Skip to main content
Log in

Immunoreactivity of Hypothalamic Orexin-Containing Neurons in Rats in Movement Restriction and Cooling

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Studies of the immunoreactivity of hypothalamic orexin-containing neurons during the development of the brain’s response to movement restriction and cooling in rats demonstrated selective changes in the immunoreactivity of orexin-containing neurons during these treatments; in particular, orexin-containing neurons located in structures on brain sections at levels 28, 29, and 31 responded with different changes in immunoreactivity, providing evidence of the specialization and functional heterogeneity of the hypothalamic orexin-containing neuron population. We provide the first identification of the hypothalamic structures and zones including orexin-containing neurons involved in the development of the set of reactions occurring in the brain during the formation of responses to stressors. Changes in the immunoreactivity of orexin-containing neurons located in areas involved in the systems regulating heat production (DMH, PH, and some zones of the LHA) provide grounds for suggesting that orexin-containing neurons may be involved in thermoregulatory processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Z. Meerson, G. T. Sukhikh, and L. S. Katkova, “Adaptation of the body to stress situations and prevention of stress harm,” Vestn. Akad. Med. Nauk. SSSR, 4, 45–51 (1984).

    PubMed  Google Scholar 

  2. K. A. Al-Barazanji, S. Wilson, J. Baker, D. S. Jessop, and M. S. Harbuz, “Central orexin-A activates hypothalamic-pituitary-adrenal axis and stimulates hypothalamic corticotropin releasing factor and arginine vasopressin neurones in conscious rats,” Neuroendocrinol., 13, 421–424 (2001).

    Article  CAS  Google Scholar 

  3. S. Amir and A. Schiavetto, “Injection of prostaglandin E2 into the anterior hypothalamic preoptic area activate brown adipose tissue thermogenesis in the rat,” Brain Res., 528, 138–142 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. W. H. Cao,W. Fan, and S. F. Morrison, “Medullary pathways mediating specific sympathetic responses to activation of dorsomedial hypothalamus,” Neurosci., 126, 229–240 (2004).

    Article  CAS  Google Scholar 

  5. J. E. Digby, J. Chen, J. Y. Tang, H. Lehnert, R. N. Matthews, and H. S. Randeva, “Orexin receptor expression in human adipose tissue: effects of orexin-A and orexin-B,” J. Endocrinol., 191, 129–136 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. I. V. Estabrooke, M. T. McCarthy, E. Ko, T. C. Chou, R. M. Chemelli, M. Yanagisawa, C. B. Saper, and T. E. Scammell, “Fos expression in orexin neurons varies with behavioral state,” J. Neurosci., 21, 1656–1662 (2001).

    CAS  PubMed  Google Scholar 

  7. J. J. Hagan, R. A. Leslie, S. Patel, M. L. Evans, T. A. Wattam, S. Holmes, C. D. Benham, S. G. Taylor, C. Routledge, P. Hemmati, R. P. Munton, T. E. Ashmeade,A. S. Shah, J. P. Hatcher, P. D. Hatcher, D. N. Jones, M. I. Smith, D. C. Piper, A. J. Hunter, R. A. Porter, and N. Upton, “Orexin A activates locus coeruleus cell firing and increases arousal in the rat,” Proc. Natl. Acad. Sci. USA, 96, 10911–10916 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. T. Ida, K. Nakahara, and T. Murakami, “Possible involvement of orexin in the stress reaction in rats,” Biochem. Biophys. Res. Commun., 270, 318–323 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. K. Imai-Matsumura, K. Matsumura, and T. Nakayama, “Involvement of ventromedial hypothalamus in brown adipose tissue thermogenesis induced by preoptic cooling in rats,” Jpn. J. Physiol., 34, 939–943 (1984).

    Article  CAS  PubMed  Google Scholar 

  10. M. Jaszberenyi, E. Bujdoso, E. Kiss, I. Pataki, and G. Telegdy, “The role of NPY in the mediation of orexin-induced hypothermia,” Regul. Pept., 104, 55–59 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. M. Jaszberenyi, E. Bujdoso, and G. Telegdy, “The role of neuropeptide Y in orexin-induced hypothalamic-pituitary-adrenal activation,” J. Neuroendocrinol., 13, 438–441 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. M. Jaszberenyi, E. Bujdoso, E. Kiss, I. Pataki, and G. Telegdy, “The role of NPY in the mediation of orexin-induced hypothermia,” Regul. Pept., 104, 55–59 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. T. Kurose, Y. Ueta, Y. Yamamoto, R. Serino, Y. Ozaki, J. Saito, S. Nagata, and H. Yamashita, “Effects of restricted feeding on the activity of hypothalamic Orexin (OX)-A containing neurons and OX2 receptor mRNA level in the paraventricular nucleus of rats,” Regul. Pept., 104, 145–151 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. M. Kuru, Y. Ueta, and R. Serino, “Centrally administered orexin/hypocretin activates HPA axis in rats,” Neuroreport, 11, 1977–1980 (2004).

    Article  Google Scholar 

  15. L. De Lecea, T. S. Kilduff, C. Peyron, X. Gao, P. E. Foye, P. E. Danielson, C. Fukuhara, E. L. Battenberg, V. T. Gautvik, F. S. Bartlett, W. N. Frankel, A. N. van den Pol, F. E. Bloom, K. M. Gautvik, and J. G. Sutcliffe, “The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity,” Proc. Natl. Acad. Sci. USA, 95, 322–327 (1998).

    Article  PubMed  Google Scholar 

  16. M. Takatoshi, E. B. Klerman, T. Sakurai, and T. E. Scammell, “Elevated body temperature during sleep in orexin knockout mice,” Am. J. Physiol. Regul. Integr. Comp. Physiol., 291, 533–540 (2006).

    Google Scholar 

  17. M. Monda, A. Viggiano, P. Mondola, and V. De Luca, “Inhibition of prostaglandin synthesis reduces hyperthermic reactions induced by hypocretin-1/orexin A,” Brain Res., 909, 68–74 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. M. Monda, A. Viggiano, P. Mondola, and V. De Luca “A paradoxical effect of orexin A: the hypophagia induced by hyperthermia,” Brain Res., 961, 220–228 (2003).

    Google Scholar 

  19. M. Monda, A. Viggiano, P. Mondola, and V. De Luca, “Haloperidol reduces the sympathetic and thermogenic activation induced by orexin A,” Neurosci. Res., 45, 17–23 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. M. Monda, A. Viggiano, P. Mondola, F. Fuccio, and V. De Luca, “Cortical spreading depression blocks the hyperthermic reaction induced by orexin A,” Neurosci., 123, 567–574 (2004).

    Article  CAS  Google Scholar 

  21. M. Monda, A. Viggiano, P. Mondola, F. Fuccio, and V. De Luca, “Clozapine blocks the hyperthermia induced by orexin A in the rat,” Physiol. Res., 53, 507–513 (2004).

    CAS  PubMed  Google Scholar 

  22. M. S. Mondal, M. Nakazato, Y. Date, N. Murakami, R. Hanada, T. Sakata, and S. Matsukara, “Characterization of orexin-A and orexin-B in the microdissected rat brain nuclei and their contents in two obese rat models,” Neurosci. Lett., 273, 45–48 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. T. Moriguchi, T. Sakurai, T. Nambu, M. Yamagisawa, and K. Goto, “Neurons containing orexin in the lateral hypothalamic area of the adult rat brain are activated by insulin-induced acute hypoglycemia,” Neurosci. Lett., 264, 101–104 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. M. A. Mullett, C. J. Billington, A. S. Levine, and C. M. Kotz, “Hypocretin 1 in the lateral hypothalamus activates key feeding-regulatory brain sites,” Neuroreport, 11, 103–108 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. K. Pacak and M. Palkovits, “Stressor specificity of central neuroendocrine responses: Implications for stress-related disorders,” Endocrine Rev., 22, No. 4, 502–548 (2001).

    Article  CAS  Google Scholar 

  26. C. Peyron, D. K. Tighe, A. N. van den Pol, L. de Lecea, H. C. Heller, J. G. Sutcliffe, and T. S. Kilduff, “Neurons containing hypocretin (orexin) project to multiple neuronal systems,” J. Neurosci., 18, 9996–10015 (1998).

    CAS  PubMed  Google Scholar 

  27. S. H. Russell, C. J. Small, D. Sunter, I. Morgan, C. L. Dakin, M. A. Cohen, and S. R. Bloom, “Chronic intraparaventricular nuclear administration of orexin A in male rats does not alter thyroid axis or uncoupling protein-1 in brown adipose tissue,” Regul. Pept., 104, 61–68 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. E. G. Rybakina, S. N. Shanin, I. A. Kozinets, E. E. Fomicheva, and E. A. Korneva, “Cellular mechanisms of cold stress-related immunosuppression and the action of interleukin 1,” Int. J. Tiss. Reac., XIX, No. 3/4, 135–140 (1997).

    Google Scholar 

  29. F. Sakamoto, S. Yamada, and Y. Ueta, “Centrally administered orexin-A activates corticotrophin-releasing factor (CRF)-containing neurons in the hypothalamic paraventricular nucleus and central amygdaloid nucleus of rats: possible involvement of central orexins on stress-activated central CRF neurons,” Regul. Pept., 118, 248–256 (2004).

    Article  Google Scholar 

  30. W. K. Samson, M. M. Taylor, M. Follwell, and A. V. Ferguson, “Orexin actions in hypothalamic paraventricular nucleus: physiological consequences and cellular correlates,” Regul. Pept., 104, 97–103 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. S. N. Shanin, “Natural killer cell cytotoxic activity and c-Fos protein synthesis in rat hypothalamic cells after painful electric stimulation of the hind limbs and EHF irradiation of the skin,” Med. Sci. Monit., 11, No. 9, BR309–BR315 (2005).

    Google Scholar 

  32. J. Sheridan, N. Feng, R. Bonneau, et al., J. Neuroimmunol., 31, No. 2, 245–255 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. L. W. Swanson, Brain Maps: Computer Graphics Files, Elsevier Science, Amsterdam (1992).

    Google Scholar 

  34. M. Szekely, E. Petervári, M. Balaskó, I. Hernádi, and B. Uzsoki, “Effects of orexins on energy balance and thermoregulation,” Regul. Pept., 104, No. 1–3, 47–53 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. M. Tanaka, M. Tonouchi, T. Hosono, K. Nagashima, M. Yanase-Fujiwara, and K. Kanosue, “Hypothalamic region facilitating shivering in rats,” Jpn. J. Physiol., 51, 625–629 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. P. Trivedi, H. Yu, D. J. MacNeil, L. H. van der Ploeg, and X. M. Guan, “Distribution of orexin receptor mRNA in the rat brain,” FEBS Lett., 438, 71–75 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. M. V. Zaretskaia, D. V. Zaretsky, A. Shekhar, and J. A. DiMecoo, “Chemical stimulation of the dorsomedial hypothalamus evokes non-shivering thermogenesis in anesthetized rats,” Brain Res., 928, 113–125 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. L. Zhu, T. Onaka, T. Sakurai, and T. Yada, “Activation of orexin neurons after noxious but not conditioned fear stimuli in rat,” Neuroendocrinol., 13, No. 10, 1351–1353 (2002).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Z. Shainidze.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 95, No. 12, pp. 1346–1358, December, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shainidze, K.Z., Novikova, N.S. Immunoreactivity of Hypothalamic Orexin-Containing Neurons in Rats in Movement Restriction and Cooling. Neurosci Behav Physi 41, 213–221 (2011). https://doi.org/10.1007/s11055-011-9402-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-011-9402-0

Key words

Navigation