Skip to main content
Log in

Asymmetry in dopamine levels in the nucleus accumbens and motor preference in rats

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Several studies on mice have demonstrated a correlation between the concentrations of dopamine and its metabolites in the nucleus accumbens and asymmetry in forelimb preference. Dopamine concentrations were greater in the nucleus accumbens ipsilateral in relation to the preferred paw. Limb preference was demonstrated in rats during performance of a response consisting of withdrawing food from a horizontal tube. Brain tissue dopamine concentrations were estimated by high-performance liquid chromatography with electrochemical detection. The results showed that in “left-handed” rats, the dopamine concentration in the left nucleus accumbens was significantly greater than that in “right-handed” rats. In right-handed rats, the dopamine concentration in the right nucleus accumbens was greater than that in the left. The results obtained here are significantly consistent with data obtained in mice and support the suggestion that the dopamine level in rats is greater in the nucleus accumbens ipsilateral to the preferred limb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Bianki, “Lateral specialization in the brains of animals,” Fiziol. Zh. SSSR, 66, No. 11, 1593–1607 (1980).

    PubMed  CAS  Google Scholar 

  2. M. E. Ioffe, E. V. Pletneva, and I. S. Stashkevich, “The nature of functional motor asymmetry in animals: the state of the question,” Zh. Vyssh. Nerv. Deyat., 52, No. 1, 5–16 (2002).

    CAS  Google Scholar 

  3. I. S. Midzyanovskaya, G. D. Kuznetsova, L. Tuomisto, Yu. MacDonald, M. A. Kulikov, and A. S. Bazyan, “The concentrations of dopamine and its metabolites in various brain structures in WAG/Rij and Wistar rats: comparative analysis of audiogenic and absence epilepsy and their mixed formed,” Neirokhimiya, 21, No. 4, 254–260 (2004).

    Google Scholar 

  4. I. S. Stashkevich and M. A. Kulikov, “Reorganization of bimanual motor reactions on formation of a lateralized food-procuring skill in rats,” Zh. Vyssh. Nerv. Deyat., 56, No. 1, 95–101 (2006).

    CAS  Google Scholar 

  5. I. Belcheva, J. B. Bryer, S. E. Starkstein, M. Honig, T. H. Moran, and R. G. Robinson, “Hemispheric asymmetry in behavioral response to Dl and D2 receptor agonists in the nucleus accumbens,” Brain Res., 533, No. 2, 286–291 (1990).

    Article  PubMed  CAS  Google Scholar 

  6. H. W. Berendse, Y. Galis-de Graaf, and H. J. Groenewegen, “Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat,” J. Comp. Neurol., 316, No. 3, 314–347 (1992).

    Article  PubMed  CAS  Google Scholar 

  7. C. Besson and A. Louilot, “Asymmetrical involvement of mesolimbic dopaminergic neurons in affective perception,” Neurosci., 68, No. 4, 963–968 (1995).

    Article  CAS  Google Scholar 

  8. F. Boix, P. Sandor, P. J. Nogueira, J. P. Huston, and R. K. Schwarting, “Relationship between dopamine release in nucleus accumbens and place preference induced by substance P injected into the nucleus basalis magnocellularis region,” Neurosci., 64, No. 4, 1045–1055 (1995).

    Article  CAS  Google Scholar 

  9. J. S. Brog, A. Salyapongse, A. Y. Deutch, and Z. S. Dahm, “The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold,” J. Comp. Neurol., 338, 255–278 (1993).

    Article  PubMed  CAS  Google Scholar 

  10. S. Cabib, F. R. Amato, P. J. Neveu, B. Deleplanque, M. Le Moal, and S. Puglisi-Allegra, “Paw preference and brain dopamine asymmetries,” Neurosci., 64, No. 2, 427–432 (1995).

    Article  CAS  Google Scholar 

  11. G. Di Chiara and V. Bassareo, “Reward system and addiction: what dopamine does and doesn't do,” Curr. Opin. Pharmacol., 7, No. 1, 69–76 (2007).

    Article  PubMed  Google Scholar 

  12. S. D. Glick and J. N. Carlson, “Regional changes in brain dopamine and serotonin metabolism induced by conditioned circling in rats: effects of water deprivation, learning and individual differences in asymmetry,” Brain Res., 504, No. 2, 231–237 (1989).

    Article  PubMed  CAS  Google Scholar 

  13. H. J. Groenewegen, Y. Galis-de Graaf, and W. J. Smeets, “Integration and segregation of limbic cortico-striatal loops at the thalamic level: an experimental tracing study in rats,” J. Chem. Neuroanat., 16, No. 3, 167–185 (1999).

    Article  PubMed  CAS  Google Scholar 

  14. H. J. Groenewegen, C. I. Wright, A. V. Beijer, and P. Voorn, “Convergence and segregation of ventral striatal inputs and outputs,” Ann. N.Y. Acad. Sci., 877, 49–63 (1999).

    Article  PubMed  CAS  Google Scholar 

  15. P. J. Hernandez, M. E. Andrzejewski, K. Sadeghian, J. B. Panksepp, and A. E. Kelley, “AMPA/kainate, NMDA, and dopamine Dl receptor function in the nucleus accumbens core: a context-limited role in the encoding and consolidation of instrumental memory,” Learn. Mem., 12, No. 3, 285–295 (2005).

    Article  PubMed  Google Scholar 

  16. S. Ikemoto and J. Panskepp, “The role of nucleus accumbens dopamine in motivated behavior: unifying interpretation with special reference to reward-seeking,” Brain Res. Rev., 31, No. 1, 6–41 (1999).

    Article  PubMed  CAS  Google Scholar 

  17. T. P. Gerussi and D. S. Glick, “Drug-induced rotation in rats without lesions: behavioral and neurochemical indices of a normal asymmetry in nigro-striatal function,” Psychopharmacology (Berlin), 47, No. 3, 249–260 (1976).

    Article  Google Scholar 

  18. T. J. Jerussi and S. D. Glick, “Apomorphine-induced rotation in normal rats and interaction with unilateral caudate lesions,” Psychopharmacology, 40, No. 4, 329–334 (1975).

    Article  CAS  Google Scholar 

  19. P. W. Kalivas and N. D. Volkow, “The neural basis of addiction: a pathology of motivation and choice,” Amer. J. Psychiatry, 162, No. 8, 1403–1413 (2005).

    Article  Google Scholar 

  20. M. Kitamura, N. Koshikawa, N. Yoneshige, and A. R. Cools, “Behavioural and neurochemical effects of cholinergic and dopaminergic agonists administered into the accumbal core and shell in rats,” Neuropharmacology, 38, No. 9, 1397–1407 (1999).

    Article  PubMed  CAS  Google Scholar 

  21. N. Koshikawa, Y. Yoshida, M. Kitamura, T. Saigusa, M. Kobayashi, and A. R. Cools, “Stimulation of acetylcholine or dopamine receptors in the nucleus accumbens differentially alters dopamine release in the striatum of freely moving rats,” Eur. J. Pharmacol., 303, No. 1–2, 13–19 (1996).

    Article  PubMed  CAS  Google Scholar 

  22. A. Louilot and M. K. Choulli, “Asymmetrical increases in dopamine turn-over in the nucleus accumbens and lack of changes in locomotor responses following unilateral dopaminergic depletions in the entorhinal cortex,” Brain Res., 778, No. 1, 150–157 (1997).

    Article  PubMed  CAS  Google Scholar 

  23. A. Louilot and M. Le Moal, “Lateralized interdependence between limbicotemporal and ventrostriatal dopaminergic transmission,” Neurosci., 59, No. 3, 495–500 (1994).

    Article  CAS  Google Scholar 

  24. G. J. Mogenson, L. W. Swanson, and M. Wu, “Neural projections from nucleus accumbens to globus pallidus, substantia innominata, and lateral preoptic-lateral hypothalamic area: an anatomical and electrophysiological investigation in the rat,” J. Neurosci., 3, No. 1, 189–202 (1983).

    PubMed  CAS  Google Scholar 

  25. E. Morice, C. Denis, B. Giros, and M. Nosten-Bertrand, “Constitutive hyperdopaminergia is functionally associated with reduced behavioral lateralization,” Neuropsychopharmacology, 30, No. 3, 575–581 (2005).

    Article  PubMed  CAS  Google Scholar 

  26. W. J. Nauta, G. P. Smith, R. L. Faull, and V. B. Domesick, “Efferent connections and nigral afferents of the nucleus accumbens septi in the rat,” Neurosci., 3, No. 4–5, 385–401 (1978).

    Article  CAS  Google Scholar 

  27. D. M. Nielsen, K. E. Visker, M. J. Cunningham, R. W. Keller, Jr., S. D. Glick, and J. N. Carlson, “Paw preference, rotation, and dopamine function in Collins HI and LO mouse strains,” Physiol. Behav., 61, No. 4, 525–535 (1997).

    Article  PubMed  CAS  Google Scholar 

  28. G. M. Peterson, “Mechanisms of handedness in the rat,” Comp. Psychol. Monogr., 9, 1–34 (1934).

    Google Scholar 

  29. R. G. Robinson and A. Justice, “Mechanisms of lateralized hyperactivity following focal brain injury in the rat,” Pharmacol. Biochem. Behav., 25, No. 1, 263–267 (1986).

    Article  PubMed  CAS  Google Scholar 

  30. S. E. Starkstein, T. H. Moran, J. A. Bowersox, and R. G. Robinson, “Behavioral abnormalities induced by frontal cortical and nucleus accumbens lesions,” Brain Res., 473, No. 1, 74–80 (1988).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Budilin.

Additional information

__________

Translated from Zhurnal Vysshei Nervnoi Deyatel'nosti imeni I. P. Pavlova, Vol. 57, No. 5, pp. 598–603, September–October, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budilin, S.Y., Midzyanovskaya, I.S., Shchegolevskii, N.V. et al. Asymmetry in dopamine levels in the nucleus accumbens and motor preference in rats. Neurosci Behav Physi 38, 991–994 (2008). https://doi.org/10.1007/s11055-008-9082-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-008-9082-6

Key Words

Navigation