Skip to main content
Log in

Studies of the Perception of Incomplete Outline Images of Different Sizes

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The aim of the present work was to assess the range of angular sizes of fragmented images of objects at which perception of the images was scale-independent. Measurements were made of human subjects’ recognition thresholds for the shapes of the objects over a wide range of angular sizes (0.19–50°). The experiments used the Gollin test – a method for studying the recognition of fragmented outline images of objects with which the observer is familiar. The results obtained demonstrated that there is a wide range of angular sizes, from 1.0° to 50°, over which the perception thresholds of incomplete outline images do not change with changes in size, along with a narrow range of stimulus sizes, 0.19–1.0°, over which there is a significant size dependence. We suggest that the increase in thresholds and the failure to recognize images of small size occur as a result of an increased contribution of sampling noise at the level of the human retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Aleksandrov and N. D. Gorskii, Image Representation and Processing. A Recursive Approach [in Russian], Nauka, Leningrad (1985).

  2. V. D. Glezer, K. N. Dudkin, and N. F. Podvigin, Visual Recognition and its Neurophysiological Mechanisms [in Russian], Nauka, Leningrad (1975).

    Google Scholar 

  3. V. D. Glezer and I. I. Tsukkerman, Information and Vision [in Russian], Academy of Sciences of the USSR Press, Moscow, Leningrad (1961).

    Google Scholar 

  4. F. V. Campbell and Yu. E. Shelepin, “Foveolar object discrimination ability,” Sensor. Sistemy, 4, No. 2, 181–185 (1990).

    Google Scholar 

  5. A. V. Merkul’ev, Yu. E. Shelepin, V. N. Chikhman, S. V. Pronin, and N. Foreman, “Optical geometrical characteristics and perception thresholds for fragmented outline figures,” Ros. Fiziol. Zh. im. I. M. Sechenova, 89, No. 6, 731–737 (2003).

    Google Scholar 

  6. A. V. Merkul’ev, S. V. Pronin, L. A. Semenov, N. Foreman,V. N. Chikhman, and Yu. E. Shelepin, “Threshold signal:noise ratios for the perception of fragmented figures,” Ros. Fiziol. Zh. im. I. M. Sechenova, 90, No. 11, 1348–1355 (2004).

    Google Scholar 

  7. N. Stefanova, “The invariance of visual images,” in: Second National Conference of the Bulgarian Physiology Society, Sofia (97), (1964), p. 19.

  8. N. Stefanova, “Importance of size in the process of recognition of visual objects,” in: Studies of the Principles of the Information Processing in the Visual System [in Russian], Leningrad (1970).

  9. Yu. E. Shelepin, “Localization of areas in the visual cortex of kittens giving invariant responses to changes in image size,” Neirofiziologiya, 5, No. 2, 115–121 (1973).

    Google Scholar 

  10. Yu. E. Shelepin, “Comparison of topographic and spatial-frequency characteristics of the lateral suprasylvian and striate areas of the cortex in cats,” Neirofiziologiya, 16, No. 1, 35–41 (1984).

    Google Scholar 

  11. Yu. E. Shelepin, V. M. Bondarko, and M. V. Danilova, “Construction of foveola and a model of the pyramidal organization of the visual system,” Sensor. Sistemy, 9, No. 1, 87–97 (1995).

    Google Scholar 

  12. I. Biederman and E. E. Cooper, “Evidence for complete translational and reflectional invariance in visual object priming,” Perception, 20, 585–593 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. D. Bohm, “Physics and perception. The role of invariants in perception,” in: The Special Theory of Relativity [Russian translation], Mir, Moscow (1967), pp. 239–281, originally published by Benjamin Inc., New York (1965).

    Google Scholar 

  14. P. Burt and E. Adelson, “The laplacian pyramid as a compact image code,” IEEE Transactions on Communications, Com-31, 4 (1983).

  15. V. Canton and A. Petrosino, “Neural recognition in a pyramidal structure,” IEEE Transactions on Neural Networks, 13, No. 2, (2002).

  16. P. Cavanagh, “Size and position invariance in the visual system,” Perception, 7, 167–177 (1978).

    Article  CAS  PubMed  Google Scholar 

  17. V. Chikhman,Y. Shelepin, N. Foreman, A. Merkuljev, and S. Pronin, “Incomplete figure perception and invisible masking,” Perception, 35, No. 11, 1441–1457 (2006).

    Article  PubMed  Google Scholar 

  18. B. M. Dow, A. Z. Snyder, and R. G. Vautin, “Magnification factor and receptive field size in foveal striate cortex of the monkey,” Exptl. Brain Res., 44, 213–228 (1981).

    Article  CAS  Google Scholar 

  19. J. Fiser and I. Biederman, “Size invariance in visual object priming of gray-scale images,” Perception, 24, No. 7, 741–748 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. D. Fize, W. Vanduffel, and K. Nelissen, “The retinotopic organization of primate dorsal V4 and surrounding areas: A functional magnetic resonance imaging study in awake monkeys,” J. Neurosci., 23, No. 19, 7395–7406 (2003).

    CAS  PubMed  Google Scholar 

  21. N. Foreman, “Correlates of performance on the Gollin and Mooney tests of visual closure,” J. Gen. Psychol., 118, No. 1, 13–20 (1991).

    CAS  PubMed  Google Scholar 

  22. N. Foreman and R. Hemming, “The gollin incomplete figures test: a flexible, computerized version,” Perception, 16, 543–548 (1987).

    Article  CAS  PubMed  Google Scholar 

  23. W. Gerbino and C. Fantoni, “Visual interpolation is not scale invariant,” Vision Res., 46, No. 19, 3142–3159 (2006).

    Article  PubMed  Google Scholar 

  24. E. S. Gollin, “Developmental studies of visual recognition of incomplete object,” Perceptual Motor Skills, 11, 289–298 (1960).

    Article  Google Scholar 

  25. D. H. Hubel and T. N. Wiesel, “Uniformity of monkey striate cortex: A parallel relationship between field size, scatter and magnification factor,” J. Comp. Neurol., 158, No. 3, 295–306 (1974).

    Article  CAS  PubMed  Google Scholar 

  26. D. G. Lowe, “Distinctive image features from scale-invariant key points,” IJCV, 60, No. 2, 91–110 (2004).

    Article  Google Scholar 

  27. C. Mehanian and S. Rak, “Bidirectional log-polar mapping for invariant object recognition,” SPIE, 1471, 200 (1991).

    Article  Google Scholar 

  28. T. M. Murphy and L. H. Finkel, “Shape representation by a network of V4-like cells,” Neural Networks, 20, No. 8, 851–867 (2007).

    Article  PubMed  Google Scholar 

  29. M. B. Patterson, J. L. Mack, and A. H. Schnell, “Performance of elderly and young normals on the Gollin Incomplete Pictures Test,” Perceptual Motor Skills, 89, No. 2, 663–664 (1999).

    Article  CAS  Google Scholar 

  30. J. R. Polimeni, M. Balasubramanian, and E. L. Schwartz, “Multiarea visuotopic map complexes in macaque striate and extra-striate cortex,” Vision Res., 46, No. 20, 3336–3359 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. J. Ross, B. Jenkins, and J. R. Johnstone, “Size constancy fails below half a degree,” Nature, 283, No. 5746, 473–474 (1980).

    Article  CAS  PubMed  Google Scholar 

  32. E. L. Schwartz, “Computational anatomy and functional architecture of striate cortex: a spatial mapping approach to perceptual coding,” Vision Res., 20, 645–669 (1980).

    Article  CAS  PubMed  Google Scholar 

  33. E. L. Schwartz, “Cortical mapping and perceptual invariance: a reply to Cavanagh,” Vision Res., 23, No. 8, 831–835 (1983).

    Article  CAS  PubMed  Google Scholar 

  34. M. Singh and J. Fulvio, “Bayesian contour extrapolation: Geometric determinations of good continuation,” Vision Res., 47, 783–798 (2007).

    Article  PubMed  Google Scholar 

  35. K. Srinivas, “Size and reflection effects in priming: a test of transfer appropriate processing,” Memory Cognition, 24, 441–452 (1996).

    CAS  PubMed  Google Scholar 

  36. N. Stefanova, “Effects of the angle of rotation of visual objects on recognition in a time-deficit situation,” in: Visual Information Processing, Sofia (1974), pp. 109–114.

  37. N. S. Sutherland, “Theories of shape discrimination in octopus,” Nature, 186, 840 (1960).

    Article  CAS  PubMed  Google Scholar 

  38. N. S. Sutherland, “Outlines of a theory of visual pattern recognition in animals and man,” Proc. Roy. Soc. Lond., B171, 297–317 (1968).

    Article  Google Scholar 

  39. C. F. R. Weiman, “Log-polar vision for mobile robot navigation,” Conference Proceedings “Electronic Imaging,” 90, 382–385 (1990).

    Google Scholar 

  40. J. R. Wilson and S. M. Sherman, “Receptive-field characteristics of neurons in cat striate cortex: Changes with visual field eccentricity,” J. Neurophysiol., 39, No. 3, 512–533 (1976).

    CAS  PubMed  Google Scholar 

  41. S. Zokai and G. Wolberg, “Image registration using log-polar mapping for recovery of large-scale similarity and projective transformations,” Image Processing. IEEE Transactions, 14, No. 10, 1422–1434 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. E. Shelepin.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 94, No. 10, pp. 1158–1170, October, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vakhrameeva, O.A., Shelepin, Y.E., Mezentsev, A.Y. et al. Studies of the Perception of Incomplete Outline Images of Different Sizes. Neurosci Behav Physi 39, 841–849 (2009). https://doi.org/10.1007/s11055-009-9209-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-009-9209-4

Key words

Navigation