Skip to main content
Log in

The effects of leucine-enkephalin on the membrane potential and activity of rat respiratory center neurons in vitro

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Studies of transverse slices of Wistar rat brainstem using a patch clamp technique addressed the effects of the opioid peptide leucine-enkephalin (10 nM–1 μM) on the membrane potential and pattern of spontaneous activity of neurons in two parts of the respiratory center: the ventrolateral area of the solitary tract nucleus and the pre-Bötzinger complex. Leucine-enkephalin induced membrane hyperpolarization of respiratory center neurons and decreased the level of spike activity in spontaneously active cells. In pre-Bötzinger complex neurons showing a burst pattern of activity, leucine-enkephalin decreased the burst frequency, and two cells showed a transition from burst activity to tonic activity. These results provide evidence that the mechanism of the central respiratory activity of leucine-enkephalin results from its direct action on the membranes of respiratory center neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Inyushkin, “Effects of thyroliberin on the membrane potential and the pattern of spontaneous activity of rat respiratory center neurons in vitro,” Ros. Fiziol. Zh. im. I. M. Sechenova, 88, No. 11, 1467–1476 (2002).

    CAS  Google Scholar 

  2. A. N. Inyushkin, “The respiratory effects of leucine-enkephalin: the role of the ventrolateral parts of the medulla oblongata,” in: The Neurohumoral Mechanisms of Control of Respiration and Circulation [in Russian], Samara (1991), pp. 34–40.

  3. A. N. Inyushkin, “Respiratory and hemodynamic reactions to microinjections of opioids into the solitary tract nucleus in rats,” Ros. Fiziol. Zh. im. I. M. Sechenova, 83, No. 3, 112–121 (1997).

    CAS  Google Scholar 

  4. U. Arvidsson, R. J. Dado, J. H. Lee, P. Y. Law, H. H. Loh, R. Elde, and M. W. Wessendorf, “δ-Opioid receptor immunoreactivity: distribution in brainstem and spinal cord, and relationship to biogenic amines and enkephalin,” J. Neurosci., 15, 1215–1235 (1995).

    PubMed  CAS  Google Scholar 

  5. K. Ballanyi, P. M. Lalley, B. Hoch, and D. W. Richter, “C-AMP-dependent reversal of opioid-and prostaglandin-mediated depression of the isolated respiratory network in newborn rats,” J. Physiol. (London), 504, 127–134 (1997).

    Article  CAS  Google Scholar 

  6. K. Ballanyi, H. Onimura, and I. Homma, “Respiratory network function in the isolated brainstem-spinal cord of newborn rats,” Progr. Neurobiol., 59, 583–634 (1999).

    Article  PubMed  CAS  Google Scholar 

  7. P. Y. Cheng, L. Y. Liu-Chen, C. Chen, and V. M. Pickel, “Immunolabeling of mu opioid receptors in the rat nucleus of the solitary tract: extrasynaptic plasmalemmal localization and association with Leu5-enkephalin,” J. Comp. Neurol., 371, 522–536 (1996).

    Article  PubMed  CAS  Google Scholar 

  8. A. D. Corbett, S. J. Paterson, and H. W. Kosterlitz, “Selectivity of ligands for opioid receptors,” in: Handbook of Experimental Pharmacology. Opioids I, Springer, Berlin (1993), pp. 645–679.

    Google Scholar 

  9. D. De Castro, J. Lipski, and R. Kanjhan, “Electrophysiological study of dorsal respiratory neurons in the medulla oblongata of the rat,” Brain Res., 639, 49–56 (1994).

    Article  PubMed  Google Scholar 

  10. J. M. Delfs, H. Kong, A. Mestek, Y. Y. L. Chen, T. Reisine, and M. F. Chesselet, “Expression of mu opioid mRNA in rat brain: an in situ hybridisation study at the single cell level,” J. Comp. Neurol., 345, 46–68 (1994).

    Article  PubMed  CAS  Google Scholar 

  11. C. A. Del Negro, S. M. Johnson, R. J. Butera, and J. C. Smith, “Models of respiratory rhythm generation in the pre-Bötzinger complex. III. Experimental tests of model predictions,” J. Neurophysiol., 86, No. 1, 59–74 (2001).

    PubMed  Google Scholar 

  12. M. Denavit-Saubie and A. S. Foutz, “Neuropharmacology of respiration,” in: Neural Control of Respiratory Muscles, CRC Press, Boca Raton, Florida (1997), pp. 143–157.

    Google Scholar 

  13. H. U. Dodt and W. Zieglgansberger, “Visualizing unstained neurones in living brain slices by infrared DIC-videomicroscopy,” Brain Res., 537, 333–336 (1990).

    Article  PubMed  CAS  Google Scholar 

  14. G. D. Funk, J. C. Smith, and J. L. Friedman, “Generation and transmission of respiratory oscillations in medullary slices: role of excitatory amino acids,” J. Neurophysiol., 70, 1497–1515 (1993).

    PubMed  CAS  Google Scholar 

  15. P. A. Gray, J. C. Reckling, M. Bocchiaro, and J. L. Feldman, “Modulation of respiratory frequency by peptidergic input to thythmogenic neurons in the pre-Bötzinger complex,” Science, 286, 1566–1568 (1999).

    Article  PubMed  CAS  Google Scholar 

  16. J. J. Greer, J. E. Carter, and Z. Al-Zubaidy, “Opioid depression of respiration in neonatal rats,” J. Physiol. (London), 485, 845–855 (1995).

    CAS  Google Scholar 

  17. A. Haji, R. Takeda, and M. Okazaki, “Neuropharmacology of control of respiratory rhythm and pattern in mature mammals,” Pharmacol. Ther., 86, 277–304 (2000).

    Article  PubMed  CAS  Google Scholar 

  18. G. Hilaire and B. Duron, “Maturation of the mammalian respiratory system,” Physiol. Rev., 79, No. 2, 325–360 (1999).

    PubMed  CAS  Google Scholar 

  19. A. N. Inyushkin, S. A. Chepurnov, and N. A. Merkulova, “Respiratory and circulatory effects of opioid peptides microinjected into the solitary tract nucleus,” Regul. Peptides, 64, No. 1–3, 75 (1996).

    Article  Google Scholar 

  20. S. M. Johnson, N. Koshiva, and J. C. Smith, “Isolation of the kernel for respiratory rhythm generation in novel preparation. The pre-Bötzinger complex ‘island’,” J. Neurophysiol., 85, No. 4, 1772–1776 (2001).

    PubMed  CAS  Google Scholar 

  21. S. M. Johnson, J. C. Smith, and J. L. Feldman, “Modulation of respiratory rhythm in vitro: role of Gi/0 protein-mediated mechanisms,” J. Appl. Physiol., 80, 2120–2133 (1996).

    PubMed  CAS  Google Scholar 

  22. N. Koshiya and J. C. Smith, “Neuronal pacemaker for breathing visualized in vitro,” Nature, 400, No. 6742, 360–363 (1999).

    Article  PubMed  CAS  Google Scholar 

  23. A. Laferriere, J. K. Liu, and I. R. Moss, “Mu-and delta-opioid receptor densities in respiratory-related brainstem regions of neonatal swine,” Dev. Brain Res., 112, 1–9 (1999).

    Article  CAS  Google Scholar 

  24. Y. Y. Liu, M. T. Wong-Riley, J. P. Liu, X. Y. Wei, Y. Jia, H. L. Liu, F. Fujiyama, and G. Ju, “Substance P and enkephalinergic synapses into neurokinin-1 receptor-immunoreactive neurons in the pre-Bö tzinger complex of rats,” Eur. J. Neurosci., 19, 65–75 (2004).

    Article  PubMed  Google Scholar 

  25. T. Lonerghan, A. K. Goodchild, M. J. Christie, and P. M. Pilowski, “Presynaptic delta opioid receptors differentially modulate rhythm and pattern generation in the ventral respiratory group of the rat,” Neurosci., 121, 959–973 (2003).

    Article  Google Scholar 

  26. A. Mansour, C. A. Fox, S. Burke, F. Meng, R. C. Thompson, H. Akil, and S. J. Watson, “Mu, delta and kappa opioid receptor mRNA expression in the rat CNS: an in situ hybridisation study,” J. Comp. Neurol., 350, 412–438 (1994).

    Article  PubMed  CAS  Google Scholar 

  27. N. M. Mellen and J. L. Feldman, “Phasic vagal sensory feedback transforms respiratory neuron activity in vitro,” J. Neurosci., 21, 7363–7371 (2001).

    PubMed  CAS  Google Scholar 

  28. N. M. Mellen, W. A. Janczewski, C. M. Bocchiaro, and J. L. Feldman, “Opioid-induced quantal slowing reveals dual networks for respiratory rhythm generation,” Neuron, 37, 821–826 (2003).

    Article  PubMed  CAS  Google Scholar 

  29. M.-P. Morin-Surun, E. Boudinot, C. Dubois, H. W. Matthes, B. L. Kieffer, M. Denavit-Saubie, J. Champagnat, and A. S. Foutz, “Respiratory function in adult mice lacking the μ-opioid receptor: role of δ-receptors,” Eur. J. Neurosci., 13, 1703–1710 (2001).

    Article  PubMed  CAS  Google Scholar 

  30. M.-P. Morin-Surun, E. Boudinot, M. C. Fournie-Zaluski, J. Champagnat, B. P. Roques, and M. Denavit-Saubie, “Control of breathing by endogenous opioid peptides: possible involvement in sudden infant death syndrome,” Neurochem. Int., 20, 103–107 (1992).

    Article  PubMed  CAS  Google Scholar 

  31. J. F. R. Paton, J.-M. Ramirez, and D. W. Richter, “Mechanisms of respiratory rhythm generation change profoundly during early life in mice and rats,” Neurosci. Lett., 170, 167–170 (1994).

    Article  PubMed  CAS  Google Scholar 

  32. O. Pierrefiche, A. S. Foutz, and M. Denavit-Saubie, “NMDA and non-NMDA receptors may play different roles in timing mechanisms and transmission in the feline respiratory network,” J. Physiol. (London), 474, 509–523 (1994).

    CAS  Google Scholar 

  33. J.-M. Ramirez and D. W. Richter, “The neuronal mechanisms of respiratory rhythm generation,” Curr. Opin. Neurobiol., 6, 817–825 (1996).

    Article  PubMed  CAS  Google Scholar 

  34. J. C. Rekling and J. L. Feldman, “Pre-Bötzinger complex and pacemaker neurons: hypothesized site and kernel for respiratory rhythm generation,” Ann. Rev. Physiol., 60, 385–405 (1998).

    Article  CAS  Google Scholar 

  35. H. Sontheimer, “Whole-cell patch-clamp recordings,” in: Patch-Clamp Applications and Protocols, Humana Press, Totowa (1995), pp. 37–73.

    Google Scholar 

  36. J. W. Spain, B. L. Roth, and C. J. Cascia, “Differential ontogeny of multiple opioid receptors (μ, δ, and κ),” J. Neurosci., 5, 584–588 (1985).

    PubMed  CAS  Google Scholar 

  37. T. Stasinopoulos, A. K. Goodchild, J. P. Chalmers, M. J. Christie, and P. M. Pilowsky, “Delta opioid receptors are presynaptic and mu opioid receptors are postsynaptic on bulbospinal neurons in rat ventral respiratory group,” Soc. Neurosci. Abstr., 26, 929 (2000).

    Google Scholar 

  38. S. Takeda, L. I. Eriksson, Y. Yamamoto, H. Joensen, H. Onimary, and S. G. Lindahl, “Opioid action on respiratory neuron activity of the isolated respiratory network in newborn rats,” Anesthesiology, 95, 740–749 (2001).

    Article  PubMed  CAS  Google Scholar 

  39. K. Takita, E. A. P. Herlenius, S. G. E. Lindahl, and Y. Yamamoto, “Actions of opioids on respiratory activity via activation of brainstem by μ-, δ-and κ-receptors; an in vitro study,” Brain Res., 778, 233–241 (1997).

    Article  PubMed  CAS  Google Scholar 

  40. M. Thoby-Brisson and J.-M. Ramirez, “Identification of two types of inspiratory pacemaker neurons in the isolated respiratory neural network of mice,” J. Neurophysiol., 86, No. 1, 104–112 (2001).

    PubMed  CAS  Google Scholar 

  41. M. Yeadon and I. Kitchen, “Opioids and respiration,” Progr. Neurobiol., 33, 1–16 (1989).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 91, No. 6, pp. 656–665, June, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inyushkin, A.N. The effects of leucine-enkephalin on the membrane potential and activity of rat respiratory center neurons in vitro. Neurosci Behav Physiol 36, 573–579 (2006). https://doi.org/10.1007/s11055-006-0059-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-006-0059-z

Key words

Navigation