Skip to main content
Log in

Three-dimensional reconstruction of synapses and dendritic spines in the rat and ground squirrel hippocampus: New structural-functional paradigms for synaptic function

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Published data are reviewed along with our own data on synaptic plasticity and rearrangements of synaptic organelles in the central nervous system. Contemporary laser scanning and confocal microscopy techniques are discussed, along with the use of serial ultrathin sections for in vivo and in vitro studies of dendritic spines, including those addressing relationships between morphological changes and the efficiency of synaptic transmission, especially in conditions of the long-term potentiation model. Different categories of dendritic spines and postsynaptic densities are analyzed, as are the roles of filopodia in originating spines. The role of serial ultrathin sections for unbiased quantitative stereological analysis and three-dimensional reconstruction is assessed. The authors’ data on the formation of more than two synapses on single mushroom spines on neurons in hippocampal field CA1 are discussed. Analysis of these data provides evidence for new paradigms in both the organization and functioning of synapses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. O. S. Vinogradova, “Neuroscience at the end of the second millennium: a paradigm shift,” Zh. Vyssh. Nerv. Deyat., 50, No.5, 743–774 (2000).

    Google Scholar 

  2. V. I. Popov, N. I. Medvedev, I. V. Patrushev, V. V. Rogachevskii, I. V. Kraev, O. A. Klimenko, D. A. Ignat’ev, S. S. Khutsyan, and M. G. Stewart, “Quantity stereological analysis and 3D reconstruction: of axodendritic synapses in the hippocampus of the rat and ground squirrel with respect to the efficiency of synaptic transmission, ” in: Kolosov Readings: IVth International Conference of the Russian Academy of Sciences on Functional Neuromorphology [in Russian], St. Petersburg (2002), pp. 230–231.

  3. V. I. Popov, N. I. Medvedev, V. V. Rogachevskii, D. I. Ignat’ev, M. G. Stewart, and E. E. Fesenko, “The three-dimensional organization of synapses and astroglia in the hippocampus of the rat and ground squirrel: new structural-functional paradigms for synapse function,” Biofizika, 48, No.2, 289–308 (2003).

    Google Scholar 

  4. J. C. Anderson and K. A. Martin, “Does bouton morphology optimize axon length?” Nature Neurosci., 4, No.12, 1166–1167 (2001).

    Google Scholar 

  5. C. H. Bailey, M. Giustetto, Y. Y. Huang, R. D. Hawkins, and E. R. Kandel, “Is heterosynaptic modulation essential for stabilizing Hebbian plasticity and memory?” Nature Rev. Neurosci., 1, No.1, 11–20 (2000).

    Google Scholar 

  6. C. H. Bailey and E. R. Kandel, “Structural changes accompanying memory storage,” Ann. Rev. Physiol., 55, 397–426 (1993).

    Google Scholar 

  7. S. J. Baloyannis, V. Costa, and G. Deretzi, “Intraventricular administration of substance P induces unattached Purkinje cell dendritic spines in rats,” Int. J. Neurosci., 62, No.3-4, 251–262 (1992).

    Google Scholar 

  8. C. Beaulieu and M. Colonnier, “A laminar analysis of the number of round-asymmetrical and flat-symmetrical synapses on spines, dendritic trunks, and cell bodies in area 17 of the cat,” J. Comp. Neurol., 231, No.2, 180–189 (1985).

    Google Scholar 

  9. A. L. Beckman, C. Llados-Beckman, T. L. Stanton, and M. W. Adler, “Differential effect of environmental temperature on morphine physical dependence and abstinence,” Life Sci., 30, No.12, 1013–1020 (1982).

    Google Scholar 

  10. T. V. Bliss and T. Lomo, “Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path,” J. Physiol., 232, No.2, 331–356 (1973).

    Google Scholar 

  11. C. Boyer, T. Schikorski, and C. F. Stevens, “Comparison of hippocampal dendritic spines in culture and in brain,” J. Neurosci., 18, No.14, 5294–5300 (1998).

    Google Scholar 

  12. V. Chan-Palay, “A new synaptic specialization: filamentous braids,” Brain Res., 79, No.2, 280–284 (1974).

    Google Scholar 

  13. M. E. Chicurel and K. M. Harris, “Three-dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus,” J. Comp. Neurol., 325, No.2, 69–82 (1992).

    Google Scholar 

  14. R. E. Coggeshall and H. A. Lekan, “Methods for determining numbers of cells and synapses: a case for more uniform standards of review,” J. Comp. Neurol., 364, No.1, 6–15 (1996).

    Google Scholar 

  15. M. E. Dailey and S. J. Smith, “The dynamics of dendritic structure in developing hippocampal slices, ” J. Neurosci., 16, No.9, 2983–2994 (1996).

    Google Scholar 

  16. F. Engert and T. Bonhoeffer, “Dendritic spine changes associated with hippocampal long-term synaptic plasticity,” Nature, 399, No.6731, 66–70 (1999).

    Google Scholar 

  17. J. C. Fiala, B. Allwardt, and K. M. Harris, “Dendritic spines do not split during hippocampal LTP or maturation,” Nature Neurosci.. 5, No.4, 297–298 (2002).

    Google Scholar 

  18. J. C. Fiala, M. Feinberg, V. Popov, and K. M. Harris, “Synaptogenesis via dendritic filopodia in developing hippocampal area CA1,” J. Neurosci., 18, No.21, 8900–8911 (1998).

    Google Scholar 

  19. J. C. Fiala and K. M. Harris, “Extending unbiased stereology of brain ultrastructure to three-dimensional volumes,” J. Am. Med. Inform. Assoc., 8, No.1, 1–16 (2001).

    Google Scholar 

  20. E. Fifkova, “Actin in the nervous system,” Brain Res., 356, No.2, 187–215 (1985).

    Google Scholar 

  21. M. Fischer, S. Kaech, D. Knutti, and A. Matus, “Rapid actin-based plasticity in dendritic spines, ” Neuron, 20, No.5, 847–854 (1998).

    Google Scholar 

  22. M. Foster, Textbook of Physiology, The MacMillan Co., New York (1897), p. 929.

    Google Scholar 

  23. Y. Geinisman, “Perforated axospinous synapses with multiple, completely partitioned transmission zones: probable structural intermediates in synaptic plasticity,” Hippocampus, 3, No.4, 417–433 (1993).

    Google Scholar 

  24. Y. Geinisman, R. W. Berry, J. F. Disterhoft, J. M. Power, and E. A. Van der Zee, “Associative learning elicits the formation of multiple-synapse boutons,” J. Neurosci., 21, No.15, 5568–5573 (2001).

    Google Scholar 

  25. Y. Geinisman, L. de Toledo-Morrell, and F. Morrell, “Induction of long-term potentiation is associated with an increase in the number of axospinous synapses with segment postsynaptic densities,” Brain Res., 566, No.1-2, 77–88 (1991).

    Google Scholar 

  26. R. Y. Gordon, L. S. Bocharova, I. I. Kruman, V. I. Popov, A. P. Kazantsev, S. S. Khutzian, and V. N. Karnaukhov, “Acridine orange as an indicator of the cytoplasmic ribosome state,” Cytometry, 29, No.3, 215–221 (1997).

    Google Scholar 

  27. K. M. Harris, “Calcium from internal stores modifies dendritic spine shape,” Proc. Natl. Acad. Sci. USA, 96, No.22, 12213–12215 (1999).

    Google Scholar 

  28. K. M. Harris, “Structure, development, and plasticity of dendritic spines,” Curr. Opin. Neurobiol., 9, No.3, 343–448 (1999).

    Google Scholar 

  29. K. M. Harris, F. E. Jensen, and B. Tsao, “Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation,” J. Neurosci., 12, No.7, 2685–2705 (1992).

    Google Scholar 

  30. K. M. Harris and S. B. Kater, “Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function,” Ann. Rev. Neurosci., 17, 341–371 (1994).

    Google Scholar 

  31. K. M. Harris and J. K. Stevens, “Dendritic spines of rat cerebellar Purkinje cells: serial electron microscopy with reference to their bio-physical characteristics,” J. Neurosci., 8, No.12, 4455–4469 (1988).

    Google Scholar 

  32. H. C. Heller, “Hibernation: neural aspects,” Ann. Rev. Physiol., 41, 305–321 (1979).

    Google Scholar 

  33. H. Hering and M. Sheng, “Dendritic spines: structure, dynamics and regulation,” Nature Rev. Neurosci., 2, No.12, 880–888 (2001).

    Google Scholar 

  34. C. H. Horner, “Plasticity of the dendritic spine,” Prog. Neurobiol., 41, No.3, 281–321 (1993).

    Google Scholar 

  35. E. G. Jones and T. P. Powell, “Morphological variations in the dendritic spines of the neocortex,” J. Cell Sci., 5, No.2, 509–529 (1969).

    Google Scholar 

  36. S. Kaech, H. Parmar, M. Roelandse, C. Bornmann, and A. Matus, “Cytoskeletal microdifferentiation: a mechanism for organizing morphological plasticity in dendrites,” Proc. Natl. Acad. Sci. USA, 98, No.13, 7086–7092 (2001).

    Google Scholar 

  37. M. B. Kennedy, “The postsynaptic density at glutamatergic synapses,” Trends Neurosci., 20, No.6, 264–268 (1997).

    Google Scholar 

  38. S. A. Korov and K. M. Harris, “Dendrites are more spiny on mature hippocampal neurons when synapses are inactivated,” Nat. Neurosci., 2, No.10, 878–883 (1999).

    Google Scholar 

  39. T. Krucker, G. R. Siggins, and S. Halpain, “Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus,” Proc. Natl. Acad. Sci. USA, 97, No.12, 6856–6861 (2000).

    Google Scholar 

  40. C. P. Lyman, J. S. Willis, A. Malan, and L. C. H. Wang, Hibernation and Torpor in Mammals and Birds, Academic Press, New York (1982).

    Google Scholar 

  41. M. Maletic-Savatic, R. Malinow, and K. Svoboda, “Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity,” Science, 283, No.5409, 1923–1927 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. G. S. Marrs, S. H. Green, and M. E. Dailey, “Rapid formation and remodeling of postsynaptic densities in developing dendrites,” Nat. Neurosci., 4, No.10, 1006–1013 (2001).

    Google Scholar 

  43. L. Mihailovic, B. Petrovic-Minic, S. Protic, and I. Divac, “Effects of hibernation on learning and retention,” Nature, 218, No.137, 191–192 (1968).

    Google Scholar 

  44. J. A. H. Murray, H. Bradley, W. A. Craigie, and C. T. Onion, A New English Dictionary on Historical Principles, Clarendon Press, Oxford (1919).

    Google Scholar 

  45. L. Ostroff, J. Fiala, B. Allwardt, and K. Harris, “Polyribosomes redistribute from dendritic shafts into spines with enlarged synapses during LTP in developing rat hippocampal slices,” Neuron, 35, No. 3, 535 (2002).

    Google Scholar 

  46. A. Peters and E. G. Jones (eds.), Cerebellar Cortex, Vol. 1: Cellular Components of the Cerebral Cortex, Plenum Press, New York (1984).

  47. A. Peters and I. R. Kaiserman-Abramof, “The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines,” Am. J. Anat., 127, No.4, 321–355 (1970).

    Google Scholar 

  48. A. Peters and S. L. Palay, “The morphology of synapses,” J. Neurocytol., 25, No.12, 687–700 (1996).

    Google Scholar 

  49. V. I. Popov and L. S. Bocharova, “Hibernation-induced structural changes in synaptic contacts between mossy fibers and hippocampal pyramidal neurons,” Neurosci., 48, No.1, 53–60 (1992).

    Google Scholar 

  50. V. I. Popov, L. S. Bocharova, and A. G. Bragin, “Repeated changes of dendritic morphology in the hippocampus of ground squirrels in the course of hibernation,” Neurosci., 48, No.1, 45–51 (1992).

    Google Scholar 

  51. V. I. Popov, D. A. Ignat’ev, and B. Lindemann, “Ultrastructure of taste receptor cells in active and hibernating ground squirrels,” J. Electron Microscop. (Tokyo), 48, No.6, 957–969 (1999).

    Google Scholar 

  52. S. Ramon-y-Cajal, Histology of Nervous System of Man and Vertebrates (English translation by N. Swanson and L. W. Swanson), Oxford University Press, Oxford (1995).

    Google Scholar 

  53. D. A. Rusakov and D. M. Kullman, “Geometric and viscous components of the tortuosity of the extracellular space in the brain,” Proc. Natl. Acad. Sci. USA, 95, No.15, 8975–8980 (1998).

    Google Scholar 

  54. C. Sandi, H. A. Davies, M. I. Cordero, J. J. Rodriguez, V. I. Popov, and M. G. Stewart, “Rapid reversal of stress induced loss of synapses in CA3 of rat hippocampus following water maze training,” Eur. J. Neurosci., 17 1–10 (2003).

    Google Scholar 

  55. M. Segal, “Rapid plasticity of dendritic spine: hints to possible functions?” Prog. Neurobiol., 63, No.1, 61–70 (2001).

    Google Scholar 

  56. M. Segal and P. Aldersen, “Dendritic spines shaped by synaptic activity,” Curr. Opin. Neurobiol., 10, No.5, 582–586 (2000).

    Google Scholar 

  57. M. Sheng, “Molecular organization of the postsynaptic specialization,” Proc. Natl. Acad. Sci. USA, 98, No.13, 7058–7061 (2001).

    Google Scholar 

  58. G. M. Shepherd and K. M. Harris, “Three-dimensional structure and composition of CA3-CA1 axons in rat hippocampal slices: implications for presynaptic connectivity and compartmentalization,” J. Neurosci., 18, No.20, 8300–8310 (1998).

    Google Scholar 

  59. M. B. Shtark, The Brain of Hibernators, Nauka Novosibirsk (1970); NASA Technical Translations TTF-619 (1972).

  60. S. J. Smith, “Neuronal cytomechanics: the actin-based motility of growth cones,” Science, 242, No.4879, 708–715 (1988).

    Google Scholar 

  61. K. E. Sorra, J. C. Fiala, and K. M. Harris, “Critical assessment of the involvement of perforations, spinules, and spine branching in hippocampal synapse formation,” J. Comp. Neurol., 398, No.2, 225–240 (1998).

    Google Scholar 

  62. K. E. Sorra and K. M. Harris, “Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines,” Hippocampus, 10, No.5, 501–511 (2000).

    Google Scholar 

  63. K. E. Sorra and K. M. Harris, “Stability in synapse number and size at 2 hr after long-term potentiation in hippocampal area CA1,” J. Neurosci., 18, No.2, 658–671 (1998).

    Google Scholar 

  64. C. Sotelo, “Cerebellar synaptogenesis: what we can learn from mutant mice,” J. Exptl. Biol., 153, 225–249 (1990).

    Google Scholar 

  65. J. Spacek and K. M. Harris, “Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat,” J. Neurosci., 17, No.1, 190–203 (1997).

    Google Scholar 

  66. J. Spacek and K. M. Harris, “Three-dimensional organization of cell adhesion junctions at synapses and dendritic spines in area CA1 of the rat hippocampus,” J. Comp. Neurol., 393, No.1, 58–68 (1998).

    Google Scholar 

  67. J. Spacek and M. Hartmann, “Three-dimensional analysis of dendritic spines. I. Quantitative observations related to dendritic spine and synaptic morphology in cerebral and cerebellar cortices,” Anat. Embryol. (Berlin), 167, No.2, 289–310 (1983).

    Google Scholar 

  68. E. N. Star, D. J. Kwiatkowski, and V. N. Murthy, “Rapid turnover of actin in dendritic spines and its regulation by activity,” Nat. Neurosci., 5, No.3, 239–246 (2002).

    Google Scholar 

  69. O. Steward and E. M. Schuman, “Protein synthesis at synaptic sites on dendrites,” Ann. Rev. Neurosci., 24, 299–325 (2001).

    Google Scholar 

  70. K. Svoboda, D. W. Tank, and W. Denk, “Direct measurement of coupling between dendritic spines neurons shafts,” Science, 272, No.5262, 716–719 (1996).

    Google Scholar 

  71. E. Tanzi, “I fatti i le induzione nell’odierna istolgoia del sistema nervoso,” Riv. Sper. Freniatri., 19, 419–472 (1893).

    Google Scholar 

  72. N. Toni, P. A. Buchs, I. Nikonenko, C. R. Bron, and D. Muller, “LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite,” Nature, 402, No.6760, 421–425 (1999).

    Google Scholar 

  73. M. J. West, “Stereological methods for estimating the total number of neurons an synapses: issues of precision and bias,” Trends Neurosci., 22, No.2, 51–61 (1999).

    Google Scholar 

  74. C. S. Wolley and B. S. McEwen, “Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat,” J. Neurosci., 12, No.7, 2549–2554 (1992).

    Google Scholar 

  75. M. Yankova, S. A. Hart, and C. S. Woolley, “Estrogen increases synaptic connectivity between single presynaptic inputs and multiple postsynaptic CA1 pyramidal cells: a serial electron-microscopic study,” Proc. Natl. Acad. Sci. USa, 98, No.6, 3525–3530 (2001).

    Google Scholar 

  76. R. Yuste and T. Bonhoeffer, “Morphological changes in dendritic spins associated with long-term synaptic plasticity,” Ann. Rev. Neurosci., 24, 1071–1089 (2001).

    Google Scholar 

  77. N. E. Ziv and S. J. Smith, “Evidence for a role of dendritic filopodia in synaptogenesis and spine formation,” Neuron, 17, No.1, 91–1092 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti, Vol. 54, No. 1, pp, 120–129, January–February, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, V.I., Deev, A.A., Klimenko, O.A. et al. Three-dimensional reconstruction of synapses and dendritic spines in the rat and ground squirrel hippocampus: New structural-functional paradigms for synaptic function. Neurosci Behav Physiol 35, 333–341 (2005). https://doi.org/10.1007/s11055-005-0030-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-005-0030-4

KEY WORDS

Navigation