Skip to main content
Log in

Binucleated and Multinucleated Neurons are Formed by Fusion

  • CELL TECHNOLOGIES IN BIOLOGY AND MEDICINE
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

In the era of molecular biology and atomic force microscopy, some important macroscopic issues such as simultaneous bidirectional axonal flow or neuronal multinucleosis remain unaddressed. However, these issues have to be addressed, because they distort the results of our current achievements. Using videorecording technique, we studied adhesive contacts between neurons and their processes and kinetics of anastomosis retraction between the cell bodies up to their complete fusion with introduction of neurites into the cell cytoplasm and formation of binuclear cells. Three proofs refuting the mechanism of binuclearity formation by amitosis are presented. Live trinuclear neurons without signs of amitotic division were identified. Electron microscopy showed that fusion of many living neurons into one simplest during centrifugation of isolated cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sergeeva SS, Sotnikov OS, Paramonova NV. Method for creating a neurophysiological model of a simple nervous system possessing reverberation. Ross. Fiziol. Zh. 2020;106(9):1163-1169. doi: https://doi.org/10.31857/S0869813920080075. Russian.

    Article  Google Scholar 

  2. Sotnikov OS. Reticular theory of Camillo Golgi and restructuring electrical synapses in syncytial perforations. Biol. Bull. 2019;46(2):128-143.

    Article  Google Scholar 

  3. Yarygin NE, Yarygin VN. Pathological and Adoptive Changes of Neurons. Moscow, 1973. Russian.

  4. Ackman JB, Siddiqi F, Walikonis RS, LoTurco JJ. Fusion of microglia with pyramidal neurons after retroviral infection. J. Neurosci. 2006;26(44):11413-11422. doi: https://doi.org/10.1523/JNEUROSCI.3340-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K, Lois C, Morrison SJ, Alvarez-Buylla A. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature. 2003;425:968-973. doi: https://doi.org/10.1038/nature02069

    Article  CAS  PubMed  Google Scholar 

  6. Anastas SB, Mueller D, Semple-Rowland SL, Breunig JJ, Sarkisian MR. Failed cytokinesis of neural progenitors in citron kinase-deficient rats leads to multinucleated neurons. Cereb. Cortex. 2011;21(2):338-344. doi: https://doi.org/10.1093/cercor/bhq099

    Article  PubMed  Google Scholar 

  7. Bae JS, Han HS, Youn DH, Carter JE, Modo M, Schuchman EH, Jin HK. Bone marrow-derived mesenchymal stem cells promote neuronal networks with functional synaptic transmission after transplantation into mice with neurodegeneration. Stem Cells. 2007;25(5):1307-1316. doi: https://doi.org/10.1634/stemcells.2006-0561

    Article  CAS  PubMed  Google Scholar 

  8. Blümcke I, Wiestler OD. Gangliogliomas: an antriguing tumor entity associated with focal epilepsies. J. Neuropathol. Exp. Neurol. 2002;61(7):575-584. doi: https://doi.org/10.1093/jnen/61.7.575

    Article  PubMed  Google Scholar 

  9. Chen KA, Cruz PE, Lanuto DJ, Flotte TR, Borchelt DR, Srivastava A, Zhang J, Steindler DA, Zheng T. Cellular fusion for gene delivery to SCA1 affected Purkinje neurons. Mol. Cell. Neurosci. 2011;47(1):61-70. doi: https://doi.org/10.1016/j.mcn.2011.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. DiLorenzo DJ, Jankovic J, Simpson RK, Takei H, Powell SZ. Long-term deep brain stimulation for essential tremor: 12-year clinicopathologic follow-up. Mov. Disord. 2010;25(2):232-238. doi: https://doi.org/10.1002/mds.22935

    Article  PubMed  Google Scholar 

  11. Espejel S, Romero R, Alvarez-Buylla A. Radiation damage increases Purkinje neuron heterokaryons in neonatal cerebellum. Ann. Neurol. 2009;66(1):100-109. doi: https://doi.org/10.1002/ana.21670

    Article  PubMed  Google Scholar 

  12. Fèvre-Montange M, Szathmari A, Champier J, Mokhtari K, Chrétien F, Coulon A, Figarella-Branger D, Polivka M, Varlet P, Uro-Coste E, Fauchon F, Jouvet A. Pineocytoma and pineal parenchymal tumors of intermediate differentiation presenting cytologic pleomorphism: a multicenter study. Brain Pathol. 2008;18(3):354-359. doi: https://doi.org/10.1111/j.1750-3639.2008.00128.x

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hirohata S. Histopathology of central nervous system lesions in Behcet’s desease. J. Neurol. Sci. 2008;267(1-2):41-47. doi: https://doi.org/10.1016/j.jns.2007.09.041

    Article  CAS  PubMed  Google Scholar 

  14. Kawataki T, Sato E, Sato T, Kinouchi H. Anaplastic ganglioglioma with malignant features in both neuronal and glial components — case report. Neurol. Med. Chir. (Tokyo). 2010;50(3):228-231. doi: https://doi.org/10.2176/nmc.50.228

    Article  Google Scholar 

  15. Kemp K, Gordon D, Wraith DC, Mallam E, Hartfield E, Uney J, Wilkins A, Scolding N. Fusion between human mesenchymal stem cells and rodent cerebellar Purkinje cells. Neuropathol. Appl. Neurobiol. 2011;37(2):166-178. doi: https://doi.org/10.1111/j.1365-2990.2010.01122.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kemp K, Gray E, Wilkins A, Scolding N. Purkinje cell fusion and binucleate heterokaryon formation in multiple sclerosis cerebellum. Brain. 2012;135(Pt 10):2962-2972. doi: https://doi.org/10.1093/brain/aws226

    Article  PubMed  Google Scholar 

  17. Magrassi L, Grimaldi P, Ibatici A, Corselli M, Ciardelli L, Castello S, Podestà M, Frassoni F, Rossi F. Induction and survival of binucleated Purkinje neurons by selective damage and aging. J. Neurosci. 2007;27(37):9885-9892. doi: https://doi.org/10.1523/JNEUROSCI.2539-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Martin-Padura I, Marighetti P, Gregato G, Agliano A, Malazzi O, Mancuso P, Pruneri G, Viale A, Bertolini F. Spontaneous cell fusion of acute leukemia cells and macrophages observed in cells with leukemic potential. Neoplasia. 2012;14(11):1057-1066. doi: https://doi.org/10.1593/neo.12736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Müller T. Light microscopic analysis of cellular networks in the pineal gland of the golden hamster as revealed by methylene blue labeling. Ital. J. Anat. Embryol. 2000;105(3):159-165.

    PubMed  Google Scholar 

  20. Nern C, Wolff I, Macas J, von Randow J, Scharenberg C, Priller J, Momma S. Fusion of hematopoietic cells with Purkinje neurons does not lead to stable heterokaryon formation under noninvasive conditions. J. Neurosci. 2009;29(12):3799-3807. doi: https://doi.org/10.1523/JNEUROSCI.5848-08.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Paltsyn A, Komissarova S, Dubrovin I, Kubatiev A. Increased cell fusion in cerebral cortex may contribute to poststroke regeneration. Stroke Res. Treat. 2013;2013:869327. doi: https://doi.org/10.1155/2013/869327

    Article  PubMed  PubMed Central  Google Scholar 

  22. Paltsyn AA, Manukhina EB, Goryacheva AV, Downey HF, Dubrovin IP, Komissarova SV, Kubatiev AA. Intermittent hypoxia stimulates formation of binuclear neurons in brain cortex — a role of cell fusion in neuroprotection? Exp. Biol. Med. (Maywood). 2014;239(5):595-600. doi: https://doi.org/10.1177/1535370214523898

    Article  CAS  Google Scholar 

  23. Richard JP, Leikina E, Langen R, Henne WM, Popova M, Balla T, McMahon HT, Kozlov MM, Chernomordik LV. Intracellular curvature-generating proteins in cell-to-cell fusion. Biochem. J. 2011;440(2):185-193. doi: https://doi.org/10.1042/BJ20111243

    Article  CAS  PubMed  Google Scholar 

  24. Sotnikov OS. Properties Live Axoplasm. New York, 2016.

  25. Terashima T, Kojima H, Fujimiya M, Matsumura K, Oi J, Hara M, Kashiwagi A, Kimura H, Yasuda H, Chan L. The fusion of bone-marrow-derived proinsulin-expressing cells with nerve cells underlies diabetic neuropathy. Proc. Natl Acad. Sci. USA. 2005;102(35):12525-12530. doi: https://doi.org/10.1073/pnas.0505717102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Weimann JM, Charlton CA, Brazelton TR, Hackman RC, Blau HM. Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. Proc. Natl Acad. Sci. USA. 2003;100(4):2088-2093. doi: https://doi.org/10.1073/pnas.0337659100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhu X, Siedlak SL, Wang Y, Perry G, Castellani RJ, Cohen ML, Smith MA. Neuronal binucleation in Alzheimer disease hippocampus. Neuropathol. Appl. Neurobiol. 2008;34(4):457-465. doi: https://doi.org/10.1111/j.1365-2990.2007.00908.x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Sotnikov.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 2, pp. 79-84, June, 2021

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sotnikov, O.S. Binucleated and Multinucleated Neurons are Formed by Fusion. Bull Exp Biol Med 171, 508–512 (2021). https://doi.org/10.1007/s10517-021-05261-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-021-05261-w

Key Words

Navigation