Skip to main content
Log in

Involvement of Extracellular Superoxide Dismutase in Regulating Brain Blood Flow

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The physiological role of extracellular superoxide dismutase (SOD3) has received insufficient study. We investigated the hypothesis that SOD3, which neutralizes superoxide anions (O 2 ) in the intercellular space of the brain, prevents the inactivation of nitric oxide (NO) and is thus involved in regulating cerebral vascular tone. Local brain blood flow was measured in the striatum of anesthetized rats during administration of various combinations of a SOD mimetic, a SOD inhibitor, an NO donor, and an NOS inhibitor into the striatum using a Hamilton syringe. In normal conditions, SOD3 was found to minimize O 2 levels, protecting endogenously produced NO at a sufficient level to maintain cerebral vascular tone and reactivity. SOD3 was found to increase the vasodilatory effect of endogenously produced NO in the brain. SOD3 was found to neutralize superoxide anions produced in the brain during respiration of 100% O2 and to maintain basal NO levels and its vasodilatory potential in normobaric hyperoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. T. Demchenko, A. E. Boso, S. Yu. Zhilyaev, A. N. Moskvin, D. N. Atochin, D. R. Gutsaeva, P. B. Bennet, and K. A. Piantadosi, “Involvement of nitric oxide in cerebral vasoconstriction during respiration of oxygen under pressure,” Ros. Fiziol. Zh. im. I. M. Sechenova, 86, No. 12, 1594–1603 (2000).

    CAS  Google Scholar 

  2. S. Yu. Zhilyaev, A. N. Moskvin, T. F. Platonova, D. R. Gutsaeva, I. V. Churilina, and I. T. Demchenko, “Hyperoxic vasoconstriction in the brain is mediated by inactivation of nitric oxide by superoxide radicals,” Ros. Fiziol. Zh. im. I. M. Sechenova, 88, No. 5, 553–559 (2002).

    CAS  Google Scholar 

  3. I. Batinic-Haberle, L. Benov, I. Spasojevic, and I. Fridovich, “The ortho effect makes manganese(III) meso-tetrakis (N-methylpyridinium-2-yl)porphyrin (MnTM-2-PyP) a powerful and potentially useful superoxide dismutase mimic,” J. Biol. Chem., 273, 24521–24528 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. J. S. Beckman and W. H. Koppenol, “Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly,” Am. J. Physiol., 271, 1424–1437 (1996).

    Google Scholar 

  5. J. D. Crapo, T. D. Oury, C. Rabouille, J. W. Slot, and L. Y. Chang, “Copper, zinc superoxide dismutase is primarily a cytosolic protein in human cells,” Proc. Natl. Acad. Sci. USA, 89, 10405–10409 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. G. Czapski and S. Goldstein, “The role on the reaction of NO with superoxide and oxygen in biological systems: a kinetic approach,” Free Radic. Biol. Med., 19, 785–794 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. D. P. D’Agostino, R. W. Putnam, and J. B. Dean, “Superoxide (O 2 ) production in CA1 neurons of rat hippocampal slices exposed to graded levels of oxygen,” J. Neurophysiol., 98, 1030–1041 (2007).

    Article  PubMed  Google Scholar 

  8. I. T. Demchenko, T. D. Oury, J. D. Crapo, and C. A. Piantadosi, “Regulation of the brain’s vascular responses to oxygen,” Circ. Res., 91, 1031–1037 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. I. T. Demchenko, Yu. I. Luchakov, A. N. Moskvin, D. R. Gutsaeva, B. W. Allen, E. D. Thalmann, and C. A. Piantadosi, “Cerebral blood flow and brain oxygenation in rats breathing oxygen under pressure,” J. Cereb. Blood Flow Metab., 25, 1288–1300 (2005).

    Article  PubMed  Google Scholar 

  10. R. J. Folz and J. D. Crapo, “Extracellular superoxide dismutase (SOD3): Tissue-specific expression, genomic characterization, and computer-assisted sequence analysis of the human EC SOD gene,” Genomics, 22, 162–171 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. I. Fridovich, “Superoxide anion radical, superoxide dismutases, and related matters,” J. Biol. Chem., 272, 18515–18518 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. R. J. Gryglewski, R. M. Palmer, and S. Moncada, “Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor,” Nature, 320, 454–456 (1986).

    Article  CAS  PubMed  Google Scholar 

  13. C. Iadecola, D. D. Pelligrino, M. A. Moskowitz, and N. Lassen, “Nitric oxide synthase inhibition and cerebrovascular regulation,” J. Cereb Blood Flow Metab., 14, 175–192 (1994).

    CAS  PubMed  Google Scholar 

  14. K. Karlsson and S. L. Marklund, “Extracellular superoxide dismutase in the vascular system of mammals,” Biochem. J., 255, 223–228 (1988).

    CAS  PubMed  Google Scholar 

  15. Z. S. Katusic, “Superoxide anion and endothelial regulation of arterial tone,” Free Rad. Biol. Med., 20, 443–448 (1998).

    Article  Google Scholar 

  16. G. B. Mackensen, M. Patel, H. Sheng, C. Calvi, I. Batinic-Haberle, B. J. Day, L. P. Liang, I. Fridovich, J. D. Crapo, R. D. Pearlstein, and S. D. Warner, “Neuroprotection from delayed post-ischemic administration of a metalloporphyrin catalytic antioxidant,” J. Neurosci., 21, 4582–4592 (2001).

    CAS  PubMed  Google Scholar 

  17. S. Marklund, “Extracellular superoxide dismutase in human tissue and human cell lines,” J. Clin. Invest., 74, 1398–1403 (1984).

    Article  CAS  PubMed  Google Scholar 

  18. H. K. Mohazzab, P. M. Kaminski, and M. W. Wolin, “NADH oxidoreductase is a major source of superoxide anion in bovine coronary artery endothelium,” Am. J. Physiol., 266, H2568–H2572 (1994).

    Google Scholar 

  19. T. D. Oury, H. J. Day, and J. D. Crapo, “Extracellular superoxide dismutase in vessels and airways of humans and baboons,” Free Radic. Biol. Med., 20, 957–965 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. T. D. Oury, B. J. Day, and J. D. Crapo, “Extracellular superoxide dismutase: A regulator of nitric oxide bioavailability,” Lab. Invest., 75, 617–636 (1996).

    CAS  PubMed  Google Scholar 

  21. G. M. Rubanyi and P. M. Vanhoutte, “Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor,” Amer. J. Physiol., 250, H822–H827 (1986).

    Google Scholar 

  22. H. Sheng, J. J. Enghild, R. Bowler, M. Patel, C. Calvi, B. J. Day, R. D. Pearlstein, J. D. Crapo, and D. S. Warner, “Effects of metalloporphyrin catalytic antioxidants on experimental brain ischemia,” Free Radic. Biol. Med., 33, 947–961 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. J. S. Stamler, Li Jia, J. P. Eu, T. J. McMahon, I. T. Demchenko, J. Bonaventura, J. K. Gerent, and C. A. Piantadosi, “Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient,” Science, 276, 2034–2037 (1996).

    Article  Google Scholar 

  24. P. Stralin, K. Karlsson, B. O. Johansson, and S. L. Marklund, “The interstitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase,” Arterioscler. Thromb. Vasc. Biol., 15, 2032–2036 (1995).

    CAS  PubMed  Google Scholar 

  25. L. S. Terada, I. R. Willingham, M. E. Rosandich, J. A. Leff, G. W. Kindt, and J. E. Repine, “Generation of superoxide anion by brain endothelial cell xanthine oxidase,” J. Cell Physiol., 148, 191–196 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. T. Demchenko.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 94, No. 12, pp. 1365–1373, December, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demchenko, I.T., Gutsaeva, D.R., Moskvin, A.N. et al. Involvement of Extracellular Superoxide Dismutase in Regulating Brain Blood Flow. Neurosci Behav Physi 40, 173–178 (2010). https://doi.org/10.1007/s11055-009-9240-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-009-9240-5

Key words

Navigation