Skip to main content
Log in

Effects of Lesioning of the Medial Cervical Nucleus on the Baseline Spike Activity of Neurons in the Central and Basolateral Nuclei of the Amygdala

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Studies of the characteristics of baseline spike activity in the central and basolateral nuclei of the amygdala demonstrated significant differences between these nuclei. Lesioning of the medial cervical nucleus, which is one of the sources of ascending serotoninergic projections of the forebrain, led to marked and generally reciprocal changes in the spike activity of the amygdalar nuclei studied. It is suggested that serotoninergic afferentation from the medial cervical nucleus modulates the activity of amygdalar nuclei with different functional assignments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Yu. A. Fadeev, Cerebral Cortex Neurons in the Systems Organization of Behavior [in Russian], Moscow (1998).

  2. M. V. Khanbabyan, N. A. Saakyan, and R. Sh. Sarkisyan, “Effects of immobilization stress on the baseline activity of locus ceruleus neurons,” Neirofiziologiya, 33, No.3, 179–183 (2001).

    Google Scholar 

  3. S. A. Chepurnov and N. E. Chepurnova, Neuropeptides and the Amygdala [in Russian], Moscow State University Press, Moscow 185

  4. F. Abad-Alegria, “Estereotaxis troncoencephalica,” Trab. Inst. Cajal Invest. Biol., 63, No.1, 193–224 (1971).

    Google Scholar 

  5. G. Aghajanian, H. Heigler, and J. Bennet, “Amine receptors in CNS. III. 5-Hydroxytryptamine,” Handbook of Psychopharmacol., No. 6, 63–96 (1975).

  6. D. Albe-Fessard, F. Stutinsky, and S. Libouban, Atlas Stereotaxique du Diencephale du Rat Blanc, Editi. De Centre Nat. de la Recherche, Paris (1966).

    Google Scholar 

  7. N. Anden, H. Corrodi, K. Fuxse, and T. Hokfelt, “Evidence for a central 5-hydroxytryptamine receptor stimulation by lysergic acid diethylamide,” Brit. J. Pharmacol., 34, 1–7 (1968).

    CAS  Google Scholar 

  8. C. Berridge and E. Abercrombie, “Relationship between locus coeruleus discharge rates and rates of norepinephrine release within neocortex as assessed by in vivo microdialysis,” Neurosci., 93, No.4, 1263–1670 (1999).

    Article  CAS  Google Scholar 

  9. F. Bloom, B. Hoffer, and C. Nelson, “The physiology and pharmacology of serotonin mediated synapses,” in: Serotonin and Behavior, Academic Press, New York (1973), pp. 249–261.

    Google Scholar 

  10. W. Burke, D. Parke, and H. Chung, “Evidence for decreased transport of tryptophan hydroxylase in Alzheimer's disease,” Brain Res., 537, 83–87 (1990).

    Article  PubMed  CAS  Google Scholar 

  11. K. Chung, M. Martinez, and J. Herbert, “C-fos expression behavioral, endocrine and autonomic responses to acute social stress in male rats after chronic restraint: modulation by serotonin,” Neurosci., 95, No.2, 453–463 (1999).

    Article  Google Scholar 

  12. K. Fuxe, “Evidence for the existence of monoamine neurons in the central nervous system,” Acta Physiol. Scand., Supplement 24764, 39–85 (1965).

    Google Scholar 

  13. P. Gloor, “Amygdala,” in: Handbook of Physiology, Plenum Press, Washington (1972), Vol. 1.

    Google Scholar 

  14. H. Goldstein, A. Rasmussen, B. Bunney, and R. Roth, “Role of the amygdala in the coordination of behavioral, neuroendocrine and cortical monoamine responses to psychological stress in the rat,” J. Neurosci., 16, 4787–4798 (1996).

    PubMed  CAS  Google Scholar 

  15. E. Gorea and J. Adrien, “Serotoninergic regulation of noradrenergic coerulean neurons: electrophysiological evidence for the involvement of 5-HT (2) receptors,” Eur. J. Pharmacol., 154, No.3, 285–291 (1988).

    Article  PubMed  CAS  Google Scholar 

  16. F. Graeff, F. Guimaraes, T. Andrade, and J. Deakin, “Role of 5-HT in stress, anxiety and depression,” Pharmacol. Biochem. Behav., No. 54, 129–141 (1996).

    Google Scholar 

  17. T. Gray, “Limbic and neurotransmitter as modulators of autonomic and neuroendocrine responses to stress,” in: Stress: Neurobiology. Neuroendocrinology, M. R. Brow and G. F. Koob (eds.), Dekker, New York (1991), pp, 79–89.

    Google Scholar 

  18. H. Haigler and G. Aghajanian, “Lysergic acid diethylamide and serotonin: A comparison of effects on serotonergic neurons and neurons receiving a serotonergic input,” Pharmacol. Exptl. Ther., 188, 688–699 (1974).

    CAS  Google Scholar 

  19. H. Kawahara, M. Yoshida, H. Yokoo, M. Nishi, and M. Tanaka, “Psychological stress increases serotonin release in the rat amygdala and prefrontal cortex assessed by in vivo microdialysis,” Neurosci. Lett., 162, 81–84 (1993).

    Article  PubMed  CAS  Google Scholar 

  20. J. Kim, R. Rison, and M. Franselow, “Effect of amygdala, hippocampus and periaqueductal gray lesions on short-and long-term contextual fears,” Behav. Neurosci., 107, 1093–1098 (1993).

    PubMed  CAS  Google Scholar 

  21. K. Livingston and O. Hornykiwich (eds.), Limbic Mechanisms, Plenum Press, New York, London (1978).

    Google Scholar 

  22. T. Ono, “Amygdalar role in emotion and learning,” in: Fourth IBRO World Congress of Neuroscience, Kyoto, Japan (1995).

  23. E. Redgate, “ACTH release evoked by electrical stimulation of brain stem and limbic system sites in the cat,” Endocrinology, 86, 806–823 (1970).

    Article  PubMed  CAS  Google Scholar 

  24. Ch. Sinton and S. Fallon, “Electrophysiological evidence for a functional differentiation between subtypes of the 5-HT receptor,” Eur. J. Pharmacol., 157, No.2–3, 173–181 (1988).

    PubMed  CAS  Google Scholar 

  25. J. Spourse and G. Aghajanian, “Electrophysiological responses of serotonin dorsal raphe neurons to 5-HT1A and 5-HT1B agonists,” Synapse, 1, No.1, 3–9 (1987).

    Google Scholar 

  26. B. Svensson, B. Bunney, and G. Aghajanian, “Inhibition of both noradrenergic and serotonergic neurons in brain by the α-adrenergic agonist clonidine,” Brain Res., 92, 291–306 (1975).

    Article  PubMed  CAS  Google Scholar 

  27. U. Ungerstedt, “Stereotaxic mapping of the monoamine pathways in the rat brain,” Acta Physiol. Scand., 367,Supplement, 1–48 (1971).

    CAS  Google Scholar 

  28. A. Webb and D. Burns, “The effect of changing levels of arousal on the spontaneous activity of the neurons in the cerebellar cortex of the unrestrained cat,” Exptl. Brain Res., 23,Supplement, 215–219 (1975).

    Google Scholar 

  29. T. Yamamoto and A. Hirano, “Nucleus raphe dorsalis in the Alzheimer's disease: neurofibrillary tangles and loss of the large neurons,” Ann. Neurol., 17, 573–577 (1985).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Vysshei Nervnoi Deyatel'nosti imeni I. P. Pavlova, Vol. 54, No. 5, pp. 698–704, September–October, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khanbabyan, M.V., Kirakosyan, M.P., Sarkisyan, R.S. et al. Effects of Lesioning of the Medial Cervical Nucleus on the Baseline Spike Activity of Neurons in the Central and Basolateral Nuclei of the Amygdala. Neurosci Behav Physiol 36, 93–99 (2006). https://doi.org/10.1007/s11055-005-0166-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-005-0166-2

Key Words

Navigation