Skip to main content

Three-Dimensional Electron Microscopy Imaging of Spines in Non-human Primates

  • Protocol
  • First Online:
Transmission Electron Microscopy Methods for Understanding the Brain

Part of the book series: Neuromethods ((NM,volume 115))

  • 796 Accesses

Abstract

Dendritic spines are the main sites of excitatory glutamatergic synapses in the central nervous system. Morphological, ultrastructura l, and numerical changes in dendritic spines are associated with long-term potentiation or depression of normal synaptic transmission, and with various brain diseases and pathological conditions that affect glutamatergic transmission. Thus, a deep understanding of the structural changes that affect dendritic spines in normal and pathological conditions is a key element of structure-function relationships that regulate synaptic transmission in the mammalian brain. In this chapter, we describe the procedure used in our laboratory that combines immuno-electron microscopy methods (to identify specific populations of presynaptic terminals or dendritic spines), serial ultrathin sectioning, and three-dimensional electron microscopy reconstruction to analyze ultrastructural and morphometric changes of individual dendritic spines in rhesus monkey models of brain diseases, most specifically related to Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramon y Cajal S (1891) Sur la structure de l’ecorce cerebrale de quelques mammiferes. La Cellule 7

    Google Scholar 

  2. Palay SL, Palade GE (1955) The fine structure of neurons. J Biophys Biochem Cytol 1:69–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gray EG (1959) Electron microscopy of synaptic contacts on dendrite spines of the cerebral cortex. Nature 183:1592–1593

    Article  CAS  PubMed  Google Scholar 

  4. Spacek J (1987) Ultrastructural pathology of dendritic spines in epitumorous human cerebral cortex. Acta Neuropathol 73:77–85

    Article  CAS  PubMed  Google Scholar 

  5. Stevens JK, Trogadis J (1986) Reconstructive three-dimensional electron microscopy. A routine biologic tool. Anal Quant Cytol Histol 8:19102–19107

    Google Scholar 

  6. Harris KM, Stevens JK (1988) Dendritic spines of rat cerebellar Purkinje cells: serial electron microscopy with reference to their biophysical characteristics. J Neurosci 8:4455–4469

    CAS  PubMed  Google Scholar 

  7. Harris KM, Stevens JK (1989) Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J Neurosci 9:2982–2997

    CAS  PubMed  Google Scholar 

  8. Carlbom I, Terzopoulos D, Harris KM (1994) Computer-assisted registration, segmentation, and 3D reconstruction from images of neuronal tissue sections. IEEE Trans Med Imaging 13:351–362

    Article  CAS  PubMed  Google Scholar 

  9. Fiala JC, Spacek J, Harris KM (2002) Dendritic spine pathology: cause or consequence of neurological disorders? Brain Res Rev 39:29–54

    Article  PubMed  Google Scholar 

  10. Briggman KL, Denk W (2006) Towards neural circuit reconstruction with volume electron microscopy techniques. Curr Opin Neurobiol 16:562–570

    Article  CAS  PubMed  Google Scholar 

  11. Mishchenko Y (2009) Automation of 3D reconstruction of neural tissue from large volume of conventional serial section transmission electron micrographs. J Neurosci Methods 176:276–289

    Article  PubMed  Google Scholar 

  12. Ingham CA, Hood SH, Arbuthnott GW (1989) Spine density on neostriatal neurons changes with 6-hydroxydopamine lesions and with age. Brain Res 503:334–338

    Article  CAS  PubMed  Google Scholar 

  13. Ingham CA, Hood SH, Tagart P, Arbuthnott GW (1998) Plasticity of synapses in the rat neostriatum after unilateral lesion of the nigrostriatal dopaminergic pathway. J Neurosci 18:4732–4743

    CAS  PubMed  Google Scholar 

  14. Harris KM, Jensen FE, Tsao B (1992) Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J Neurosci 12:2685–2705

    CAS  PubMed  Google Scholar 

  15. Harris KM, Kater SB (1994) Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu Rev Neurosci 17:341–371

    Article  CAS  PubMed  Google Scholar 

  16. Picconi B, Pisani A, Barone I, Bonsi P, Centonze D, Bernardi G, Calabresi P (2005) Pathological synaptic plasticity in the striatum: implications for Parkinson’s disease. Neurotoxicology 26:779–783

    Article  CAS  PubMed  Google Scholar 

  17. Stephens B, Mueller AJ, Shering AF, Hood SH, Taggart P, Arbuthnott GW, Bell JE, Kilford L, Kingsbury AE, Daniel SE, Ingham CA (2005) Evidence of a breakdown of corticostriatal connections in Parkinson’s disease. Neuroscience 132:741–754

    Article  CAS  PubMed  Google Scholar 

  18. Zaja-Milatovic S, Milatovic D, Schantz AM, Zhang J, Montine KS, Samii A, Deutch AY, Montine TJ (2005) Dendritic degeneration in neostriatal medium spiny neurons in Parkinson disease. Neurology 64:545–547

    Article  CAS  PubMed  Google Scholar 

  19. Arellano JI, Espinosa A, Fairen A, Yuste R, DeFelipe J (2007) Non-synaptic dendritic spines in neocortex. Neuroscience 145:464–469

    Article  CAS  PubMed  Google Scholar 

  20. Deutch AY, Colbran RJ, Winder DJ (2007) Striatal plasticity and medium spiny neuron dendritic remodeling in parkinsonism. Parkinsonism Relat Disord 13:S251–S268

    Article  PubMed  PubMed Central  Google Scholar 

  21. Surmeier DJ, Ding J, Day M, Wang Z, Shen W (2007) D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 30:228–235

    Article  CAS  PubMed  Google Scholar 

  22. Bourne JN, Harris KM (2008) Balancing structure and function at hippocampal dendritic spines. Annu Rev Neurosci 31:47–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bourne JN, Harris KM (2011) Coordination of size and number of excitatory and inhibitory synapses results in a balanced structural plasticity along mature hippocampal CA1 dendrites during LTP. Hippocampus 21:354–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bourne JN, Chirillo MA, Harris KM (2013) Presynaptic ultrastructural plasticity along CA3 → CA1 axons during long-term potentiation in mature hippocampus. J Comp Neurol 521:3898–3912

    CAS  PubMed  Google Scholar 

  25. Smith Y, Villalba R (2008) Striatal and extrastriatal dopamine in the basal ganglia: an overview of its anatomical organization in normal and Parkinsonian brains. Mov Disord 23:S534–S547

    Article  PubMed  Google Scholar 

  26. Villalba RM, Lee H, Smith Y (2009) Dopaminergic denervation and spine loss in the striatum of MPTP-treated monkeys. Exp Neurol 215:220–227

    Article  CAS  PubMed  Google Scholar 

  27. Villalba RM, Smith Y (2010) Striatal spine plasticity in Parkinson’s disease. Front Neuroanatal 4:1–7

    Google Scholar 

  28. Villalba RM, Smith Y (2011) Neuroglial plasticity at striatal glutamatergic synapses in Parkinson’s disease. Front Syst Neurosci 5:1–9

    Article  Google Scholar 

  29. Villalba RM, Smith Y (2013) Differential striatal spine pathology in Parkinson’s disease and cocaine addiction: a key role of dopamine? Neuroscience 251:2–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Harris KM, Weinberg RJ (2012) Ultrastructure of synapses in the mammalian brain. Cold Spring Harb Perspect Biol 4:1–30

    Article  Google Scholar 

  31. Kuwajima M, Spacek J, Harris KM (2013) Beyond counts and shapes: studying pathology of dendritic spines in the context of the surrounding neuropil through serial section electron microscopy. Neuroscience 251:75–89

    Article  CAS  PubMed  Google Scholar 

  32. Briggman KL, Bock DD (2012) Volume electron microscopy for neuronal circuit reconstruction. Curr Opin Neurobiol 22:154–161

    Article  CAS  PubMed  Google Scholar 

  33. Denk W, Horstmann H (2011) Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol 2:e329

    Article  Google Scholar 

  34. Langford RM (2006) Focused ion beams techniques for nanomaterials characterization. Microsc Res Tech 69:538–549

    Article  CAS  PubMed  Google Scholar 

  35. Knott G, Marchman H, Wall D, Lich B (2008) Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J Neurosci 28:2959–2964

    Article  CAS  PubMed  Google Scholar 

  36. Smith SJ (2007) Circuit reconstruction tools today. Curr Opin Neurobiol 17:601–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Helmstaedter M, Briggman KL, Denk W (2008) 3D structural imaging of the brain with photons and electrons. Curr Opin Neurobiol 18:633–641

    Article  CAS  PubMed  Google Scholar 

  38. Hayworth KJ, Xu CS, Lu Z, Knott G W, Fetter R, Tapia JC, Lichtman JW, Hess HF (2015) Ultrastructurally smooth thick partitioning and volume stitching for large-scale connectomics. Nat Methods 12:319–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Merchan-Perez A et al (2009) Counting synapses using FIB/SEM microscopy: a true revolution for ultrastructural volume reconstruction. Front Neuroanatal 3:18

    Google Scholar 

  40. Bosch C, Martinez A, Masachs N, Teixeira CM, Fernaud I, Ulloa F, Perez-Martinez E, Lois C, Comella JX, DeFelipe J, Merchan-Perez A, Soriano, E (2015) FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons. Front Neuroanat 9, Article 60

    Google Scholar 

  41. Kuwajima M, Mendenhall JM, Harris KH (2013) Large-volume reconstruction of brain tissue from high-resolution serial section images acquired by SEM-based scanning transmission electron microscopy. Methods Mol Biol 950:253–273

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kuwajima M, Mendenhall JM, Lindsey LF, Harris KM (2013) Automated transmission-mode scanning electron microscopy (tSEM) for large volume analysis at nanoscale resolution. PLoS One 8:e59573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hayat MA (1981) The production of artifacts. Ultrastruct Pathol 2:93

    Article  CAS  PubMed  Google Scholar 

  44. Fiala JC, Harris KM (2001) Cylindrical diameters method for calibrating section thickness in serial electron microscopy. J Microsc 202:468–472

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Villalba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Villalba, R.M., Paré, J.F., Smith, Y. (2015). Three-Dimensional Electron Microscopy Imaging of Spines in Non-human Primates. In: Van Bockstaele, E. (eds) Transmission Electron Microscopy Methods for Understanding the Brain. Neuromethods, vol 115. Humana Press, New York, NY. https://doi.org/10.1007/7657_2015_97

Download citation

  • DOI: https://doi.org/10.1007/7657_2015_97

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3638-0

  • Online ISBN: 978-1-4939-3640-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics