Skip to main content
Log in

The dopaminergic nigrostriatal system in sleep deprivation in cats

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

The dynamics of changes in electrophysiological measures of the sleep-waking cycle were analyzed in Wistar rats after 6 h of sleep deprivation by gentle waking and subsequent 9-h post-deprivation sleep. A delayed sleep “overshoot” reaction was observed 2.5–3 h after sleep deprivation, as a moderate increase in the proportions of slow-wave and fast-wave sleep in the sleep-waking cycle. Immunohistochemical studies were performed in relation to changes in the sleep-waking cycle, with the aim of identifying changes in the quantities of immunoreactive dopamine D1 and D2 receptor material and tyrosine hydroxylase, the key enzyme in dopamine synthesis in the nigrostriatal system. In conditions of sleep deprivation, the caudate nucleus showed increases in the quantities of dopamine D1 and D2 receptor material, while there was a simultaneous decrease in the amount of immunoreactive material in the substantia nigra. Post-deprivation sleep was accompanied by decreases in the quantities of immunoreactive D1 receptor material and increases in D2 receptor material in the caudate nucleus, with an increase in the quantity of immunoreactive tyrosine hydroxylase in the substantia nigra. These data provide evidence of the active role of the dopaminergic nigrostriatal system which, along with other CNS transmitter systems, supports telencephalic-diencephalic interactions, in the sleep-waking cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. Bogoslovskii, “Effects of emotional stress on sleep dynamics in cats,” Zh. Vyssh. Nerv. Deyat., 29, No. 3, 557–565 (1979).

    Google Scholar 

  2. V. G. Galaktionov, “Basic directions in studies in evolutionary immunology,” Izv. Ros. Akad. Nauk., Ser. Biol., No. 6, 645–658 (2004).

  3. V. L. Golubev, Ya. I. Levin, and A. M. Vein, Parkinson’s Disease and Parkinson’s Syndrome [in Russian], Medpress (1999).

  4. I. G. Karmanova, The Evolution of Sleep. Stages in the Formation of the Sleep-Waking Cycle in Various Vertebrates [in Russian], Nauka, Leningrad (1977).

    Google Scholar 

  5. Yu. V. Natochin, Questions in the Evolutionary Physiology of Water-Salt Balance Nauka, Leningrad (1984).

    Google Scholar 

  6. G. A. Oganesyan, I. G. Karmanova, V. A. Shustin, A. V. Korzenev, and M. V. Arestova, “Evolutionary-dissolution analysis of the sleep-waking cycle in Gilles de la Tourette syndrome,” Zh. Évolyuts. Biokhim. Fiziol., 32, No. 4, 478–487 (1996).

    Google Scholar 

  7. G. A. Oganesyan, E. A. Aristakesyan, M. I. Éliava, I. A. Krasnovskaya, V. V. Kuzik, I. V. Romanova, and A. G. Taranukhin, “Morphofunctional analysis of the actions of short-term sleep deprivation on the waking-sleep cycle in young and adult rats,” Zh. Évolyuts. Biokhim. Fiziol., 38, No. 3, 232–239 (2002).

    Google Scholar 

  8. L. A. Orbeli, Interactions between Evolutionary Physiology and Medicine. Selected Papers [in Russian], Academy of Sciences of the USSR Press, Moscow, Leningrad (1964), Vol. 1, pp. 446–455.

    Google Scholar 

  9. V. A. Otellin and E. B. Arushanyan, The Nigrostriatal System [in Russian], Meditsina, Moscow (1989).

    Google Scholar 

  10. A. L. Polenov, M. S. Konstantinova, and P. E. Garlov, The Hypothalamo-Hypophyseal Neuroendocrine Complex. Basic Contemporary Physiology (Neuroendocrinology) [in Russian], Nauka, St. Petersburg (1993), Part 1, Book 1, pp. 139–187.

    Google Scholar 

  11. B. F. Tolkunov, “The role of the striatum in the evolution of the mammalian endbrain,” Zh. Évolyuts. Biokhim. Fiziol., 38, No. 5, 47–60 (2002).

    Google Scholar 

  12. V. G. Shalyapina, Current Concepts of the Morphological Organization of the Sympathoadrenal System [in Russian], Nauka, Leningrad (1988).

    Google Scholar 

  13. K. B. Shapovalova, “Involvement of neostriatal transmitter systems in the automation of motor habits in dogs,” Ros. Fiziol. Zh. im. I. M. Sechenova, 90, No. 12, 1485–1499 (2004).

    Google Scholar 

  14. M. Andersen, P. J. F. Martins, V. D’Almeida, M. Bignotto, and S. Tufik, “Endocrinological and catecholaminergic alterations during sleep deprivation and recovery in male rats,” J. Sleep Res., 14, 83–90 (2005).

    Article  PubMed  Google Scholar 

  15. N. Ben-Jonatan and R. Hnasko, “Dopamine as a prolactin (PRL) inhibitor,” Endocrine Reviews, 22, No. 6, 724–763 (2001).

    Article  Google Scholar 

  16. D. Biron, C. Dauphin, and T. Di Paolo, “Effects of adrenalectomy and glucocorticoids on rat brain dopamine receptors,” Neuroendocrinology, 55, 468–476 (1992).

    Article  PubMed  CAS  Google Scholar 

  17. A. A. Borbely, “Sleep regulation: circadian rhythm and homeostasis,” Current Topics in Neuroendocrinology. 1. Sleep: Clinical and Experimental Aspects, D. Ganten and D. Pfaff (eds.), Springer Verlag, Berlin (1982).

    Google Scholar 

  18. J. R. Buzow, H. H. Van Tol, D. K. Grundy, P. Albert, J. Salon, M. Christie, C. A. Machida, K. A. Neve, and O. Civelli, “Cloning and expression of a rat D2 dopamine receptor cDNA,” Nature, 336, 783–787 (1988).

    Article  Google Scholar 

  19. A. Czyrak, M. Maekowiak, K. Fija, A. Chocyk, and K. Wêdzony, “Impact of metyrapone on MK-801-induced alterations in the rat dopamine Dl receptors,” Pol. J. Pharmacol., 49, 305–316 (1997).

    PubMed  CAS  Google Scholar 

  20. A. Cayrak, M. Maekowiak, A. Chocyk, K. Fija, and K. Wedzony, “Role of glucocorticoids in the regulation of dopaminergic neurotransmission,” Pol. J. Pharmacol., 55, 667–674 (2003).

    Google Scholar 

  21. A. Y. Deutch, “Prefrontal cortical dopamine systems and the elaboration of functional corticostriatal circuits: implications for schizophrenia and Parkinson’s disease,” J. Neural Transm. Gen. Sect., 91, 197–221 (1993).

    Article  PubMed  CAS  Google Scholar 

  22. M. J. Eaton, S. Cheung, K. E. Moore, and K. H. Lookingland, “Dopamine receptor-mediated regulation of corticotropin-releasing hormone neurons in the hypothalamic paraventricular nucleus,” Brain Res., 738, 60–66 (1996).

    Article  PubMed  CAS  Google Scholar 

  23. J.-A. Girault and P. Greengard, “The neurobiology of dopamine signaling,” Arch. Neurol., 61, 641–644 (2004).

    Article  PubMed  Google Scholar 

  24. A. A. Grace, “Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia,” Neurosci., 41, 1–24 (1991).

    Article  CAS  Google Scholar 

  25. J. W. Kebabian and D. B. Calne, “Multiple receptors for dopamine,” Nature, 277, 93–96 (1979).

    Article  PubMed  CAS  Google Scholar 

  26. M. Lancel, H. Reizen, and A. van Glat, “Enhanced slow-wave activity within NREM sleep in the cortical and subcortical EEG of the cat after sleep deprivation,” Sleep, 15, 102–118 (1992).

    PubMed  CAS  Google Scholar 

  27. A. Mansour, J. H. Meador-Woodruff, J. R. Bunzow, O. Civelli, H. Akil, and S. J. Watson, “Localization of dopamine D2 receptor mRNA and D1 and D2 receptor binding in the rat brain and pituitary: An in situ hybridization-receptor autoradiographic analysis,” J. Neurosci., 70, No. 8, 2587–2800 (1990).

    Google Scholar 

  28. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, San Diego, California, USA (1998), ISBN 0-12-547617-5, CD-Rom.

    Google Scholar 

  29. P. V. Piazza, S. Maccari, J. M. Deminiere, M. Le Moal, P. Mormede, and H. Simon, “Corticosterone levels determine individual vulnerability to amphetamine self-administration,” Proc. Natl. Acad. Sci. USA, 88, 2088–2092 (1991).

    Article  PubMed  CAS  Google Scholar 

  30. P. V. Piazza, M. Marinelli, C. Jodogne, V. Deroche, F. Rouge-Pont, S. Maccari, M. Lo Moal, and H. Simon, “Inhibition of corticosterone synthesis by metyrapone decreases cocaine-induced locomotion and relapse of cocaine self-administration,” Brain Res., 658, 259–264 (1994).

    Article  PubMed  CAS  Google Scholar 

  31. I. Tobler and A. A. Borbely, “The effect of 3h and 6h sleep deprivation in sleep and EEG spectra of the rat,” Behav Brain Res., 29, 73–78 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Aristakesyan.

Additional information

__________

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 93, No. 12, pp. 1344–1354, December, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oganesyan, G.A., Aristakesyan, E.A., Romanova, I.V. et al. The dopaminergic nigrostriatal system in sleep deprivation in cats. Neurosci Behav Physi 38, 785–792 (2008). https://doi.org/10.1007/s11055-008-9047-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-008-9047-9

Key words

Navigation