglu, S. Karakas, and M. Schurmann, “Brain oscillators in perception and memory,” Int. J. Psychophysiol., 35, No. 2–3, 95–124 (2000).

    Article  PubMed  CAS  Google Scholar 

  8. G. Carli, F. Farabollini, and G. Fontani, “Effects of pain, morphine and naloxone on the duration of animal hypnosis,” Behav. Brain Res., 2, No. 3, 373–385 (1981).

    Article  PubMed  CAS  Google Scholar 

  9. J. A. Castiglioni, M. I. Russell, B. Setlow, K. A. Young, J. C. Welsh, and I. Steele-Russell, “An animal model of hypnotic pain attenuation,” Behav. Brain Res., 197, No. 1, 198–204 (2009).

    Article  PubMed  CAS  Google Scholar 

  10. M. Cavazzuti, C. A. Porro, G. P. Biral, C. Benassi, and G. C. Barbieri, “Ketamine effects on local cerebral blood flow and metabolism in the rat,” J. Cereb. Blood Flow Metab., 7, No. 6, 806–811 (1987).

    Article  PubMed  CAS  Google Scholar 

  11. L. F. Da Silva and L. Menescal-de-Oliveira, “Role of opioidergic and GABAergic neurotransmission of the nucleus raphe in guinea pigs,” Brain Res. Bull., 72, No. 1, 25–31 (2007).

    Article  PubMed  Google Scholar 

  12. G. E. Duncan, J. N. Leipzig, R. B. Mailman, and J. A. Lieberman, “Differential effects of clozapine and haloperidol on ketamineinduced brain metabolic activation,” Brain Res., 812, 65–75 (1998).

    Article  PubMed  CAS  Google Scholar 

  13. Swiss Academy of Medical Sciences, “Ethical principles and guidelines for experiments on animals,” Experientia, 51, 1–3 (1995).

    Article  Google Scholar 

  14. G. Fontani, F. Grazzi, G. Lombardi, and G. Carli, “Hippocampal rhythmic slow activity (RSA) during animal hypnosis in the rabbit,” Behav. Brain Res., 6, No. 1, 15–24 (1982).

    Article  PubMed  CAS  Google Scholar 

  15. C. J. Green, J. Knight, S. Precious, and S. Simpkin, “Ketamine alone and combined with diazepam or xylazine in laboratory animals: a 10-year experience,” Lab. Anim., 15, 163–170 (1981).

    Article  PubMed  CAS  Google Scholar 

  16. D. W. Gross and J. Gotman, “Correlation of high-frequency oscilla-tions with the sleep-wake cycle and cognitive activity in humans,” Neurosci., 4, 1005–1018 (1999).

    Article  Google Scholar 

  17. A. R. Haig, E. Gordon,V. De Pascalis, R. A. Meares, H. Bahramali, and A. Harris, “Gamma activity in schizophrenia: evidence of impaired network binding,” Clin. Neurophysiol., 111, No. 8, 1461–1468 (2000).

    Article  PubMed  CAS  Google Scholar 

  18. Hao Lei, O. Grinberg, C. I. Nwaigwe, H. G. Hou, H. Williams, H. M. Swartz, and J. F. Dunn, “The effects of ketamine-xylazine anesthesia on cerebral blood flow and oxygenation observed using nuclear magnetic resonance perfusion imaging and electron paramagnetic resonance oximetry,” Brain Res., 913, 174–179 (2001).

    Article  Google Scholar 

  19. C. S. Hermann and T. Demiralp, “Human EEG gamma oscillations in neuropsychiatric disorders,” Clin. Neurophysiol., 116, 2719–2733 (2005).

    Article  Google Scholar 

  20. W. R. Klemm, “Drug effects on active immobility responses: what they tell us about neurotransmitter systems and motor functions,” Progr. Neurobiol., 32, 403–422 (1989).

    Article  CAS  Google Scholar 

  21. W. R. Klemm, “Behavioral arrest: in search of the neural control system,” Progr. Neurobiol., 65, 453–471 (2001).

    Article  CAS  Google Scholar 

  22. T. Kubota, N. Anzawa, K. Hirota, H. Yoshida, T. Kushikata, and A. Matsuki, “Effects of ketamine and pentobarbital on noradrenaline release from the medial prefrontal cortex in rats,” Can. J. Anaesth., 46, No. 4, 388–392 (1999).

    Article  PubMed  CAS  Google Scholar 

  23. L. Mackenzie, K. J. Pope, and J. O. Willoughby, “Gamma rhythms are not integral to EEG spindle phenomena,” Clin. Neurophysiol., 116, 861–870 (2005).

    Article  PubMed  CAS  Google Scholar 

  24. A. Maksimow, M. Sarkela, J. W. Langsjo, E. Salmi, K. K. Kaisti, A. Yli-Hankala, S. Hinkka-Yli-Salomaki, H. Scheinin, and S. K. Jaaskelainen, “Increase in high frequency EEG spectral entropy monitor during S-ketamine anesthesia,” Clin. Neurophysiol., 117, No. 8, 1660–1668 (2006).

    Article  PubMed  CAS  Google Scholar 

  25. K. J. Maloney, E. G. Cape, J. Gotman, and B. E. Jones, “High-frequency electroencephalogram activity in association with sleep-wake states and spontaneous behaviors in the rat,” Neurosci., 76, No. 2, 541–555 (1997).

    Article  CAS  Google Scholar 

  26. M. Ramos Coutinho, L. F. da Silva, and L. Menescal-de-Oliveira, “Modulation of tonic immobility in guinea pig PAG by homocysteic acid, a glutamate agonist,” Physiol. Behav., 94, No. 3, 468–473 (2008).

    Article  PubMed  CAS  Google Scholar 

  27. R. D. Traub, M. A. Whittington, I. M. Stanford, and J. G. Jeffreys, “A mechanism for generation of long-range synchronous fast oscillations in the cortex,” Nature, 383, No. 6601, 621–624 (1996).

    Article  PubMed  CAS  Google Scholar 

  28. S. Uchida, T. Maehara, N. Hirai, Y. Okubo, and H. Shimizu, “Cortical oscillations in human medial temporal lobe during wakefulness and all-night sleep,” Brain Res., 891, No. 1–2, 7–19 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ya. Roshchina.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 60, No. 3, pp. 352–363, May–June, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roshchina, G.Y., Koroleva, V.I. & Davydov, V.I. Changes in the High-Frequency Activity of Rabbit Brain Biopotentials in the State of “Animal Hypnosis”. Neurosci Behav Physi 41, 772–780 (2011). https://doi.org/10.1007/s11055-011-9486-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-011-9486-6

Keywords

Navigation