Skip to main content

Advertisement

Log in

Prospectivity and Uncertainty Analysis of Tungsten Polymetallogenic Mineral Resources in the Nanling Metallogenic Belt, South China: A Comparative Study of AdaBoost, GBDT, and XgBoost Algorithms

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Supervised machine learning algorithms are utilized to predict undiscovered mineral resources by analyzing the correlation between geological data and mineral deposits. The scarcity of mineralization and the uncertainty arising from the selection of training samples also the accuracy and generalization of such algorithms. This study employed the adaptive boosting (AdaBoost), gradient boosting decision tree (GBDT), and extreme gradient boosting (XgBoost) algorithms to map the prospectivity of tungsten polymetallic mineral resources in the Nanling metallogenic belt. Firstly, the under-sampling and synthetic minority oversampling technique (SMOTE) methods were used to generate training datasets. Secondly, 50 groups of training datasets were generated using under-sampling, and another 50 groups of training datasets were generated using the SMOTE method. These datasets were used to separately train different boosting algorithms in order to assess the uncertainty associated with the selection of negative samples and the generation of positive samples. Finally, the risk–return analysis was used to mitigate uncertainty, and an enhanced prediction–area (P–A) plot was proposed to evaluate the performance. The results indicate that AdaBoost is the least affected by the selection of negative samples, followed by XgBoost. The SMOTE not only enhances the performance of AdaBoost and XgBoost algorithms but it also reduces the uncertainty related to the selection of negative samples and the generation of positive samples. In addition, the enhanced P–A plot can simultaneously account for both prediction accuracy and uncertainty, making it a potential tool for model evaluation. According to the results, eight potential areas with high return and low risk have been identified as priority areas for exploration. This research not only introduces a new method for mineral prospectivity mapping and uncertainty evaluation but also provides guidance for mineral exploration in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Abedi, M., Norouzi, G. H., & Bahroudi, A. (2012). Support vector machine for multi-classification of mineral prospectivity areas. Computers & Geosciences, 46, 272–283.

    Article  CAS  Google Scholar 

  • Agterberg, F. P., & Bonham-Carter, G. F. (2005). Measuring the performance of mineral-potential maps. Natural Resources Research, 14(1), 1–17. https://doi.org/10.1007/s11053-005-4674-0

    Article  Google Scholar 

  • Bárdossy, G., & Fodor, J. (2004). Evaluation of uncertainties and risks in geology. Springer.

    Book  Google Scholar 

  • Bigdeli, A., Maghsoudi, A., & Ghezelbash, R. (2022). Application of self-organizing map (SOM) and K-means clustering algorithms for portraying geochemical anomaly patterns in Moalleman district, NE Iran. Journal of Geochemical Exploration, 233, 106923.

    Article  CAS  Google Scholar 

  • Bonham-Carter, G. F. (1994). Geographic information systems for geoscientists: Modelling with GIS. Pergamon.

    Google Scholar 

  • Brandmeier, M., Cabrera Zamora, I. G., Nykänen, V., & Middleton, M. (2020). Boosting for mineral prospectivity modeling: A new GIS toolbox. Natural Resources Research, 29, 71–88.

    Article  Google Scholar 

  • Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123–140.

    Article  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  • Brown, W. M., Gedeon, T. D., Groves, D. I., & Barnes, R. G. (2000). Artificial neural networks: A new method for mineral prospectivity mapping. Australian Journal of Earth Sciences, 47, 757–770.

    Article  Google Scholar 

  • Carranza, E. J. M. (2009). Geochemical anomaly and mineral prospectivity mapping in GIS. Handbook of exploration and environmental geochemistry (Vol. 11, pp. 3–351). Elsevier Science.

    Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2015a). Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: Application of random forests algorithm. Ore Geology Reviews, 71, 777–787.

    Article  Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2015b). Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Computers & Geosciences, 74, 60–70.

    Article  CAS  Google Scholar 

  • Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 2016 (pp. 785-794). ACM.

  • Chen, C., He, B., & Zeng, Z. (2014). A method for mineral prospectivity mapping integrating C4.5 decision tree, weights-of-evidence and m-branch smoothing techniques: A case study in the eastern Kunlun Mountains. China. Earth Science Informatics, 7, 13–24.

    Article  Google Scholar 

  • Chen, J., Lu, J., Chen, W., Wang, R., Ma, D., Zhu, J., Zhang, W., & Ji, J. (2008). W–Sn–Nb–Ta–bearing granites in the Nanling range and their relationship to metallogengesis. Geological Journal of China Universities, 14, 459–473.

    CAS  Google Scholar 

  • Chen, J., Wang, R., Zhu, J., Lu, J., & Ma, D. (2013). Multiple-aged granitoids and related tungsten-tin mineralization in the Nanling Range, South China. Science China Earth Sciences, 56, 2045–2055.

    Article  CAS  Google Scholar 

  • Chen, L., Guan, Q., Xiong, Y., Liang, J., Wang, Y., & Xu, Y. (2019). A spatially constrained multi-autoencoder approach for multivariate geochemical anomaly recognition. Computers & Geosciences, 125, 43–54.

    Article  CAS  Google Scholar 

  • Chen, M. M., & Xiao, F. (2023). Projection pursuit random forest for mineral prospectivity mapping. Mathematical Geosciences, 55, 963–987.

    Article  Google Scholar 

  • Chen, Y. (2015). Mineral potential mapping with a restricted Boltzmann machine. Ore Geology Reviews, 71, 749–760.

    Article  Google Scholar 

  • Chen, Y., & Wu, W. (2017). Application of one-class support vector machine to quickly identify multivariate anomalies from geochemical exploration data. Geochemistry Exploration Environment Analysis, 17, 231–238.

    Article  CAS  Google Scholar 

  • Chen, Y., & Wu, W. (2019). Isolation forest as an alternative data-driven mineral prospectivity mapping method with a higher data-processing efficiency. Natural Resource Research, 28, 31–46.

    Article  Google Scholar 

  • Cheng, Q. (1999). Spatial and scaling modelling for geochemical anomaly separation. Journal of Geochemical Exploration, 65(3), 175–194.

    Article  CAS  Google Scholar 

  • Cheng, Q. (2007). Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province China. Ore Geology Reviews, 32(1), 314–324.

    Article  Google Scholar 

  • Cheng, Q., & Grunsky, E. (2000). Integrated spatial and spectrum method for geochemical anomaly separation. Natural Resource Research, 9(1), 43–52.

    Article  CAS  Google Scholar 

  • Davis, J., & Goadrich, M. (2006). The relationship between precision-recall and ROC curves. In Proceedings of the 23rd international conference on machine learning (ICML 2006) (pp. 233-240).

  • Drucker, H., & Cortes, C. (1996). Boosting decision trees. Advances in Neural Information Processing Systems, 8, 479–485.

    Google Scholar 

  • Drucker, H., Schapire, R. E., & Simard, P. (1993). Boosting performance in neural networks. International Journal of Pattern Recognition and Artificial Intelligence, 7, 705–719.

    Article  Google Scholar 

  • Fabbri, A. G., & Chung, C. J. (2008). On blind tests and spatial prediction models. Natural Resources Research, 17(2), 107–118.

    Article  Google Scholar 

  • Freund, Y., & Schapire, R. E. (1995). A decision-theoretic generalization of on-line learning and an application to boosting. In Paper presented at the computational learning theory. EuroCOLT 1995, Berlin, Heidelberg.

  • Freund, Y. (1995). Boosting a weak learning algorithm by majority. Information and Computation, 121(2), 256–285.

    Article  Google Scholar 

  • Freund, Y., & Schapire, R. E. (1999). A short introduction to boosting. Journal of Japanese Society for Artificial Intelligence, 14(5), 771–780.

    Google Scholar 

  • Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29(5), 1189–1232.

    Article  Google Scholar 

  • Gao, Y., Zhang, Z., Xiong, Y., & Zuo, R. (2016). Mapping mineral prospectivity for Cu polymetallic mineralization in southwest Fujian Province, China. Ore Geology Reviews, 75, 16–28.

    Article  Google Scholar 

  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

    Google Scholar 

  • Hariharan, S., Tirodkar, S., Porwal, A., Bhattacharya, A., & Joly, A. (2017). Random forest-based prospectivity modelling of Greenfield Terrains using sparse deposit data: An example from the Tanami Region Western Australia. Natural Resources Research, 26(4), 489–507.

    Article  CAS  Google Scholar 

  • He, H., & Garcia, E. A. (2010). Learning from imbalanced data sets. IEEE Transactions on Knowledge and Data Engineering, 21(9), 1263–1284. https://doi.org/10.1109/TKDE.2008.239

    Article  Google Scholar 

  • Kearns, M., & Valiant, L. G. (1989). Cryptographic limitations on learning Boolean formulae and finite automata. In Proceeding of the 21st annual ACM symposium on theory of computing, New York, 1989 (pp. 433–444). ACM Press.

  • Kearns, M., & Valiant, L. G. (1988). Learning Boolean formulae for finite automata is as hard as factoring. Cambridge: Harvard University.

    Google Scholar 

  • Kirkwood, C., Cave, M., Beamish, D., Grebby, S., & Ferreira, A. (2016). A machine learning approach to geochemical mapping. Journal of Geochemical Exploration, 167, 49–61.

    Article  CAS  Google Scholar 

  • Kreuzer, O. P., Etheridge, M. A., Guj, P., McMahon, M. E., & Holden, D. J. (2008). Linking mineral deposit models to quantitative risk analysis and decision-making in exploration. Economic Geology, 103(4), 829–850.

    Article  CAS  Google Scholar 

  • Kreuzer, O. P., Yousefi, M., & Nykänen, V. (2020). Introduction to the special issue on spatial modelling and analysis of ore-forming processes in mineral exploration targeting. Ore Geology Reviews, 119, 103391.

    Article  Google Scholar 

  • Lark, R., Patton, M., Ander, E., & Reay, D. (2018). The singularity index for soil geochemical variables, and a mixture model for its interpretation. Geoderma, 323, 83–106.

    Article  CAS  Google Scholar 

  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444.

    Article  CAS  Google Scholar 

  • Lewis, N. D. (2017). Machine learning made easy with R: An intuitive step by step blueprint for beginners. Scotts Valley: Create Space Independent Publishing Platform.

    Google Scholar 

  • Li, S., Chen, J., Liu, C., & Wang, Y. (2021). Mineral prospectivity prediction via convolutional neural networks based on geological big data. Journal of Earth Science, 32, 327–347.

    Article  Google Scholar 

  • Li, T., Xia, Q., Zhao, M., Gui, Z., & Leng, S. (2020). Prospectivity mapping for tungsten polymetallic mineral resources, Nanling Metallogenic Belt, South China: Use of random forest algorithm from a perspective of data imbalance. Natural Resources Research, 29(1), 203–227.

    Article  CAS  Google Scholar 

  • Li, T., Zuo, R., Zhao, X., & Zhao, K. (2022). Mapping prospectivity for regolith-hosted REE deposits via convolutional neural network with generative adversarial network augmented data. Ore Geology Reviews, 142, 104693.

    Article  Google Scholar 

  • Li, X., Zhang, Y., Li, Z., Zhao, X., Zuo, R., Xiao, F., & Zheng, Y. (2023). Discrimination of Pb–Zn deposit types using sphalerite geochemistry: New insights from machine learning algorithm. Geoscience Frontiers, 14, 101580.

    Article  CAS  Google Scholar 

  • Liu, Y., Cheng, Q., Xia, Q., & Wang, X. (2013). Application of singularity analysis for mineral potential identification using geochemical data–a case study: Nanling W–Sn–Mo polymetallic metallogenic belt, South China. Journal of Geochemical Exploration, 134, 61–72.

    Article  CAS  Google Scholar 

  • Liu, Y., Cheng, Q., Xia, Q., & Wang, X. (2014a). Mineral potential mapping for tungsten polymetallic deposits in the Nanling metallogenic belt, South China. Journal of Earth Science, 25(4), 689–700.

    Article  CAS  Google Scholar 

  • Liu, Y., Cheng, Q., Xia, Q., & Wang, X. (2014b). Mineral potential mapping for tungsten polymetallic deposits in the Nanling metallogenic belt, South China. Journal of Earth Science, 25, 689–700.

    Article  CAS  Google Scholar 

  • Liu, Y., Cheng, Q., Xia, Q., & Wang, X. (2015). The use of evidential belief functions for mineral potential mapping in the Nanling belt, South China. Frontiers of Earth Science, 9, 342–354.

    Article  CAS  Google Scholar 

  • Liu, Y., Cheng, Q., Zhou, K., Xia, Q., & Wang, X. (2016). Multivariate analysis for geochemical process identification using stream sediment geochemical data: A perspective from compositional data. Geochemical Journal, 50, 293–314.

    Article  CAS  Google Scholar 

  • Liu, Y., Xia, Q., & Carranza, E. J. M. (2019). Integrating sequential indicator simulation and singularity analysis to analyze uncertainty of geochemical anomaly for exploration targeting of tungsten polymetallic mineralization, Nanling belt, South China. Journal of Geochemical Exploration, 197, 143–158. https://doi.org/10.1016/j.gexplo.2018.11.012

    Article  CAS  Google Scholar 

  • Mao, J., Xie, G., Cheng, Y., & Chen, Y. (2009). Mineral deposit models of Mesozoic ore deposits in South China. Geological Review, 55, 347–354.

    CAS  Google Scholar 

  • Mao, J., Xie, G., Guo, C., & Chen, Y. (2007). Large-scale tungsten-tin mineralization in the Nanling region, South China: Metallogenic ages and corresponding geodynamic processes. Acta Petrologica Sinica, 23, 2329–2338.

    CAS  Google Scholar 

  • Mao, J., Xie, G., Li, X., Zhang, C., & Mei, Y. (2004). Mesozoic large scale mineralization and multiple lithosphere extension in South China. Earth Science Frontiers, 11(1), 45–55.

    CAS  Google Scholar 

  • McCuaig, T. C., Beresford, S., & Hronsky, J. (2010). Translating the mineral systems approach into an effective exploration targeting system. Ore Geology Reviews, 38(3), 128–138.

    Article  Google Scholar 

  • Moeini, H., & Torab, F. M. (2017). Comparing compositional multivariate outliers with autoencoder networks in anomaly detection at Hamich exploration area, east of Iran. Journal of Geochemical Exploration, 180, 15–23.

    Article  CAS  Google Scholar 

  • Nykanen, V., Lahti, I., Niiranen, T., & Korhonen, K. (2015). Receiver operating characteristics (ROC) as validation tool for prospectivity models—a magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern Finland. Ore Geology Reviews, 71, 853–860.

    Article  Google Scholar 

  • Parsa, M. (2021). A data augmentation approach to XGboost-based mineral potential mapping: An example of carbonate-hosted Znsingle bondPb mineral systems of Western Iran. Journal of Geochemical Exploration, 228, 106811. https://doi.org/10.1016/j.gexplo.2021.106811

    Article  CAS  Google Scholar 

  • Parsa, M., & Carranza, E. J. M. (2021). Modulating the impacts of stochastic uncertainties linked to deposit locations in data-driven predictive mapping of mineral prospectivity. Natural Resources Research, 30, 3081–3097.

    Article  Google Scholar 

  • Pei, R., Peng, C., & Xiong, Q. (1999). Deep tectonic processes and superaccumulation of metals related to granitoid in the Nanling metallogenic province China. Acta Geologica Sichuan, 73, 191.

    Google Scholar 

  • Pei, R., Wang, Y., & Wang, H. (2009). Ore-forming specialty of the tectono-magmatic zone in Nanling region and its emplacement dynamics for metallogenic series of W-Sn polymetallic deposits. Geology in China, 36(3), 483–489.

    CAS  Google Scholar 

  • Porwal, A., & Carranza, E. J. M. (2015). Introduction to the special issue: GIS-based mineral potential modelling and geological data analyses for mineral exploration. Ore Geology Reviews, 71, 477–483.

    Article  Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2003). Artificial neural networks for mineral potential mapping: A case study from Aravalli Province, Western India. Natural Resources Research, 12, 155–171.

    Article  CAS  Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2006). Bayesian network classifiers for mineral potential mapping. Computers & Geosciences, 32, 1–16.

    Article  Google Scholar 

  • Prado, E. M. G., de Souza Filho, C. R., Carranza, E. J. M., & Motta, J. G. (2020). Modeling of Cu–Au prospectivity in the Carajás mineral province (Brazil) through machine learning: Dealing with imbalanced training data. Ore Geology Reviews, 124, 103611. https://doi.org/10.1016/j.oregeorev.2020.103611

    Article  Google Scholar 

  • Rigol-Sanchez, J. P., Chica-Olmo, M., & Abarca-Hernandez, F. (2003). Artificial neural networks as a tool for mineral potential mapping with GIS. International Journal of Remote Sensing, 24, 1151–1156.

    Article  Google Scholar 

  • Rodriguez-Galiano, V. F., Sanchez-Castillo, M., Chica-Olmo, M., & Chica-Rivas, M. (2015). Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews, 71, 804–818.

    Article  Google Scholar 

  • Roshanravan, B., Aghajani, H., Yousefi, M., & Kreuzer, O. (2019). An improved prediction-area plot for prospectivity analysis of mineral deposits. Natural Resources Research, 28(3), 1089–1105.

    Article  Google Scholar 

  • Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5, 197–227.

    Article  Google Scholar 

  • Shi, Z., Zuo, R., & Zhou, B. (2023). Deep reinforcement learning for mineral prospectivity mapping. Mathematical Geosciences. https://doi.org/10.1007/s11004-023-10059-9

    Article  Google Scholar 

  • Shu, L., Zhou, X., Deng, P., & Yu, X. (2006). Principal geological features of Nanling tectonic belt South China. Geological Review, 2, 251–265.

    Google Scholar 

  • Shu, L., Zhou, X., Deng, P., Yu, X., Wang, B., & Zhu, F. (2004). Geological features and tectonic evolution of Meso-Cenozoic basins in southeastern China. Geological Bulletin of China, 23(9–10), 876–884.

    Google Scholar 

  • Sun, T., Chen, F., Zhong, L. X., Liu, W. M., & Wang, Y. (2019). GIS-based mineral prospectivity mapping using machine learning methods: A case study from Tongling ore district, eastern China. Ore Geology Reviews, 109, 26–49.

    Article  Google Scholar 

  • Sun, T., Li, H., Wu, K. X., Chen, F., Zhu, Z. H., & Hu, Z. J. (2020). Data-driven predictive modelling of mineral prospectivity using machine learning and deep learning methods: A case study from Southern Jiangxi Province China. Minerals, 10(2), 102.

    Article  Google Scholar 

  • Valiant, L. (1984). A theory of the learnable. Communications of the ACM, 27, 1134–1142.

    Article  Google Scholar 

  • Wang, J., & Zuo, R. G. (2018). Identification of geochemical anomalies through combined sequential Gaussian simulation and grid-based local singularity analysis. Computers and Geosciences, 118, 52–64.

    Article  CAS  Google Scholar 

  • Wang, X., & Xia, Q. (2022). Depiction of different alteration zones using fractal and simulation algorithm in Pulang porphyry copper deposit, Southwest China. Natural Resource Research, 31, 1943–1961.

    Article  Google Scholar 

  • Wang, Y., Qiu, K., Müller, A., Hou, Z., Zhu, Z., & Yu, H. (2021). Machine learning prediction of quartz forming-environments. Journal of Geophysical Research: Solid Earth, 126, e2021JB021925.

    Article  CAS  Google Scholar 

  • Wang, Z., Yin, Z., Caers, J., & Zuo, R. (2020). A Monte Carlo-based framework for risk-return analysis in mineral prospectivity mapping. Geoscience Frontiers, 11, 2297–2308.

    Article  CAS  Google Scholar 

  • Wei, C., Cai, M., Cai, J., Wang, X., Che, Q., & Du, H. (2004). Characteristics of structural control of ore deposition in South China in the Mesozoic. Journal of Geomechanics, 10(2), 113–121.

    Google Scholar 

  • Xia, Q., Zhao, M., Wang, X., Leng, S., Li, T., & Xiong, S. (2021). Quantitative prediction of molybdenum-copper polymetallic mineral resources in the Xindalai grassland-covered area of Inner Mongolia based on geological anomalies. Earth Science Frontiers, 28(3), 56–66.

    CAS  Google Scholar 

  • Xiong, Y., & Zuo, R. (2016). Recognition of geochemical anomalies using a deep autoencoder network. Computers & Geosciences, 86, 75–82.

    Article  CAS  Google Scholar 

  • Xiong, Y., & Zuo, R. (2018). GIS-based rare events logistic regression for mineral prospectivity mapping. Computers & Geosciences, 111, 18–25.

    Article  CAS  Google Scholar 

  • Xiong, Y., & Zuo, R. (2020). Recognizing multivariate geochemical anomalies for mineral exploration by combining deep learning and one-class support vector machine. Computers & Geosciences, 140, 104404.

    Article  Google Scholar 

  • Xiong, Y., Zuo, R., & Carranza, E. J. M. (2018). Mapping mineral prospectivity through big data analytics and a deep learning algorithm. Ore Geology Reviews, 102, 811–817.

    Article  Google Scholar 

  • Xu, T., & Wang, Y. (2014). Sulfur and lead isotope composition on tracing ore-forming materials of the Xihuashan tungsten deposit in Southern Jiangxi. Bulletin of Mineralogy, Petrology and Geochemistry, 33(3), 342–347.

    Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2015a). Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping. Computers and Geosciences, 74, 97–109.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2015b). Prediction-area (P-A) plot and C-A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Computers and Geosciences, 79, 69–81.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2016). Data-driven index overlay and Boolean logic mineral prospectivity modeling in Greenfields exploration. Natural Resources Research, 25(1), 3–18.

    Article  CAS  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2017). Union score and fuzzy logic mineral prospectivity mapping using discretized and continuous spatial evidence values. Journal of African Earth Sciences, 128, 47–60.

    Article  Google Scholar 

  • Yousefi, M., Kamkar-Rouhani, A., & Carranza, E. J. M. (2014). Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping. Geochemistry: Exploration, Environment, Analysis, 14(1), 45–58.

    CAS  Google Scholar 

  • Yu, C., Luo, T., Bao, Z., & Hu, Y. (1987). Regional geochemistry of the Nanling district. Geological Publishing House.

    Google Scholar 

  • Yu, C., & Peng, N. (2009). Regional metallogenic zoning in Nanling area: Spatio-temporal synchronization in complex metallogenic system. Geological Publishing House.

    Google Scholar 

  • Zhai, Y., Wang, J., Deng, J., & Peng, R. (2002). Metallogenic system and mineralization network. Mineral Deposits, 21(2), 106–112.

    Google Scholar 

  • Zhang, S., Carranza, E. J. M., Xiao, K., Wei, H., Yang, F., Chen, Z., Li, N., & Xiang, J. (2021). Mineral prospectivity mapping based on isolation forest and random forest: Implication for the existence of spatial signature of mineralization in outliers. Natural Resources Research, 31(4), 1981–1999.

    Article  Google Scholar 

  • Zhang, Z., Li, Y., Wang, G., Carranza, E. J. M., Yang, S., Sha, D., Fan, J., Zhang, J., & Dong, Y. (2023). Supervised mineral prospectivity mapping via class-balanced focal loss function on imbalanced geoscience datasets. Mathematical Geosciences, 55, 989–1010.

    Article  Google Scholar 

  • Zhao, J., Chen, S., & Zuo, R. (2016). Identifying geochemical anomalies associated with Au–Cu mineralization using multifractal and artificial neural network models in the Ningqiang district, Shaanxi, China. Journal of Geochemical Exploration, 164, 54–64.

    Article  CAS  Google Scholar 

  • Zhao, J., Chi, H., Shao, Y., & Peng, X. (2022). Application of AdaBoost algorithms in Fe mineral prospectivity prediction: A case study in Hongyuntan-Chilongfeng mineral district, Xinjiang Province. China. Natural Resources Research, 31(4), 2001–2022.

    Article  CAS  Google Scholar 

  • Zhao, P. (2006). Theories and methods of mineral exploration. China University of Geosciences Press.

    Google Scholar 

  • Zhou, X. (2007). Late Mesozoic granite genesis and lithospheric dynamics evolution in the Nanling region. Science Press.

    Google Scholar 

  • Zhou, Z. (2016). Machine learning. Peking University Press.

    Google Scholar 

  • Zou, S. H., Chen, X. L., Brzozowski, M. J., Leng, C. B., & Xu, D. R. (2022). Application of machine learning to characterizing magma fertility in porphyry Cu deposits. Journal of Geophysical Research: Solid Earth, 127, e2022JB024584.

    Article  CAS  Google Scholar 

  • Zuo, R. (2016). A nonlinear controlling function of geological features on magmatic-hydrothermal mineralization. Scientific Reports, 6, 27127.

    Article  CAS  Google Scholar 

  • Zuo, R. (2017). Machine learning of mineralization-related geochemical anomalies: A review of potential methods. Natural Resources Research, 26, 457–464.

    Article  CAS  Google Scholar 

  • Zuo, R. (2021). Data science-based theory and method of quantitative prediction of mineral resources. Earth Science Frontiers, 28(3), 49–55.

    Google Scholar 

  • Zuo, R., & Carranza, E. J. M. (2011). Support vector machine: A tool for mapping mineral prospectivity. Computers & Geosciences, 37, 1967–1975.

    Article  CAS  Google Scholar 

  • Zuo, R., Kreuzer, O., Xiong, Y., Zhang, Z., & Wang, Z. (2021a). Uncertainties in GIS-based mineral prospectivity mapping: Key types, potential impacts and possible solutions. Natural Resources Research, 30, 3059–3079. https://doi.org/10.1007/s11053-021-09871-z

    Article  Google Scholar 

  • Zuo, R., Peng, Y., Li, T., & Xiong, Y. (2021b). Challenges of geological prospecting big data mining and integration using deep learning algorithms. Journal of Earth Science, 46(1), 350–358.

    Google Scholar 

  • Zuo, R., & Wang, Z. (2020). Effects of random negative training samples on mineral prospectivity mapping. Natural Resources Research, 29, 3443–3455.

    Article  Google Scholar 

  • Zuo, R., & Xu, Y. (2023). Graph deep learning model for mapping mineral prospectivity. Mathematical Geosciences, 55, 1–21.

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China (No. 42172331), the High-Level Talent Research Start-up Project of West Anhui University (WGKQ2021063), the Key R&D Project of the Science and Technology Department of Jiangxi Province (20212BBG73045), the Training Plan for Young Science and Technology Leaders of Jiangxi Bureau of Geology (2022JXDZKJRC02), the Yingtan Science and Technology Plan (No. 20233-185656), and the Geological Exploration Project funded by Jiangxi Provincial Finance (No. 20220014). We greatly appreciate the comments and suggestions provided by the Editor-in-Chief John Carranza, the Associate Editor Professor Zuo, and two other anonymous reviewers, which significantly improved our manuscript.

Funding

This research is supported by the National Natural Science Foundation of China (No. 42172331), the High-Level Talent Research Start-up Project of West Anhui University (WGKQ2021063), the Key R&D Project of Science and Technology Department of Jiangxi Province (20212BBG73045), the Training Plan for Young Science and Technology Leaders of Jiangxi Bureau of Geology (2022JXDZKJRC02), the Yingtan Science and Technology Plan (No. 20233-185656), and the Geological Exploration Project funded by Jiangxi Provincial Finance (No. 20220014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinglin Xia or Yongpeng Ouyang.

Ethics declarations

Conflict of Interest

The authors declare that the research was conducted without any commercial or financial relationships that could be perceived as a potential conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Xia, Q., Ouyang, Y. et al. Prospectivity and Uncertainty Analysis of Tungsten Polymetallogenic Mineral Resources in the Nanling Metallogenic Belt, South China: A Comparative Study of AdaBoost, GBDT, and XgBoost Algorithms. Nat Resour Res (2024). https://doi.org/10.1007/s11053-024-10321-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11053-024-10321-9

Keywords

Navigation