Skip to main content
Log in

Prefrontal cortical dopamine systems and the elaboration of functional corticostriatal circuits: implications for schizophrenia and Parkinson's disease

  • Full Papers
  • Published:
Journal of Neural Transmission / General Section JNT Aims and scope Submit manuscript

Summary

The dopaminergic innervation of the prefrontal cortex is able to transsynaptically regulate the activity of subcortical dopamine innervations. Disruption of the prefrontal cortical DA innervation results in the enhanced biochemical responsiveness of the dopamine innervation of the nucleus accumbens. We present recent data indicating that distinct prefrontal cortical dopamine innervations can be functionally dissociated on the basis of responsiveness to stress. The ventral striatal projection target (nucleus accumbens shell) of the prefrontal cortical region that is stress sensitive is also responsive to stress. In this manner interconnected cortico-striato-pallido-mesencephalic loops can be defined on the basis of the biochemical responsive of local dopamine systems to stress and on the basis of responsiveness to antipsychotic drugs. These data suggest the functional derangement of a distinct corticofugal loops in schizophrenia and in certain aspects of Parkinson's disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlfors UG, Rimon R, Appelberg B, Hagert U, Harma P, Katila H, Mahlanen A, Mehtonen O-P, Naukkarinen H, Outakoski J, Rantanen H, Sorri A, Tamminen T, Tolvanen E, Holm A-C (1990) Remoxipride and haloperidol in schizophrenia: a double-blind multicentre study. Acta Psychiatr Scand 82 [Suppl 358]: 99–103

    Google Scholar 

  • Akert K (1964) Comparative anatomy of frontal cortex and thalamofrontal connections. In: Warren JM, Akert K (eds) The frontal granular cortex and behavior. McGraw-Hill, New York, pp 373–396

    Google Scholar 

  • Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. TINS 13: 266–271

    Google Scholar 

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci 9: 357–381

    Google Scholar 

  • Altshuler LL, Casanova MF, Goldberg TE, Kleinman JE (1990) The hippocampus and parahippocampus in schizophrenic, suicide, and control brains. Arch Gen Psychiatry 47: 1029–1034

    Google Scholar 

  • Arnold SE, Hyman BT, van Hoesen GW, Damasio AR (1991) Some cytoarchitectural abnormalities of the entorhinal cortex in schizophrenia. Arch Gen Psychiatry 48: 625–632

    Google Scholar 

  • Barbieto L, Cheramy A, Godeheu G, Desce JM, Glowinski J (1990) Glutamate receptors of a quisqualate-kainate subtype are involved in the presynaptic regulation of dopamine release in the cat caudate nucleus in vivo. Eur J Neurosci 2: 304–311

    Google Scholar 

  • Bartholini G (1977) Preferential effect of non-cataleptogenic neuroleptics on mesolimbic dopamine function. Adv Biochem Psychopharmacol 16: 607–611

    Google Scholar 

  • Beckstead RM (1979) An autoradiographic examination of corticocortical and subcortical projections of the mediodorsal-projection (prefrontal) cortex in the rat. J Comp Neurol 184: 43–62

    Google Scholar 

  • Benes FM, McSparren J, Bird ED, SanGiovanni JP, Vincent SL (1991) Deficits in small interneurons in prefrontal and cingulate cortex of schizophrenic and schizoaffective patients. Arch Gen Psychiatry 48: 996–1001

    Google Scholar 

  • Benes FM, Vincent SL, Alsterberg G, Bird ED, SanGiovanni JP (1991) Increased GABA-A receptors binding in superficial layers of schizophrenic cingulate cortex. J Neurosci 12: 924–926

    Google Scholar 

  • Berendse HW, Galis-de Graaf Y, Groenewegen HJ (1991) Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. J Comp Neurol 314: 2–35

    Google Scholar 

  • Berger B, Verney C (1984) Development of the catecholamine innervation in the rat neocortex: morphological features. In: Descarries L, Reader TR, Jasper HH (eds) Monoamine innervation of the cerebral cortex. Alan R Liss, New York, pp 95–121

    Google Scholar 

  • Berger B, Verney C, Febvret A, Vigny A, Helle KB (1985 a) Postnatal ontogenesis of the dopaminergic innervation in the rat anterior cingulate cortex (area 12). Immunocytochemical and catecholamine fluorescence histochemical analysis. Dev Brain Res 21: 31–47

    Google Scholar 

  • Berger B, Verney C, Gaspar P, Febvret A (1985 b) Transient expression of tyrosine hydroxylase immunoreactivity in some neurons of the rat neocortex during postnatal development. Dev Brain Res 23: 141–144

    Google Scholar 

  • Berger B, Gaspar P, Verney C (1991) Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci 14: 21–27

    Google Scholar 

  • Berman KF, Weinberger D (1990) The prefrontal cortex in schizophrenia and other neuropsychiatric diseases: in vivo physiological correlates of cognitive deficits. In: Uylings HBM, Van Eden CG, De Bruin JPC, Corner MA, Feenstra MPG (eds) The prefrontal cortex: its structure, function, and pathology. Elsevier Science Publishers, Amsterdam, pp 521–538 (Prog Brain Res 85)

    Google Scholar 

  • Bolam JP (1984) Synapses of identified neurons in the neostriatum. In: Evered D, O'Connor M (eds) Functions of the basal ganglia. Pittman Press, London, pp 42–57 (Ciba Foundation Symposium 107)

    Google Scholar 

  • Bouyer JJ, Park DH, Joh TH, Pickel VM (1984) Chemical and structural analysis of the relation between cortical inputs and tyrosine hydroxylase-containing terminals in rat neostriatum. Brain Res 302: 267–275

    Google Scholar 

  • Brodman K (1909) Vergleichende Localisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig

    Google Scholar 

  • Brog JM, Deutch AY, Zahm DS (1991) Afferent projections to the nucleus accumbens core and shell in the rat. Soc Neurosci Abstr 17: 454

    Google Scholar 

  • Brown GW, Birley JLP, Wing JK (1972) Influence of family life on the course of schizophrenic illness: a replication. Br J Psychiatry 14: 241–252

    Google Scholar 

  • Carter CJ (1982) Topographical distribution of possible glutamatergic pathways from the frontal cortex in the striatum and substantia nigra in rats. Neuropharmacology 21: 383–393

    Google Scholar 

  • Carter CJ, Pycock CJ (1980) Behavioral and biochemical effects of dopamine and noradrenaline depletion within the medial prefrontal cortex of the rat. Brain Res 192: 163–176

    Google Scholar 

  • Cechetto DF, Saper CB (1990) Role of the cerebral cortex in autonomic function. In: Loewy A, Spyer KM (eds) Central regulation of autonomic functions. Oxford University Press, New York, pp 208–223

    Google Scholar 

  • Cheng H-W, Anavi Y, Goshgarian H, McNeill TH, Rafols JA (1988) Loss and recovery of striatal dendritic spines following lesions in the cerebral cortex of adult and aged mice. Soc Neurosci Abstr 14: 1292

    Google Scholar 

  • Cheramy A, Romo R, Glowinski J (1984) Role of corticostriatal glutamatergic neurons in the presynaptic control of dopamine release. In: Sandler M, Feuerstein C, Scatton B (eds) Neurotransmitter interactions in the basal ganglia. Raven Press, New York, pp 133–141

    Google Scholar 

  • Chesselet M-F (1984) Presynaptic regulation of neurotransmitter release in the brain: facts and hypotheses. Neuroscience 12: 347–375

    Google Scholar 

  • Christie MJ, Bridge S, James LB, Beart PM (1985) Excitotoxic lesions suggest an aspartatergic projection from rat medial prefrontal cortex to ventral tegmental area. Brain Res 333: 169–172

    Google Scholar 

  • Deutch ÁY (1991) Heterogeneity of the prefrontal cortical dopamine system in responsiveness to stress. Soc Neurosci Abstr 17: 529, 1991

    Google Scholar 

  • Deutch AY (1992) The regulation of subcortical dopamine systems by the prefrontal cortex: interactions of central dopamine systems and the pathogenesis of schizophrenia. J Neural Transm [Suppl] 36: 61–89

    Google Scholar 

  • Deutch AY, Roth RH (1990) The determinants of stress-induced activation of the prefrontal cortical dopamine system. In: Uylings HBM, Van Eden CG, De Bruin JPC, Corner MA, Feenstra MPG (eds) The prefrontal cortex: its structure, function, and pathology. Elsevier, Amsterdam, pp 367–393 (Prog Brain Res, vol 85)

    Google Scholar 

  • Deutch AY, Cameron DS (1992) Pharmacological characterization of dopamine systems in the nucleus accumbens core and shell. Neuroscience 46: 49–56

    Google Scholar 

  • Deutch AY, Tam S-Y, Roth RH (1985) Footshock and conditioned stress increase 3,4-dihydroxyphenylacetic acid (DOPAC) in the ventral tegmental area but not substantia nigra. Brain Res 333: 143–146

    Google Scholar 

  • Deutch AY, Goldstein M, Baldino F Jr, Roth RH (1988) The telencephalic projections of the A 8 dopamine cell group. Ann NY Acad Sci 537: 27–50

    Google Scholar 

  • Deutch AY, Rosin DL, Goldstein M, Roth RH (1989) 3-Acetylpyridine-induced degeneration of the nigrostriatal dopamine system: an animal model of olivopontocerebellar atrophy-associated parkinsonism. Exp Neurol 105: 1–9

    Google Scholar 

  • Deutch AY, Clark WA, Roth RH (1990 a) Prefrontal cortical dopamine depletion enhances the responsiveness of mesolimbic dopamine neurons to stress. Brain Res 521: 311–315

    Google Scholar 

  • Deutch AY, Elsworth JD, Roth RH, Goldstein M (1990 b) 3-Acetylpyridine results in degeneration of the extrapyramidal and cerebellar motor system: loss of the dorsolateral striatal dopamine innervation. Brain Res 527: 96–102

    Google Scholar 

  • Deutch AY, Lee MC, Gillham MH, Cameron D, Goldstein M, Iadorola MJ (1991 a) Stress selectively increases Fos protein in dopamine neurons innervating the prefrontal cortex. Cerebral Cortex 1: 273–292

    Google Scholar 

  • Deutch AY, Moghaddam B, Innis R, Krystal JH, Aghajanian GK, Bunney BS, Charney DS (1991 b) Mechanisms of action of atypical antipsychotic drugs: implications for novel therapeutic strategies for schizophrenia. Schizophr Res 4: 121–156

    Google Scholar 

  • Deutch AY, Lee MC, Iadorola MJ (1992) Regionally specific effects of atypical antipsychotic drugs on striatal Fos expression: the nucleus accumbens shell as a locus of antipsychotic action. Mol Cell Neurosci 3: 332–341

    Google Scholar 

  • DeLisi LE, Buchsbaum MS, Holcomb HH, et al (1989) Increased temporal lobe glucose use in chronic schizophrenic patients. Biol Psychiatry 25: 835–851

    Google Scholar 

  • Divac I (1984) The neostriatum viewed orthogonally. In: Evered D, O'Connor M (eds) Functions of the basal ganglia. Pittman, London, pp 201–215 (Ciba Foundation Symposium 107)

    Google Scholar 

  • Divac I, Bjorklund A, Lindvall O, Passingham RE (1978) Converging projections from the mediodorsal thalamic nucleus and mesencephalic dopaminergic neurons to the neocortex in three species. J Comp Neurol 180: 59–72

    Google Scholar 

  • Elsworth JD, Deutch AY, Redmond DE Jr, Sladek JR Jr, Roth RH (1989) Symptomatic and asymptomatic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated primates: biochemical changes in striatal regions. Neuroscience 33: 323–331

    Google Scholar 

  • Elsworth JD, Deutch AY, Redmond DE Jr, Sladek JR Jr, Roth RH (1990) MPTP reduces dopamine and norepinephrine concentrations in the supplementary motor area and cingulate cortex of the primate. Neurosci Lett 114: 316–322

    Google Scholar 

  • Ganzini L, Heintz RT, Hoffman WF, Casey DE (1991) Prevalence of tardive dyskinesia in neuroleptic-treated diabetics: a controlled study. Arch Gen Psychiatry 48: 259

    Google Scholar 

  • Gaspar P, Duyckaerts C, Alvarez C, Javoy-Agid F, Berger B (1991) Alterations of dopaminergic and noradrenergic innervations of motor cortex in Parkinson's disease. Ann Neurol 30: 365–374

    Google Scholar 

  • Giorguieff MF, Kemel ML, Glowinski J (1977) Presynaptic effect of L-glutamatic acid on the release of dopamine in rat striatal slices. Neurosci Lett 6: 73–77

    Google Scholar 

  • Goldman-Rakic PS, Porrino LJ (1985) The primate mediodorsal (MD) nucleus and its projection to the frontal lobe. J Comp Neurol 242: 535–560

    Google Scholar 

  • Goldman-Rakic PS, Leranth C, Williams SM, Mons N, Geffard M (1989) Dopamine synaptic complex with pyramidal neurons in primate cerebral cortex. Proc Natl Acad Sci USA 86: 9015–9019

    Google Scholar 

  • Goldstein M, Deutch AY (1992) Dopaminergic mechanisms in the pathogenesis of schizophrenia. FASEB J 6: 2413–2421

    Google Scholar 

  • Gray JA, Seldon J, Rawlins JN, Hensley DR, et al (1991) The neuropsychology of schizophrenia. Behav Brain Sci 14: 1–84

    Google Scholar 

  • Greenamyre JT, O'Brien CF (1991)N-methyl-D-aspartate antagonists in the treatment of Parkinson's disease. Arch Neurol 48: 977–981

    Google Scholar 

  • Groenewegen HJ (1988) Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal-prefrontal topography. Neuroscience 24: 379–431

    Google Scholar 

  • Groenewegen HJ, Berendse HW, Wolters JG, Lohman AHM (1990) The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus, and the amygdala: evidence for a parallel organization. In: Uylings HBM, Van Eden CG, De Bruin JPC, Corner MA, Geenstra MGP (eds) The prefrontal cortex: its structure, function, and pathology. Elsevier, Amsterdam, pp 95–118 (Prog Brain Res, vol 85)

    Google Scholar 

  • Heimer L, Zahm DS, Churchill L, Kalivas PW, Wohltmann C (1991) Specificity in the projection patterns of the accumbal core and shell. Neuroscience 41: 89–126

    Google Scholar 

  • Heinemann S, Bettler B, Boulter J, Deneris E, Gasic G, Hartley M, Hollman M, Hughes TE, O'Shea-Greenfield A, Rogers S (1991) The glutamate receptor gene family. In: Meldrum BS, Moroni F, Simon RP, Woods JH (eds) Excitatory amino acids. Raven Press, New York, pp 109–133

    Google Scholar 

  • Hornykiewicz O, Kish SJ (1987) Biochemical pathophysiology of Parkinson's disease. Adv Neurol 45: 19–34

    Google Scholar 

  • Hurley KM, Herbert H, Moga MM, Saper CB (1991) Efferent projections of the infralimbic cortex of the rat. J Comp Neurol 308: 249–276

    Google Scholar 

  • Imperato A, Honore T, Jensen LH (1990) Dopamine release in the nucleus caudatus and in nucleus accumbens in under glutamatergic control through non-NMDA receptors: a study in freely moving rats. Brain Res 530: 223–228

    Google Scholar 

  • Iversen SD (1984) Behavioural effects of manipulation of basal ganglia neurotransmitters. In: Evered D, O'Connor M (eds) Functions of the basal ganglia. Pittman, London, pp 183–200 (Ciba Foundation Symposium 107)

    Google Scholar 

  • Javoy-Agid F, Ruberg M, Hirsch E, Cash R, Raisman R, Taquet H, Epelbaum J, Scatton B, Duyckaerts C, Agid Y (1986) Recent progress in the neurochemistry of Parkinson's disease. In: Fahn S, Marsden CD, Jenner P, Teychenne P (eds) Recent developments in Parkinson's disease. Raven Press, New York, pp 67–83

    Google Scholar 

  • Jellinger K (1986) Pathology of parkinsonism. In: Fahn S, Marsden CD, Jenner P, Teychenne P (eds) Recent developments in Parkinson's disease. Raven Press, New York, pp 33–66

    Google Scholar 

  • Jhamandas K, Marien M (1987) Glutamate-evoked release of endogenous brain dopamine: Inhibition by an excitatory amino acid antagonist and an enkephalin analogue. Br J Pharmacol 90: 641–650

    Google Scholar 

  • Joyce EM, Stinus L, Iversen SD (1983) Effect of injections of 6-hydroxydopamine into either nucleus accumbens septi or frontal cortex on spontaneous and drug-induced activty. Neuropharmacology 9: 1141–1145

    Google Scholar 

  • Kahlsbeek A, Voorn P, Buijs RM, Pool CW, Uylings HBM (1988) Development of the dopaminergic innervation of the prefrontal cortex in the rat. J Comp Neurol 269: 58–72

    Google Scholar 

  • Kim JM, Hassler R, Haus P, Paik KS (1977) Effect of frontal cortical ablation on striatal glutamic acid level in the rat. Brain Res 132: 370–374

    Google Scholar 

  • Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease: pathophysiological and clinical implications. N Engl J Med 318: 876–880

    Google Scholar 

  • Kish SJ, Shannak K, Rajput A, Deck JHN, Hornykiewicz O (1992) Aging produces a specific pattern of striatal dopamine loss: implications for the etiology of idiopathic Parkinson's disease. J Neurochem 58: 642–648

    Google Scholar 

  • Klitenick MA, Deutch AY, Churchill L, Kalivas PW (1992) Topography and functional role of dopaminergic projections from the ventral mesencephalic tegmentum to the ventral pallidum. Neuroscience 50: 371–386

    Google Scholar 

  • Klockgether T, Turski L, Honore T, Zhang Z, Gash DM, Kurlan R, Greenamyre JT (1991) The AMPA receptor antagonist NBQX has antiparkinsonian effects in monoamine-depleted rats and MPTP-treated monkeys. Ann Neurol 30: 717–723

    Google Scholar 

  • Krettek JE, Price JL (1977 a) The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J Comp Neurol 171: 157–192

    Google Scholar 

  • Krettek JE, Price JL (1977) Projections from the amygdaloid complex to the cerebral cortex and thalamus in the rat and cat. J Comp Neurol 172: 687–722

    Google Scholar 

  • Krystal JH, Karper LP, Seibyl JP, Delaney R, Charney DS (1992) Ketamine effects in humans. Annual meeting, Am Psychiat Assoc (Abstr, in press)

  • Le Moal M, Simon H (1991) Mesocorticolimbic dopaminergic network: functional and regulatory roles. Physiol Rev 71: 155–234

    Google Scholar 

  • Leonard CM (1969) The prefrontal cortex of the rat. I. Cortical projections of the mediodorsal nucleus. II. Efferent connections. Brain Res 12: 321–343

    Google Scholar 

  • Lewander T, Westebergh SE, Morrison D (1990) Clinical profile of remoxipride — a combined analysis of a comparative double-blind multicentre trial programme. Acta Psychiatr Scand 82 [Suppl 358]: 92–98

    Google Scholar 

  • Levitt P, Rakic P, Goldman-Rakic P (1984) Region-specific distribution of catecholamine afferents in primate cerebral cortex: a fluorescence histochemical analysis. J Comp Neurol 227: 23–36

    Google Scholar 

  • Lewis DA (1992) The catecholaminergic innervation of primate prefrontal cortex. J Neural Transm [Suppl 36]: 179–200

    Google Scholar 

  • Lewis DA, Campbell MJ, Foote SL, Goldstein M, Morrison JH (1987) The distribution of tyrosine hydroxylase-immunoreactive fibers in primate neocortex is widespread but regionally specific. J Neurosci 7: 279–290

    Google Scholar 

  • Lindvall O, Bjorklund A (1987) Neuroanatomical localization of dopamine in the brain and spinal cord. In: Henn FA, DeLisi LE (eds) Handbook of schizophrenia, vol 2. Neurochemistry and neuropharmacology of schizophrenia. Elsevier, Amsterdam, pp 49–99

    Google Scholar 

  • Louilot A, Taghzouti K, Demineire JM, Simon H, Le Moal M (1987) Dopamine and behavior: functional and theoretical considerations. In: Sandler M, Feuerstein C, Scatton B (eds) Neurotransmitter interaction in the basal ganglia. Raven Press, New York

    Google Scholar 

  • Louilot A, Le Moal M, Simon H (1989) Opposite influences of dopaminergic pathways to the prefrontal cortex or the septum on dopaminergic transmission in the nucleus accumbens. An in vivo voltammetric study. Neuroscience 29: 45–56

    Google Scholar 

  • Makra B, Bond A, Lader M (1975) Comparative psychotropic effects of metoclopromide and prochlorperazine in normal subjects. J Clin Pharmacol 15: 449–454

    Google Scholar 

  • Mayer ML, Viklicky L (1989) Concanavalin A selectively reduces desensitization of mammalian neuronal quisqualate receptors. Proc Natl Acad Sci USA 86: 1411–1415

    Google Scholar 

  • McCreadie RG, Todd N, Livingston M, Eccleston D, Watt JAG, Herrington RN, Tait D, Crocket G, Mitchell MJ, Huitfeidt B (1990) A double-blind comparative study of remoxipride and thioridazine in the acute phase of schizophrenia. Acta Psychiatr Scand 82 [Suppl 358]: 136–137

    Google Scholar 

  • McGeer PL, McGeer EG, Scherrer U, Singh K (1977) A glutamatergic cortico-striatal path? Brain Res 128: 369–373

    Google Scholar 

  • McGeorge AJ, Faull RLM (1989) The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience 29: 503–537

    Google Scholar 

  • McNeill TH, Brown SA, Rafols JA, Shoulson I (1988) Atrophy of medium spiny I striatal dendrites in advanced Parkinson's disease. Brain Res 455: 148–152

    Google Scholar 

  • Miller JC (1990) Induction of c-fos mRNA expression in rat striatum by neuroleptic drugs. J Neurochem 54: 1453–1455

    Google Scholar 

  • Miller LG, Jankovic J (1989) Metoclopromide-induced movement disorders. Clinical findings with a review of the literature. Arch Int Med 149: 2486–2492

    Google Scholar 

  • Moghaddam B, Bunney BS (1990) Acute effect of typical and atypical antipsychotic drugs on the release of dopamine from the prefrontal cortex, nucleus accumbens, and striatum of the rat: an in vivo microdialysis study. J Neurochem 54: 1755–1760

    Google Scholar 

  • Moghaddam B, Gruen RJ, Roth RH, Bunney BS, Adams RN (1990 b) Effect of L-glutamate on the release of striatal dopamine: in vivo dialysis and electrochemical studies. Brain Res 518: 55–60

    Google Scholar 

  • Napier TC (1992) Contribution of the amygdala and nucleus accumbens to ventral pallidal responses to dopamine agonists. Synapse 10: 110–119

    Google Scholar 

  • Napier TC, Muench MB, Maslowski RJ, Battaglia G (1991) Is dopamine a neurotransmitter within the ventral pallidum/substantia innominata? In: Napier TC, Kalivas PW, Hanin I (eds) The basal forebrain. Plenum Press, New York, pp 183–195

    Google Scholar 

  • Nauta WJH (1964) Some efferent connections of the prefrontal cortex in the monkey. In: Warren JM, Akert K (eds) The frontal granular cortex and behavior. McGraw-Hill, New York, pp 397–407

    Google Scholar 

  • Nicholson IR, Neufeld RWJ (1989) Forms and mechanisms of susceptibility to stress in schizophrenia. In: Neufeld RWJ (ed) Advances in the investigation of psychological stress. Wiley, New York, pp 392–420

    Google Scholar 

  • Oades RD, Tagzhouti K, Rivet J-M, Simon H, Le Moal M (1986) Locomotor activity in relation to dopamine and noradrenaline in the nucleus accumbens, septal, and frontal areas: a 6-hydroxy-dopamine study. Neuropsychobiology 16: 37–42

    Google Scholar 

  • Ogren S-O, Hall H, Kohler C, Magnusson O, Lindbom L-O, Angeby K, Florvall L (1984) Remoxipride, a new potential antipsychotic compound with selective anti-dopaminergic actions in the rat brain. Eur J Pharmacol 102: 459–474

    Google Scholar 

  • Ogren S-O, Florvall L, Hall H, Magnusson O, Angeby-Moller K (1990) Neuropharmacological and behavioral properties of remoxipride in the rat. Acta Psychiatr Scand 82 [Suppl 358]: 21–26

    Google Scholar 

  • Oka H (1980) Organization of cortico-caudate projections. A horseradish peroxidase study in the cat. Exp Brain Res 40: 203–208

    Google Scholar 

  • Passingham RE, Myers C, Rawlins N, Lightfoot V, Fearn S (1988) Premotor cortex in the rat. Behav Neurosci 102: 101–109

    Google Scholar 

  • Payson MM, Donzanti BA (1990) Effects of excitatory amino acids on in vivo dopamine release and metabolism in the nucleus accumbens. Soc Neurosci Abstr 16: 584

    Google Scholar 

  • Pifl C, Bertel O, Schingnitz G, Hornykiewicz O (1990) Extrastriatal dopamine in symptomatic and asymptomatic rhesus monkeys treated with 1-methyi4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Neurochem Int 17: 263–270

    Google Scholar 

  • Peterson OT, St Mary JS, Harding NR (1987) Cis-flupenthixol antagonism of the rat prefrontal cortex neuronal response to apomorphine and ventral tegmental area input. Brain Res Bull 18: 723–729

    Google Scholar 

  • Plug B, Bartels M, Bauer H, Bunse J, Gallhofer B, Haas S, Kanzow WT, Klieser E, Stein D, Weiselmann G (1990) A double-blind multicentre study comparing remoxipride, controlled release formulation, with haloperidol in schizophrenia. Acta Psychiatr Scand 82 [Suppl 358]: 142–146

    Google Scholar 

  • Phanjoo Al, Link C (1990) Remoxipride versus thioridazine in elderly psychotic patients. Acta Psychiatr Scand 82 [Suppl 358]: 181–185

    Google Scholar 

  • Posner MI, Early TS, Reiman E, et al (1988) Asymmetries in hemisphrenic control of attention in schizophrenia. Arch Gen Psychiatry 45: 814–821

    Google Scholar 

  • Pycock CJ, Carter CJ, Kerwin RW (1980 a) Effect of 6-hydroxydopamine lesions of the medial prefrontal cortex on neurotransmitter systems in subcortical sites in the rat. J Neurochem 34: 91–99

    Google Scholar 

  • Pycock CJ, Kerwin RW, Carter CJ (1980 b) Effect of lesion of cortical dopamine terminals on subcortical dopamine receptors in rats. Nature 286: 74–77

    Google Scholar 

  • Retaux S, Besson MJ, Penit-Soria J (1991) Synergism between D1 and D2 dopamine receptors in the inhibition of the evoked release of [3 H]GABA in the rat prefrontal cortex. Neuroscience 43: 323–329

    Google Scholar 

  • Roberts GW (1990) Schizophrenia: the cellular biology of a functional psychosis. Trends Neurosci 13: 207–211

    Google Scholar 

  • Robertson GS, Fibiger HC (1992) Neuroleptics increase c-fos expression in the forebrain: contrasting effects of haloperidol and clozapine. Neuroscience 46: 315–328

    Google Scholar 

  • Room P, Russchen FT, Groenewegen HJ, Lohman AHM (1985) Efferent projections of the prelimbic (area 32) and the infralimbic (area 25) cortices: an anterograde tracing study in the cat. J Comp Neurol 242: 40–55

    Google Scholar 

  • Rosin DL, Clark WA, Goldstein M, Roth RH, Deutch AY (1992) Effects of 6-hydroxydopamine lesions of the prefrontal cortex on tyrosine hydroxylase activity in subcortical dopamine systems of the rat. Neuroscience 48: 831–839

    Google Scholar 

  • Roth RH, Tam S-Y, Ida Y, Yang J-X, Deutch AY (1988) Stress and the mesocorticocolimbic dopamine systems. Ann NY Acad Sci 537: 138–147

    Google Scholar 

  • Santiago Ramon y Cajal (1906) New ideas on the structure of the nervous system in man and vetebrate animals. MIT Press, Cambridge [Swanson N, Swanson LW (translators) (1990)]

    Google Scholar 

  • Slopsema JS, van der Gugten J, de Bruin JPC (1982) Regional concentrations of noradrenaline and dopamine in the frontal cortex of the rat: dopaminergic innervation of prefrontal subareas and lateralization of prefrontal dopamine. Brain Res 250: 197–200

    Google Scholar 

  • Seguela P, Watkins KC, Descarries L (1988) Ultrastructural features of dopamine axon terminals in the anteromedial and the suprarhinal cortex in adult rat. Brain Res 442: 11–22

    Google Scholar 

  • Sesack SR, Bunney BS (1989) Pharmacological characterization of the receptor mediating electrophysiological responses to dopamine in the rat medial prefrontal cortex: a microiontophoretic study. J Pharmacol Exp Ther 248: 1323–1333

    Google Scholar 

  • Sesack SR, Deutch AY, Roth RH, Bunney BS (1989) The topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tracttracing study using Phaseolus vulgaris leucoagglutinin. J Comp Neurol 290: 213–242

    Google Scholar 

  • Shenton ME, Kikins R, Jolesz FA, et al (1992) Abnormalities of the left temporal lobe and thought disorder in schizophrenia. A quantitative magnetic imaging study. N Engl J Med 327: 604–612

    Google Scholar 

  • Shepard PD, German DC (1984) A subpopulation of mesocortical dopamine neurons possess autoreceptors. Eur J Pharmacol 98: 455–456

    Google Scholar 

  • Spencer HJ (1976) Antagonism of cortical excitation of striatal neurons by glutamic acid diethylester: evidence for glutamic acid as an excitatory transmitter in the rat striatum. Brain Res 102: 91–101

    Google Scholar 

  • Stanley M, Lautin A, Rotrosen J, Gershon S, Kleinberg D (1980) Metoclopramide: antipsychotic efficacy of a drug lacking potency in receptor models. Psychopharmacology 71: 219–225

    Google Scholar 

  • Stevens JR (1973) An anatomy of schizophrenia? Arch Gen Psychiatry 29: 177–189

    Google Scholar 

  • Suddath RL, Casanova MF, Goldberg TE, Daniel DG, Kelsoe JR, Weinberger DR (1989) Temporal lobe pathology in schizophrenia: a quantitative magnetic resonance imaging study. Am J Psychiatry 146: 464–472

    Google Scholar 

  • Thierry AM, Tassin JP, Blanc G, Glowinski J (1976) Selective activation of the mesocortical dopamine system by stress. Nature 263: 242–244

    Google Scholar 

  • Thierry AM, Le Douarin C, Penit J, Ferron A, Glowinski J (1986) Variation in the ability of neuroleptics to block the inhibitory influence of dopaminergic neurons on the activity of cells in the rat prefrontal cortex. Brain Res Bull 16: 155–160

    Google Scholar 

  • Thierry A-M, Godbut R, Mantz J, Glowinski J (1990) Influence of the ascending monoaminergic systems on the activity of the rat prefrontal cortex. In: Uylings HBM, Van Eden CG, De Bruin JPC, Corner MA, Feenstra MPG (eds) The prefrontal cortex: its structure, function, and pathology. Elsevier, Amsterdam, pp 366–377 (Prog Brain Res 85)

    Google Scholar 

  • van Eden CG, Hoorneman EMD, Buijs RM, Matthijssen MAH, Geffard M, Uylings HBM (1987) Immunocytochemical localization of dopamine in the prefrontal cortex of the rat at the light and electron microscopic level. Neuroscience 22: 849–862

    Google Scholar 

  • Verney C, Berger B, Adrien J, Vigny A, Gay M (1982) Development of the dopaminergic innervation of the rat cerebral cortex. A light microscopic immunocytochemical study using anti-tyrosine hydroxylase antibodies. Dev Brain Res 5: 41–52

    Google Scholar 

  • Walinder J, Holm A-C (1990) Experiences of long-term treatment with remoxipride: efficacy and tolerability. Acta Psychiatr Scand 82 [Suppl 358]: 158–163

    Google Scholar 

  • Walker AE (1940) A cytoarchitectural study of the prefrontal cortex of the macaque monkey. J Comp Neurol 73: 59–86

    Google Scholar 

  • Webster KE (1961) Cortico-striate interrelationships in the albino rat. J Anat 95: 532–544

    Google Scholar 

  • Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44: 660–669

    Google Scholar 

  • Youngren KD, Daly DA. Moghaddam B (1993) Distinct actions of endogenous excitatory amino acids on the outflow of dopamine in the nucleus accumbens. J Pharmacol Exp Ther (in press)

  • Zaborszky L, Alheid GF, Beinfeld MC, Eiden LE, Heimer L, Palkovits M (1985) Cholecystokinin innervation of the ventral stiatum: a morphological and radioimmunological study. Neuroscience 14: 427–453

    Google Scholar 

  • Zahm DS (1989) The ventral striatopallidal parts of the basal ganglia in the rat: compartmentation of ventral pallidal efferents. Neuroscience 30: 33–50

    Google Scholar 

  • Zahm DS (1991) Compartments in rat dorsal and ventral striatum revealed following injection of 6-hydroxydopamine into the ventral mesencephalon. Brain Res 552: 164–169

    Google Scholar 

  • Zahm DS, Heimer L (1988) Ventral striatopallidal parts of the basal ganglia in the rat. I. Neurochemical compartmentation as reflected by the distribution of neurotensin and substance P immunoreactivity. J Comp Neurol 272: 516–535

    Google Scholar 

  • Zahm DS, Johnson SN (1989) Asymmetrical distribution of neurotensin immunoreactivity following unilateral injection of 6-hydroxydopamine in rat ventral tegmental area (VTA). Brain Res 483: 301–311

    Google Scholar 

  • Zahm DS, Heimer L (1990) Two transpallidal pathways originating in rat nucleus accumbens. J Comp Neurol 302: 437–446

    Google Scholar 

  • Zahm DS, Brog JS (1992) On the significance of subterritories in the “accumbens” part of the rat ventral striatum. Neuroscience 50: 751–767

    Google Scholar 

  • Zivkovic B (1977) Biochemical methods to assess the action of clozapine and haloperidol on presynaptic dopamine neurons. Adv Biochem Psychopharmacol 16: 625–630

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deutch, A.Y. Prefrontal cortical dopamine systems and the elaboration of functional corticostriatal circuits: implications for schizophrenia and Parkinson's disease. J. Neural Transmission 91, 197–221 (1993). https://doi.org/10.1007/BF01245232

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01245232

Keywords

Navigation