Skip to main content

Location, Location, Location: The Expression of D3 Dopamine Receptors in the Nervous System

  • Chapter
  • First Online:
Therapeutic Applications of Dopamine D3 Receptor Function

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 60))

Abstract

When the rat D3 dopamine receptor (D3R) was cloned and the distribution of its mRNA examined in 1990–1991, it attracted attention due to its peculiar distribution in the brain quite different from that of its closest relative, the D2 receptor. In the rat brain, the D3R mRNA is enriched in the limbic striatum as opposed to the D2 receptor, which is highly expressed in the motor striatal areas. Later studies in the primate and human brain confirmed relative enrichment of the D3R in the limbic striatum but also demonstrated higher abundance of the D3R in the primate as compared to the rodent brain. Additionally, in the rodent brain, the D3R in the dorsal striatum appears to be co-expressed with the D1 dopamine receptor-bearing striatal neurons giving rise to the direct output striatal pathway, although the picture is less clear with respect to the nucleus accumbens. In contrast, in the primate striatum, the D3R co-localizes with the D2 receptor throughout the basal ganglia as well as in extrastriatal brain areas. The relative abundance of the D3R in the limbic striatum, its output structures, secondary targets, and some of the other connected limbic territories may underpin its role in reward, drug dependence, and impulse control. Selective expression of D3R in the brain proliferative areas may point to its important role in the neural development as well as in neurodevelopmental abnormalities associated with schizophrenia and other developmental brain disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akter M, Kaneko N, Sawamoto K (2021) Neurogenesis and neuronal migration in the postnatal ventricular-subventricular zone: similarities and dissimilarities between rodents and primates. Neurosci Res 167:64–69

    Article  Google Scholar 

  • Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271

    Article  CAS  Google Scholar 

  • Araki KY, Sims JR, .,Bhide PG (2007): Dopamine receptor mRNA and protein expression in the mouse corpus striatum and cerebral cortex during pre- and postnatal development. Brain Res 1156: 31–45

    Article  CAS  Google Scholar 

  • Aubert I, Ghorayeb I, Normand E, Bloch B (2000) Phenotypical characterization of the neurons expressing the D1 and D2 dopamine receptors in the monkey striatum. J Comp Neurol 418:22–32

    Article  CAS  Google Scholar 

  • Bezard E, Ferry S, Mach U, Stark H, Leriche L, Boraud T et al (2003) Attenuation of levodopa-induced dyskinesia by normalizing dopamine D3 receptor function. Nat Med 9:762–767

    Article  CAS  Google Scholar 

  • Boileau I, Guttman M, Rusjan P, Adams JR, Houle S, Tong J et al (2009) Decreased binding of the D3 dopamine receptor-preferring ligand [11C]-(+)-PHNO in drug-naïve Parkinson's disease. Brain 132:1366–1375

    Article  Google Scholar 

  • Bordet R, Ridray S, Carboni C, Diaz J, Sokoloff P, Schwartz JC (1997) Induction of dopamine D3 receptor expression as a mechanism of behavioral sensitization to levodopa. Proc Natl Acad Sci U S A 94:3363–3367

    Article  CAS  Google Scholar 

  • Bordet R, Ridray S, Schwartz JC, Sokoloff P (2000) Involvement of the direct striatonigral pathway in levodopa-induced sensitization in 6-hydroxydopamine-lesioned rats. Eur J Neurosci 12:2117–2123

    Article  CAS  Google Scholar 

  • Bouthenet ML, Souil E, Martres MP, Sokoloff P, Giros B, Schwartz JC (1991) Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: comparison with dopamine D2 receptor mRNA. Brain Res 564:203–219

    Article  CAS  Google Scholar 

  • De Marchis S, Fasolo A, Puche AC (2004) Subventricular zone-derived neuronal progenitors migrate into the subcortical forebrain of postnatal mice. J Comp Neurol 476:290–300

    Article  Google Scholar 

  • Diaz J, Ridray S, Mignon V, Griffon N, Schwartz JC, Sokoloff P (1997) Selective expression of dopamine D3 receptor mRNA in proliferative zones during embryonic development of the rat brain. J Neurosci 17:4282–4292

    Article  CAS  Google Scholar 

  • Diaz J, Pilon C, Le Foll B, Gros C, Triller A, Schwartz J-C et al (2000) Dopamine D3 receptors expressed by all mesencephalic dopamine neurons. J Neurosci 20:8677

    Article  CAS  Google Scholar 

  • Egeland M, Zhang X, Millan MJ, Mocaer E, Svenningsson P (2012) Pharmacological or genetic blockade of the dopamine D3 receptor increases cell proliferation in the hippocampus of adult mice. J Neurochem 123:811–823

    Article  CAS  Google Scholar 

  • Freedman SB, Patel S, Marwood R, Emms F, Seabrook GR, Knowles MR et al (1994) Expression and pharmacological characterization of the human D3 dopamine receptor. J Pharmacol Exp Ther 268:417

    CAS  Google Scholar 

  • García-Cabezas MA, Martínez-Sánchez P, Sánchez-González MA, Garzón M, Cavada C (2009) Dopamine innervation in the thalamus: monkey versus rat. Cereb Cortex 19:424–434

    Article  Google Scholar 

  • Gerfen CR (2000) Dopamine-mediated gene regulation in models of Parkinson’s disease. Ann Neurol 47(Suppl):S42–S50

    CAS  Google Scholar 

  • Ginovart N, Willeit M, Rusjan P, Graff A, Bloomfield PM, Houle S et al (2006) Positron emission tomography quantification of [11C]-(+)-PHNO binding in the human brain. J Cereb Blood Flow Metab 27:857–871

    Article  Google Scholar 

  • Girgis RR, Slifstein M, Brucato G, Kegeles LS, Colibazzi T, Lieberman JA et al (2021) Imaging synaptic dopamine availability in individuals at clinical high-risk for psychosis: a [11C]-(+)-PHNO PET with methylphenidate challenge study. Mol Psychiatry 26:2504–2513

    Article  CAS  Google Scholar 

  • Grillner S, Robertson B (2016) The basal ganglia over 500 million years. Curr Biol 26:R1088–R1100

    Article  CAS  Google Scholar 

  • Guillin O, Diaz J, Carroll P, Griffon N, Schwartz J-C, Sokoloff P (2001) BDNF controls dopamine D3 receptor expression and triggers behavioral sensitization. Nature 411:86–89

    Article  CAS  Google Scholar 

  • Gurevich EV, Joyce JN (1999) Distribution of dopamine D3 receptor expressing neurons in the human forebrain: comparison with D2 receptor expressing neurons. Neuropsychopharmacology 20:60–80

    Article  CAS  Google Scholar 

  • Gurevich EV, Joyce JN (2000) Dopamine D(3) receptor is selectively and transiently expressed in the developing whisker barrel cortex of the rat. J Comp Neurol 420:35–51

    Article  CAS  Google Scholar 

  • Gurevich EV, Bordelon Y, Shapiro RM, Arnold SE, Gur RE, Joyce JN (1997) Mesolimbic dopamine D3 receptors and use of antipsychotics in patients with schizophrenia. A postmortem study. Arch Gen Psychiatry 54:225–232

    Article  CAS  Google Scholar 

  • Gurevich EV, Himes JW, Joyce JN (1999) Developmental regulation of expression of the D3 dopamine receptor in rat nucleus accumbens and islands of Calleja. J Pharmacol Exp Ther 289:587–598

    CAS  Google Scholar 

  • Gurevich EV, Robertson RT, Joyce JN (2001) Thalamo-cortical afferents control transient expression of the dopamine D(3) receptor in the rat somatosensory cortex. Cereb Cortex 11:691–701

    Article  CAS  Google Scholar 

  • Haber SN (2003) The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 26:317–330

    Article  Google Scholar 

  • Haber SN (2011) In: Gottfried JA (ed) Neurobiology of sensation and reward. CRC Press/Taylor & Francis, Boca Raton

    Google Scholar 

  • Haber SN, Fudge JL (1997) The primate substantia nigra and VTA: integrative circuitry and function. Crit Rev Neurobiol 11:323–342

    Article  CAS  Google Scholar 

  • Heimer L, De Olmos JS, Alheid GF, Person J, Sakamoto N, Shinoda K et al (1999) In: Bloom FE, Bjorkland A, Hokfelt T (eds) Handbook of chemical neuroanatomy, vol Part II. Elsevier, Amsterdam, pp 57–226

    Google Scholar 

  • Humphries MD, Prescott TJ (2010) The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward. Prog Neurobiol 90:385–417

    Article  Google Scholar 

  • Hurd YL, Suzuki M, Sedvall GC (2001) D1 and D2 dopamine receptor mRNA expression in whole hemisphere sections of the human brain. J Chem Neuroanat 22:127–137

    Article  CAS  Google Scholar 

  • Inta D, Alfonso J, Von Engelhardt J, Kreuzberg MM, Meyer AH, Van Hooft JA et al (2008) Neurogenesis and widespread forebrain migration of distinct GABAergic neurons from the postnatal subventricular zone. Proc Natl Acad Sci 105:20994

    Article  CAS  Google Scholar 

  • Joyce JN, Gurevich EV (1999) D3 receptors and the actions of neuroleptics in the ventral striatopallidal system of schizophrenics. Ann N Y Acad Sci 877:595–613

    Article  CAS  Google Scholar 

  • Kim Y, Wang W-Z, Comte I, Pastrana E, Tran PB, Brown J et al (2010) Dopamine stimulation of postnatal murine subventricular zone neurogenesis via the D3 receptor. J Neurochem 114:750–760

    Article  CAS  Google Scholar 

  • Kiss B, Laszlovszky I, Krámos B, Visegrády A, Bobok A, Lévay G et al (2021) Neuronal dopamine D3 receptors: translational implications for preclinical research and CNS disorders. Biomol Ther 11:104

    CAS  Google Scholar 

  • Klaus A, Alves Da Silva J, Costa RM (2019) What, if, and when to move: basal ganglia circuits and self-paced action initiation. Annu Rev Neurosci 42:459–483

    Article  CAS  Google Scholar 

  • Kossut M (1992) Plasticity of the barrel cortex neurons. Prog Neurobiol 39:389–422

    Article  CAS  Google Scholar 

  • Kupchik YM, Brown RM, Heinsbroek JA, Lobo MK, Schwartz DJ, Kalivas PW (2015) Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections. Nat Neurosci 18:1230–1232

    Article  CAS  Google Scholar 

  • Lanuza E, Novejarque A, Martínez-Ricós J, Martínez-Hernández J, Agustín-Pavón C, Martínez-García F (2008) Sexual pheromones and the evolution of the reward system of the brain: the chemosensory function of the amygdala. Brain Res Bull 75:460–466

    Article  CAS  Google Scholar 

  • Le Moine C, Bloch B (1995) D1 and D2 dopamine receptor gene expression in the rat striatum: sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAs in distinct neuronal populations of the dorsal and ventral striatum. J Comp Neurol 355:418–426

    Article  Google Scholar 

  • Le Moine C, Bloch B (1996) Expression of the D3 dopamine receptor in peptidergic neurons of the nucleus accumbens: comparison with the D1 and D2 dopamine receptors. Neuroscience 73:131–143

    Article  Google Scholar 

  • Lévesque D, Diaz J, Pilon C, Martres MP, Giros B, Souil E et al (1992) Identification, characterization, and localization of the dopamine D3 receptor in rat brain using 7-[3H]hydroxy-N,N-di-n-propyl-2-aminotetralin. Proc Natl Acad Sci U S A 89:8155–8159

    Article  Google Scholar 

  • Levey AI, Hersch SM, Rye DB, Sunahara RK, Niznik HB, Kitt CA et al (1993) Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc Natl Acad Sci U S A 90:8861–8865

    Article  CAS  Google Scholar 

  • Meador-Woodruff JH, Damask SP, Wang J, Haroutunian V, Davis KL, Watson SJ (1996) Dopamine receptor mRNA expression in human striatum and neocortex. Neuropsychopharmacology 15:17

    Article  CAS  Google Scholar 

  • Murray AM, Ryoo HL, Gurevich E, Joyce JN (1994) Localization of dopamine D3 receptors to mesolimbic and D2 receptors to mesostriatal regions of human forebrain. Proc Natl Acad Sci U S A 91:11271–11275

    Article  CAS  Google Scholar 

  • Nadjar A, Brotchie JM, Guigoni C, Li Q, Zhou S-B, Wang G-J et al (2006) Phenotype of striatofugal medium spiny neurons in parkinsonian and dyskinetic nonhuman primates: a call for a reappraisal of the functional organization of the basal ganglia. J Neurosci 26:8653–8661

    Article  CAS  Google Scholar 

  • Nakajima C, Sawada M, Sawamoto K (2021) Postnatal neuronal migration in health and disease. Curr Opin Neurobiol 66:1–9

    Article  CAS  Google Scholar 

  • Narendran R, Slifstein M, Guillin O, Hwang Y, Hwang D-R, Scher E et al (2006) Dopamine (D2/3) receptor agonist positron emission tomography radiotracer [11C]-(+)-PHNO is a D3 receptor preferring agonist in vivo. Synapse 60:485–495

    Article  CAS  Google Scholar 

  • Novejarque A, Gutiérrez-Castellanos N, Lanuza E, Martínez-García F (2011) Amygdaloid projections to the ventral striatum in mice: direct and indirect chemosensory inputs to the brain reward system. Front Neuroanat 5:54–54

    Article  Google Scholar 

  • O’leary DDM, Schlaggar BL, Tuttle R (1994) Specification of neocortical areas and Thalamocortical connections. Annu Rev Neurosci 17:419–439

    Article  Google Scholar 

  • Park PSH, Lodowski DT, Palczewski K (2008) Activation of G protein-coupled receptors: beyond two-state models and tertiary conformational changes. Annu Rev Pharmacol Toxicol 48:107–141

    Article  CAS  Google Scholar 

  • Payer D, Balasubramaniam G, Boileau I (2014) What is the role of the D3 receptor in addiction? A mini review of PET studies with [11C]-(+)-PHNO. Prog Neuropsychopharmacol Biol Psychiatry 52:4–8

    Article  CAS  Google Scholar 

  • Perachon S, Schwartz JC, Sokoloff P (1999) Functional potencies of new antiparkinsonian drugs at recombinant human dopamine D1, D2 and D3 receptors. Eur J Pharmacol 366:293–300

    Article  CAS  Google Scholar 

  • Perry BAL, Mitchell AS (2019) Considering the evidence for anterior and laterodorsal thalamic nuclei as higher order relays to cortex. Front Mol Neurosci 12:167–167

    Article  Google Scholar 

  • Perry BAL, Lomi E, Mitchell AS (2021) Thalamocortical interactions in cognition and disease: the mediodorsal and anterior thalamic nuclei. Neurosci Biobehav Rev 130:162–177

    Article  Google Scholar 

  • Quik M, Police S, He L, Di Monte DA, Langston JW (2000) Expression of D3 receptor messenger RNA and binding sites in monkey striatum and substantia nigra after nigrostriatal degeneration: effect of levodopa treatment. Neuroscience 98:263–273

    Article  CAS  Google Scholar 

  • Rice FL (1985) Gradual changes in the structure of the barrels during maturation of the primary somatosensory cortex in the rat. J Comp Neurol 236:496–503

    Article  CAS  Google Scholar 

  • Rice FL, Van Der Loos H (1977) Development of the barrels and barrel field in the somatosensory cortex of the mouse. J Comp Neurol 171:45–560

    Article  Google Scholar 

  • Root DH, Melendez RI, Zaborszky L, Napier TC (2015) The ventral pallidum: subregion-specific functional anatomy and roles in motivated behaviors. Prog Neurobiol 130:29–70

    Article  Google Scholar 

  • Sánchez-González MA, García-Cabezas MA, Rico B, Cavada C (2005) The primate thalamus is a key target for brain dopamine. J Neurosci 25:6076–6083

    Article  Google Scholar 

  • Schlaggar BL, O’leary DDM (1994) Early development of the somatotopic map and barrel patterning in rat somatosensory cortex. J Comp Neurol 346:80–96

    Article  CAS  Google Scholar 

  • Searle G, Beaver JD, Comley RA, Bani M, Tziortzi A, Slifstein M et al (2010) Imaging dopamine D3 receptors in the human brain with positron emission tomography, [11C]PHNO, and a selective D3 receptor antagonist. Biol Psychiatry 68:392–399

    Article  CAS  Google Scholar 

  • Searle GE, Beaver JD, Tziortzi A, Comley RA, Bani M, Ghibellini G et al (2013) Mathematical modelling of [11C]-(+)-PHNO human competition studies. Neuroimage 68:119–132

    Article  CAS  Google Scholar 

  • Sesack SR, Aoki C, Pickel VM (1994) Ultrastructural localization of D2 receptor-like immunoreactivity in midbrain dopamine neurons and their striatal targets. J Neurosci 14:88–106

    Article  CAS  Google Scholar 

  • Smith RJ, Lobo MK, Spencer S, Kalivas PW (2013) Cocaine-induced adaptations in D1 and D2 accumbens projection neurons (a dichotomy not necessarily synonymous with direct and indirect pathways). Curr Opin Neurobiol 23:546–552

    Article  CAS  Google Scholar 

  • Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347:146–151

    Article  CAS  Google Scholar 

  • Sokoloff P, Andrieux M, Besançon R, Pilon C, Martres MP, Giros B et al (1992) Pharmacology of human dopamine D3 receptor expressed in a mammalian cell line: comparison with D2 receptor. Eur J Pharmacol 225:331–337

    Article  CAS  Google Scholar 

  • Stanwood GD, Artymyshyn RP, Kung M-P, Kung HF, Lucki I, Mcgonigle P (2000) Quantitative autoradiographic mapping of rat brain dopamine D3 binding with [125I] 7-OH-PIPAT: evidence for the presence of D3 receptors on dopaminergic and nondopaminergic cell bodies and terminals. J Pharmacol Exp Ther 295:1223–1231

    CAS  Google Scholar 

  • Suzuki M, Hurd YL, Sokoloff P, Schwartz J-C, Sedvall G (1998) D3 dopamine receptor mRNA is widely expressed in the human brain. Brain Res 779:58–74

    Article  CAS  Google Scholar 

  • Tziortzi AC, Searle GE, Tzimopoulou S, Salinas C, Beaver JD, Jenkinson M et al (2011) Imaging dopamine receptors in humans with [11C]-(+)-PHNO: dissection of D3 signal and anatomy. Neuroimage 54:264–277

    Article  CAS  Google Scholar 

  • Van Der Werf YD, Witter MP, Uylings HBM, Jolles J (2000) Neuropsychology of infarctions in the thalamus: a review. Neuropsychologia 38:613–627

    Article  Google Scholar 

  • Van Kampen JM, Eckman CB (2006) Dopamine D3 receptor agonist delivery to a model of Parkinson’s disease restores the nigrostriatal pathway and improves locomotor behavior. J Neurosci 26:7272

    Article  Google Scholar 

  • Vann SD, Aggleton JP (2004) The mammillary bodies: two memory systems in one? Nat Rev Neurosci 5:35–44

    Article  CAS  Google Scholar 

  • Woolsey TA, Van Der Loos H (1970) The structural organization of layer IV in the somatosensory region (S I) of mouse cerebral cortex: the description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17:205–242

    Article  CAS  Google Scholar 

  • Worhunsky PD, Angarita GA, Zhai ZW, Matuskey D, Gallezot J-D, Malison RT et al (2021) Multimodal investigation of dopamine D2/D3 receptors, default mode network suppression, and cognitive control in cocaine-use disorder. Neuropsychopharmacology 46:316–324

    Article  CAS  Google Scholar 

  • Yung KK, Bolam JP, Smith AD, Hersch SM, Ciliax BJ, Levey AI (1995) Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy. Neuroscience 65:709–730

    Article  CAS  Google Scholar 

  • Zinsmaier AK, Dong Y, Huang YH (2021) Cocaine-induced projection-specific and cell type-specific adaptations in the nucleus accumbens. Mol Psychiatry. https://doi.org/10.1038/s41380-021-01112-2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenia V. Gurevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gurevich, E.V. (2022). Location, Location, Location: The Expression of D3 Dopamine Receptors in the Nervous System. In: Boileau, I., Collo, G. (eds) Therapeutic Applications of Dopamine D3 Receptor Function. Current Topics in Behavioral Neurosciences, vol 60. Springer, Cham. https://doi.org/10.1007/7854_2022_314

Download citation

Publish with us

Policies and ethics