Skip to main content

Advertisement

Log in

Neuron Division or Enucleation

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The classical Bielschowsky–Gross neurohistological method was used to reproduce all the morphological phenomena interpreted by many authors as signs of neuron division, budding, and fission. It is suggested that these signs are associated with the effects of enucleation, which occurs in many cells of other tissue types in response to a variety of chemical and physical treatments. Studies were performed using neurons isolated from the mollusk Lymnaea stagnalis and exposed in tissue culture to the actin microfilament inhibitor cytochalasin B. Phase contrast time-lapse video recording over periods of 4–8 h demonstrated nuclear displacement, ectopization, and budding, to the level of almost complete fission of the neuron body. This repeats the pattern seen in static fixed preparations in “normal” conditions and after different experimental treatments. Budding of the cytoplasm was also sometimes seen at the early stages of the experiments. Control experiments in which cultured neurons were exposed to the solvent for cytochalasin B, i.e., dimethylsulfoxide (DMSO), did not reveal any changes in neurons over a period of 8 h. We take the view that the picture previously interpreted as neuron division and fission can be explained in terms of the inhibition of actin microfilaments, sometimes developing spontaneously in cells undergoing individual metabolic changes preventing the maintenance of cytoskeleton stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Altshul, “Changes in neural ganglia in the digestive tract in experimental intestinal obstruction,” Arkh. Biol. Nauk, 58, No. 1, 124–129 (1940).

    Google Scholar 

  2. M. V. Voino-Yasenetskii, and Yu. M. Zhabotinskii, Sources of Errors in Morphological Studies [in Russian], Meditsina, Leningrad (1970).

    Google Scholar 

  3. B. A. Dolgo-Saburov, The Innervation of Veins [in Russian], Medgiz, Leningrad (1958).

    Google Scholar 

  4. E. E. Egorov, I. A. Prudovskii, and A. V. Selenin, “Comparative studies of L-cell cytoplasts prepared using and not using cytochalasin B,” Dokl. Akad. Nauk SSSR, 264, No. 4, 969–973 (1982).

    CAS  PubMed  Google Scholar 

  5. Yu. M. Zhabotinskii, Normal and Pathological Morphology of Autonomic Ganglia [in Russian], Academy of Medical Sciences of the USSR Press (1953).

  6. Yu. M. Zhabotinskii, Normal and Pathological Morphology of Neurons [in Russian], Meditsina, Leningrad (1965).

    Google Scholar 

  7. A. V. Zelenin, A. A. Kushch, and I. A. Produvskii, Reconstruction of Cells [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  8. O. Yu. Ivanova, E. A. Smirnova, and S. G. Komi, “Mechanisms of formation of multinucleate cells in the presence of cytochalasin B in cultures of transformed fibroblasts,” Tsitologiya, 27, No. 7, 780–784 (1985).

    CAS  Google Scholar 

  9. G. A. Koblov, Nerve Cell Division, [in Russian], Saratov University Press, Saratov (1974).

    Google Scholar 

  10. A. A. Laktionova and O. S. Sotnikov, “Studies of the phenomenon of ‘neuron division’ in living cells,” Morfologiya, 136, No. 4, 87 (2009).

    Google Scholar 

  11. F. Lominskii, “Experimental studies in adult animals and embryos – can nerve cells multiply by division?” Universitetskie Izvestiya, No. 3, 1039 (Addendum) (1882).

  12. K. M. Morozova and E. V. Kiseleva, “Changes in the organization of the nucleus and cytoplasm of Xenopus oocytes after degradation of actin filaments with latrunculine,” Tsitologiya, 50, No. 5, 394–405 (2008).

    CAS  Google Scholar 

  13. I. A. Prudovskii, A. Yu. Kerkis, S. I. Baiborodin, et al., “Use of cell enucleation to study the stability of cytoplasmic organelles and the organization of the cytoplasm,” Tsitologiya, 27, No. 7, 792–795 (1985).

    CAS  Google Scholar 

  14. T. N. Radostina, “The multiplication of autonomic nervous system neurons,” in: The Influences of the Higher Centers of the Nervous System on Inflammation and Regeneration Processes. Studies at the Moscow Medical Institute [in Russian] (1957), pp. 241–249.

  15. N. Ringertz and R. Savage, Hybrid Cells [Russian translation], Mir, Moscow (1979).

    Google Scholar 

  16. V. V. Serov and V. S. Paukov, Ultrastructural Pathology [in Russian], Meditsina, Moscow (1975).

    Google Scholar 

  17. N. E. Yarygin and V. N. Yarygin, Pathological and Adaptive Changes in Neurons [in Russian], Meditsina, Moscow (1973).

    Google Scholar 

  18. M. T. Bohnsack, T. Stuven, C. Kuhn, et al., “A selective block of nuclear actin export stabilizes the giant nuclei of Xenopus oocytes,” Nat. Cell. Biol., 8, 257–263 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. S. B. Carter, “Effects of cytochalasins on mammalian cells,” Nature, 213, 261–266 (1967).

    Article  CAS  PubMed  Google Scholar 

  20. N. Chen, S. L. Liow, W. Y. Yip, et al., “Early development of reconstructed embryos after somatic cell nuclear transfer in a non-human primate,” Theriogenology, 66, No. 5, 1300–1306 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. V. C. Coimbra, D. Yamamoto, K. G. Khusal, et al., “Enucleated L929 cells support invasion, differentiation, and multiplication of Trypanosoma cruzi parasites,” Infect. Immun., 75, No. 8, 3700–3706 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. K. Hosaka, S. Ohi, A. Ando, et al., “Cloned mice derived from somatic cell nuclei,” Hum. Cell, 13, No. 4, 237–242 (2000).

    CAS  PubMed  Google Scholar 

  23. T. Iwai, “Temporal profile of neural stem cell proliferation in the sub-ventricular zone after ischemia/hypoxia in the neonatal rat brain,” Neurol. Res., 28, No. 4, 461–468 (2006).

    Article  PubMed  Google Scholar 

  24. M. Kawahara, T. Mori, H. Tanaka, and H. Shimizu, “The suppression of fragmentation by stabilization of actin filament in porcine enucleated oocytes,” Theriogerontology, 58, No. 6, 1081–1095 (2002).

    Article  CAS  Google Scholar 

  25. G. C. Lan, Y. C. Wu, D. Han, et al., “Demecolcine – assisted enucleation of goat oocytes: protocol optimization, mechanism investigation, and application to improve the developmental potential of cloned embryos,” Cloning Stem Cells, 10, No. 2, 189–202 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. D. Liberman and L. Sachs, “Nuclear control of neurite induction in neuroblastoma cells,” Exp. Cell Res., 113, No. 2, 383–390 (1978).

    Article  Google Scholar 

  27. C. Mirescu, J. D. Peters, and E. Gould, “Early life experience alters response of adult neurogenesis to stress,” Nat. Neurosci., 7, No. 8, 841–846 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. R. A. Nichols, C. E. Chandler, and E. M. Shooter, “Enucleation of the rat pheochromocytoma clonal cell line, PC 12: effect on neurite outgrowth,” J. Cell Physiol., 141, No. 2, 301–309 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. F. Nissl, “Über die Veränderungen der Ganglienzellen am Fascialisnerv der Kaninchen nach Ausreissung der Nerven,” Allg. Zschr. Psych., 48, No. 197, 675–689 (1892).

    Google Scholar 

  30. S. Ramon y Cajal, Degeneration and Regeneration of the Nervous System, Hafner Publishing Co., New York (1959).

    Google Scholar 

  31. E. A. Repasky and B. S. Eckert, “The effect of cytochalasins B on the enucleation of erythroid cells in vitro,” Cell Tiss. Res., 221, No. 1, 85–91 (1981).

    Article  CAS  Google Scholar 

  32. J. W. Shay, K. R. Porter, and D. M. Prescott, “The surface morphology and fine structure of CHO (Chinese hamster ovary) cells following enucleation,” Proc. Natl. Acad. Sci. USA, 71, No. 8, 3059–3063 (1974).

    Article  CAS  PubMed  Google Scholar 

  33. J. Tesarik, F. Martinez, L. Rienzi, et al., “Microfilament disruption is required for enucleation and nuclear transfer in germinal vesicle but not meta phase II human oocytes,” Fertil. Steril., 79, Supplement 1, 677–681 (2003).

    Article  PubMed  Google Scholar 

  34. V. Volloch, B. Schweitzer, and S. Rits, “Synthesis of globin RNA in enucleated differentiating murine erythroleukemia cells,” J. Cell Biol., 105, No. 1, 137–143 (1987).

    Article  CAS  PubMed  Google Scholar 

  35. D. L. Yamamoto, V. C. Coimbra, K. Okuda, and M. Rabinovitch, “Enucleated L929 mouse fibroblasts support invasion and multiplication of Shigella flexneri 5a,” Braz. J. Med. Biol. Res., 39, No. 6, 749–758 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Morfologiya, Vol. 136, No. 6, pp. 28–34, November–December, 2009. Original article submitted April 27, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sotnikov, O.S., Laktionova, A.A., Solovieva, I.A. et al. Neuron Division or Enucleation. Neurosci Behav Physi 40, 841–847 (2010). https://doi.org/10.1007/s11055-010-9339-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-010-9339-8

Key words

Navigation