Skip to main content

Advertisement

Log in

Distinguishing the Type of Ore-Forming Fluids in Gold Deposits Using Pyrite Geochemistry and Machine Learning

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Pyrite geochemistry is crucial for the discrimination of the types of ore-forming fluids in gold deposits, such as metamorphic–hydrothermal fluids and magmatic–hydrothermal fluids. With the assistance of supervised machine learning algorithms, this application can be leveraged maximally. Here, laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) geochemical data for 4683 pyrite samples worldwide were collected to train seven classification models. The top three algorithms, including Random Forest (RF), Support Vector Machines (SVM), and Multilayer Perceptron (MLP), were used to build classifiers to predict the type of pyrite. The established classifiers were applied to new geochemical data for pyrite samples collected from the Jinkeng and Huanggou gold deposits in the Xuefengshan Orogen (XFSO). The findings suggest that the classifiers are capable of accurately distinguishing between two main types of ore-forming fluids, with good predictive outcomes. This performance surpasses that of traditional, two-dimensional diagram-based methods. The classifiers determined that the geochemical constituents of pyrite from the Jinkeng and Huanggou originated from metamorphic–hydrothermal sources, consistent with geological and geochemical evidence. The results further reveal that the Jinkeng and Huanggou are classified mostly as orogenic gold deposit. This study proves that data-driven methods based on machine learning can provide compelling evidence for distinguishing between the types of ore-forming fluids, understanding deposit genesis, and providing prospecting ideas. Additionally, this research boosts confidence in the use of machine learning to geological classification challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Data Availability

The online version contains the following supplementary materials available at https://github.com/Qinyixue/Supplementary_Materials: Appendix A (LA–ICP–MS spot analyses of pyrite from the Jinkeng and Huanggou deposits); Appendix B (LA–ICP–MS spot analyses of pyrite from published literature); Appendix C (Brief description of the methods used); Appendix D (Location of samples for each deposit from published literature); Appendix E (Results of pyrite trace element statistical analysis); Appendix F (Performance of different classifiers); and Appendix G (Classification report for the RF, SVM, and MLP classifiers).

References

  • Barker, S. L. L., Hickey, K. A., Cline, J. S., Dipple, G. M., Kilburn, M. R., Vaughan, J. R., & Longo, A. A. (2009). Uncloaking invisible gold: use of nanoSIMS to evaluate gold, trace elements, and sulfur isotopes in pyrite from Carlin-type gold deposits. Economic Geology, 104(7), 897–904.

    Article  Google Scholar 

  • Baştanlar, Y., & Özuysal, M. (2014). Introduction to Machine Learning. In M. Yousef & J. Allmer (Eds.), miRNomics: MicroRNA Biology and Computational Analysis (pp. 105–128). Humana Press. https://doi.org/10.1007/978-1-62703-748-8_7

  • Batista, G. E. A. P. A., Prati, R. C., & Monard, M. C. (2004). A study of the behavior of several methods for balancing machine learning training data. SIGKDD Exploration Newsletter, 6(1), 20–29.

    Article  Google Scholar 

  • Belousov, I., Large, R. R., Meffre, S., Danyushevsky, L. V., Steadman, J., & Beardsmore, T. (2016). Pyrite compositions from VHMS and orogenic Au deposits in the Yilgarn Craton, Western Australia: Implications for gold and copper exploration. Ore Geology Reviews, 79, 474–499.

    Article  Google Scholar 

  • Bi, S. J., Li, J. W., Zhou, M. F., & Li, Z. K. (2011). Gold distribution in As-deficient pyrite and telluride mineralogy of the Yangzhaiyu gold deposit, Xiaoqinling district, Southern North China craton. Mineralium Deposita, 46(8), 925–941.

    Article  Google Scholar 

  • Bralia, A., Sabatini, G., & Troja, F. (1979). A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems. Mineralium Deposita, 14(3), 353–374.

    Article  Google Scholar 

  • Breeding, C. M., & Ague, J. J. (2002). Slab-derived fluids and quartz-vein formation in an accretionary prism, Otago Schist. New Zealand. Geology, 30(6), 499–502.

    Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

    Article  Google Scholar 

  • Cameron, E. M. (1988). Archean gold: relation to granulite formation and redox zoning in the crust. Geology, 16(2), 109–112.

    Article  Google Scholar 

  • Chapman, R. J., Mortensen, J. K., Allan, M. M., Walshaw, R. D., Bond, J., & MacWilliam, K. (2022). A new approach to characterizing deposit type using mineral inclusion assemblages in gold particles. Economic Geology, 117(2), 361–381.

    Article  Google Scholar 

  • Chen, J., & Jahn, B. (1998). Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics, 284(1), 101–133.

    Google Scholar 

  • Chen, Y. J., Ni, P., Fan, H. R., Pirajno, F., Lai, Y., Su, W. C., & Zhang, H. (2007). Diagnostic fluid inclusions of different types hydrothermal gold deposits. Acta Petrologica Sinica, 23(9), 2085–2108. (in Chinese with English abstract).

    Google Scholar 

  • Chouinard, A., Paquette, J., & Williams-Jones, A. E. (2005). Crystallographic controls on trace-element incorporation in auriferous pyrite from Pascua epithermal high-sulfidation deposit Chile-Argentina. The Canadian Mineralogist, 43(3), 951–963.

    Article  Google Scholar 

  • Chu, Y., Lin, W., Faure, M. C., Allen, M. B., & Feng, Z. T. (2020). Cretaceous exhumation of the Triassic intracontinental Xuefengshan Belt: Delayed unroofing of an orogenic plateau across the South China Block? Tectonophysics, 793, 228592.

    Article  Google Scholar 

  • Ciobanu, C. L., Cook, N. J., Pring, A., Brugger, J., Danyushevsky, L. V., & Shimizu, M. (2009). ‘Invisible gold’ in bismuth chalcogenides. Geochimica et Cosmochimica Acta, 73(7), 1970–1999.

    Article  Google Scholar 

  • Cline, J. S. (2001). Timing of gold and arsenic sulfide mineral deposition at the getchell carlin-type gold deposit North-Central Nevada. Economic Geology, 96(1), 75–89.

    Article  Google Scholar 

  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.

    Article  Google Scholar 

  • Cunningham, P., & Delany, S. J. (2021). k-nearest neighbour classifiers—A tutorial. ACM Computing Surveys, 54(6), 1–25.

    Article  Google Scholar 

  • Dai, J. F., Xu, D. R., Chi, G. X., Li, Z. H., Deng, T., Zhang, J., & Li, B. (2022). Origin of the Woxi orogenic Au-Sb-W deposit in the west Jiangnan Orogen of South China: Constraints from apatite and wolframite U-Pb dating and pyrite in-situ S-Pb isotopic signatures. Ore Geology Reviews, 150, 105134.

    Article  Google Scholar 

  • Danyushevsky, L., Robinson, P., Gilbert, S., Norman, M., Large, R., McGoldrick, P., & Shelley, M. (2011). Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS: Standard development and consideration of matrix effects. Geochemistry Exploration Environment Analysis, 11(1), 51–60.

    Article  Google Scholar 

  • Deditius, A. P., Utsunomiya, S., Reich, M., Kesler, S. E., Ewing, R. C., Hough, R., & Walshe, J. (2011). Trace metal nanoparticles in pyrite. Ore Geology Reviews, 42(1), 32–46.

    Article  Google Scholar 

  • Deng, J., & Wang, Q. F. (2016). Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework. Gondwana Research, 36, 219–274.

    Article  Google Scholar 

  • Deol, S., Deb, M., Large, R. R., & Gilbert, S. (2012). LA-ICP-MS and EPMA studies of pyrite, arsenopyrite and loellingite from the Bhukia-Jagpura gold prospect, southern Rajasthan, India: Implications for ore genesis and gold remobilization. Chemical Geology, 326–327, 72–87.

    Article  Google Scholar 

  • Dreiseitl, S., & Ohno-Machado, L. (2002). Logistic regression and artificial neural network classification models: A methodology review. Journal of Biomedical Informatics, 35(5), 352–359.

    Article  Google Scholar 

  • Ermini, L., Catani, F., & Casagli, N. (2005). Artificial neural networks applied to landslide susceptibility assessment. Geomorphology, 66(1), 327–343.

    Article  Google Scholar 

  • Field, C. W., & Gustafson, L. B. (1976). Sulfur isotopes in the porphyry copper deposit at El Salvador Chile. Economic Geology, 71(8), 1533–1548.

    Article  Google Scholar 

  • Ganganwar, V. (2012). An overview of classification algorithms for imbalanced datasets. International Journal of Emerging Technology and Advanced Engineering, 2, 42–47.

    Google Scholar 

  • Gao, H., Xie, Y. H., Yang, L., Zhang, Z., Ke, X. X., Liu, X. M., Luo, J. B., Liu, Q., Liu, J. S., Wang, Z. L., & Kong, H. (2021). Composition typomorphic characteristics of pyrite and its genetic implication for gold deposits in Tongdao County Hunan Province. Gold Science and Technology, 28, 712–726. (in Chinese with English abstract).

    Google Scholar 

  • Genna, D., & Gaboury, D. (2015). Deciphering the hydrothermal evolution of a VMS system by LA-ICP-MS using trace elements in pyrite: An example from the Bracemac-McLeod deposits, Abitibi, Canada, and implications for exploration. Economic Geology, 110(8), 2087–2108.

    Article  Google Scholar 

  • Goldfarb, R., & Groves, D. (2015). Orogenic gold: Common or evolving fluid and metal sources through time. Lithos, 233, 2–26.

    Article  Google Scholar 

  • Gregory, D. D., Cracknell, M. J., Large, R. R., McGoldrick, P., Kuhn, S., Maslennikov, V. V., Baker, M. J., Fox, N., Belousov, I., Figueroa, M. C., Steadman, J. A., Fabris, A. J., & Lyons, T. W. (2019). Distinguishing ore deposit type and barren sedimentary pyrite using laser ablation-inductively coupled plasma-mass spectrometry trace element data and statistical analysis of large data sets. Economic Geology, 114(4), 771–786.

    Article  Google Scholar 

  • Griffin, W., Powell, W., Pearson, N. J., & O’Reilly, S. (2008). GLITTER: data reduction software for laser ablation ICP-MS. Short Course Series, 40, 308–311.

    Google Scholar 

  • Gu, X. X., Zhang, Y. M., Schulz, O., Vavtar, F., Liu, J. M., Zheng, M. H., & Zheng, L. (2012). The Woxi W-Sb-Au deposit in Hunan, South China: An example of late proterozoic sedimentary exhalative (SEDEX) mineralization. Journal of Asian Earth Sciences, 57, 54–75.

    Article  Google Scholar 

  • Hagemann, S., Gebre, M., & Groves, D. (1994). Surface-water influx in shallow-level Archean lode-gold deposits in Western Australia. Geology, 22(12), 1067–1070.

    Article  Google Scholar 

  • Han, H., Wang, W. Y., & Mao, B. H. (2005, 2005//). Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning. Advances in Intelligent Computing, Berlin, Heidelberg.

  • He, H., & Garcia, E. A. (2009). Learning from Imbalanced Data. IEEE Transactions on Knowledge and Data Engineering, 21(9), 1263–1284.

    Article  Google Scholar 

  • Helsel, D. R. (1990). Less than obvious–statistical treatment of data below the detection limit. Environmental Science & Technology, 24(12), 1766–1774.

    Article  Google Scholar 

  • Hu, B., Zeng, L. P., Liao, W., Wen, G., Hu, H., Li, M. Y. H., & Zhao, X. F. (2022). The origin and discrimination of high-Ti magnetite in magmatic–hydrothermal systems: Insight from machine learning analysis. Economic Geology, 117(7), 1613–1627.

    Article  Google Scholar 

  • Hunan Bureau of Geology and Mineral Resources (HBGMR). (1988). Regional Geology of Hunan Province. Geological Publishing House, Beijing, pp, 1–719 (in Chinese with English abstract).

  • Huston, D., Sie, S., Suter, G., Cooke, D., & Both, R. (1995). Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits: part I. Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and part II. Selenium levels in pyrite: comparison with δ 34S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Economic Geology, 90, 1167–1196.

    Article  Google Scholar 

  • Keith, M., Smith, D. J., Jenkin, G. R. T., Holwell, D. A., & Dye, M. D. (2018). A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: Insights into ore-forming processes. Ore Geology Reviews, 96, 269–282.

    Article  Google Scholar 

  • Kerr, M. J., Hanley, J. J., Kontak, D. J., Morrison, G. G., Petrus, J., Fayek, M., & Zajacz, Z. (2018). Evidence of upgrading of gold tenor in an orogenic quartz-carbonate vein system by late magmatic–hydrothermal fluids at the Madrid Deposit, Hope Bay Greenstone Belt, Nunavut, Canada. Geochimica et Cosmochimica Acta, 241, 180–218.

    Article  Google Scholar 

  • Kerrich, R., Goldfarb, R., Groves, D., Garwin, S., & Jia, Y. F. (2000). The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces. Science in China Series D: Earth Sciences, 43(1), 1–68.

    Article  Google Scholar 

  • Kotsiantis, S., Kanellopoulos, D., & Pintelas, P. (2005). Handling imbalanced datasets: A review. GESTS International Transactions on Computer Science and Engineering, 30, 25–36.

    Google Scholar 

  • Large, R. R., Danyushevsky, L., Hollit, C., Maslennikov, V., Meffre, S., Gilbert, S., Bull, S., Scott, R., Emsbo, P., Thomas, H., Singh, B., & Foster, J. (2009). Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and carlin-style sediment-hosted deposits. Economic Geology, 104(5), 635–668.

    Article  Google Scholar 

  • Large, R. R., Halpin, J. A., Danyushevsky, L. V., Maslennikov, V. V., Bull, S. W., Long, J. A., Gregory, D. D., Lounejeva, E., Lyons, T. W., Sack, P. J., McGoldrick, P. J., & Calver, C. R. (2014). Trace element content of sedimentary pyrite as a new proxy for deep-time ocean–atmosphere evolution. Earth and Planetary Science Letters, 389, 209–220.

    Article  Google Scholar 

  • Li, S. Z., Zang, Y. B., Wang, P. C., Suo, Y. H., Li, X. Y., Liu, X., Zhou, Z. Z., Liu, X. G., & Wang, Q. (2017). Mesozoic tectonic transition in South China and initiation of Palaeo-Pacific subduction. Earth Science Frontiers, 24(04), 213–225. (in Chinese with English abstract).

    Google Scholar 

  • Li, R. C., Chen, H. Y., Xia, X. P., Yang, Q., Danyushevsky, L. V., & Lai, C. (2018). Using integrated in-situ sulfide trace element geochemistry and sulfur isotopes to trace ore-forming fluids: Example from the Mina Justa IOCG deposit (southern Perú). Ore Geology Reviews, 101, 165–179.

    Article  Google Scholar 

  • Li, W., Xie, G. Q., Mao, J. W., Cook, N. J., Wei, H. T., Ji, Y. H., & Fu, B. (2023). Precise age constrains for the Woxi Au-Sb-W deposit. South China. Economic Geology, 118(2), 509–518.

    Article  Google Scholar 

  • Liang, J. L., Li, J., Sun, W. D., Zhao, J., Zhai, W., Huang, Y., Song, M. C., Ni, S. J., Xiang, Q. R., Zhang, J. C., Hao, J. L., Nan, Z. L., & Li, J. Z. (2019). Source of ore-forming fluids of the Yangshan gold field, western Qinling orogen, China: Evidence from microthermometry, noble gas isotopes and in situ sulfur isotopes of Au-carrying pyrite. Ore Geology Reviews, 105, 404–422.

    Article  Google Scholar 

  • Liu, L. M., Peng, S. L., & Wu, Y. Z. (1999). Genetic features forming vein-type gold deposits in Northeastern Hunan. Journal of Central South University of Technology, 30, 4–7. (in Chinese with English abstract).

    Article  Google Scholar 

  • Liu, X. Y., Wu, J. X., & Zhou, Z. H. (2009). Exploratory undersampling for class-imbalance learning. IEEE Transactions on Systems Man and Cybernetics Part B (Cybernetics), 39(2), 539–550.

    Article  Google Scholar 

  • Maslennikov, V. V., Maslennikova, S. P., Large, R. R., & Danyushevsky, L. V. (2009). Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (Southern Urals, Russia) using laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS). Economic Geology, 104(8), 1111–1141.

    Article  Google Scholar 

  • Mathieu, L. (2019). Detecting magmatic-derived fluids using pyrite chemistry: Example of the Chibougamau area, Abitibi Subprovince Québec. Ore Geology Reviews, 114, 103127.

    Article  Google Scholar 

  • Mirjalili, S. (2015). How effective is the Grey Wolf optimizer in training multi-layer perceptrons. Applied Intelligence, 43(1), 150–161.

    Article  Google Scholar 

  • Pal, S. K., & Mitra, S. (1992). Multilayer perceptron, fuzzy sets, and classification. IEEE Transactions on Neural Networks, 3(5), 683–697.

    Article  Google Scholar 

  • Pearce, J. A. (1982). Trace element characteristics of lavas from destructive plate boundaries. In R. S. Thorpe (Ed.), Andesites: Orogenic Andesites and Related Rocks (pp. 525–548). Wiley.

    Google Scholar 

  • Pudack, C., Halter, W. E., Heinrich, C. A., & Pettke, T. (2009). Evolution of magmatic vapor to gold-rich epithermal liquid: The porphyry to epithermal transition at Nevados de Famatina Northwest Argentina. Economic Geology, 104(4), 449–477.

    Article  Google Scholar 

  • Reich, M., Kesler, S. E., Utsunomiya, S., Palenik, C. S., Chryssoulis, S. L., & Ewing, R. C. (2005). Solubility of gold in arsenian pyrite. Geochimica et Cosmochimica Acta, 69(11), 2781–2796.

    Article  Google Scholar 

  • Reich, M., Simon, A. C., Deditius, A., Barra, F., Chryssoulis, S., Lagas, G., Tardani, D., Knipping, J., Bilenker, L., Sánchez-Alfaro, P., Roberts, M. P., & Munizaga, R. (2016). Trace element signature of pyrite from the Los Colorados iron oxide-apatite (IOA) deposit, Chile: A missing link between Andean IOA and iron oxide copper-gold systems? Economic Geology, 111(3), 743–761.

    Article  Google Scholar 

  • Rish, I. (2001). An empirical study of the Naïve Bayes classifier. IJCAI 2001 Work Empir Methods Artif Intell, 3.

  • Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE Transactions on Systems, Man, and Cybernetics, 21(3), 660–674.

    Article  Google Scholar 

  • Sanborn, M., & Telmer, K. (2003). The spatial resolution of LA-ICP-MS line scans across heterogeneous materials such as fish otoliths and zoned minerals. Journal of Analytical Atomic Spectrometry, 18(10), 1231–1237. https://doi.org/10.1039/B302513F

    Article  Google Scholar 

  • Seijo-Pardo, B., Alonso-Betanzos, A., Bennett, K. P., Bolón-Canedo, V., Josse, J., Saeed, M., & Guyon, I. (2019). Biases in feature selection with missing data. Neurocomputing, 342, 97–112.

    Article  Google Scholar 

  • Shao, Y. J., Wang, W. S., Liu, Q. Q., & Zhang, Y. (2018). Trace element analysis of pyrite from the Zhengchong gold deposit, Northeast Hunan Province, China: Implications for the ore-forming process. Minerals, 8(6), 262.

    Article  Google Scholar 

  • Sung, Y. H., Brugger, J., Ciobanu, C. L., Pring, A., Skinner, W., & Nugus, M. (2009). Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: Sunrise Dam, Eastern Goldfields Province Western Australia. Mineralium Deposita, 44(7), 765–791.

    Article  Google Scholar 

  • Tardani, D., Reich, M., Deditius, A. P., Chryssoulis, S., Sánchez-Alfaro, P., Wrage, J., & Roberts, M. P. (2017). Copper-arsenic decoupling in an active geothermal system: A link between pyrite and fluid composition. Geochimica et Cosmochimica Acta, 204, 179–204.

    Article  Google Scholar 

  • Thomas, H. V., Large, R. R., Bull, S. W., Maslennikov, V., Berry, R. F., Fraser, R., Froud, S., & Moye, R. (2011). Pyrite and pyrrhotite textures and composition in sediments, laminated quartz veins, and reefs at Bendigo Gold Mine, Australia: Insights for ore genesis. Economic Geology, 106(1), 1–31.

    Article  Google Scholar 

  • Wang, Y., Qiu, K. F., Müller, A., Hou, Z. L., Zhu, Z. H., & Yu, H. C. (2021). Machine learning prediction of quartz forming-environments. Journal of Geophysical Research Solid Earth, 126(8), e2021JB021925.

    Article  Google Scholar 

  • Wang, C. B., Zhao, K. D., Chen, J. G., & Ma, X. G. (2022). Examining fingerprint trace elements in cassiterite: Implications for primary tin deposit exploration. Ore Geology Reviews, 149, 105082.

    Article  Google Scholar 

  • Wilson, S. A., Ridley, W. I., & Koenig, A. E. (2002). Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique. Journal of Analytical Atomic Spectrometry, 17(4), 406–409. https://doi.org/10.1039/B108787H

    Article  Google Scholar 

  • Xie, Y. H., Gao, H., Zhang, Z., Yang, L., Ke, X. X., Liu, X. M., Luo, J. B., Liu, Q., Xu, K. L., Liu, J. S., Kong, H., & Liu, B. (2021). Ore-forming fluid characteristics and material source of gold deposits in Tongdao Countyj, Hunan Province, evidence from fluid inclusions and H-O-S-isotopes. Gold Sci. Technol, 28, 74–88. (in Chinese with English abstract).

    Google Scholar 

  • Xie, Y. H., Gao, H., Kong, H., & Zheng, H. (2022). Structural controls on mineralization within the Huanggou gold deposit in the Southern Mesozoic Xuefengshan Orogen. South China. Minerals, 12(6), 751.

    Google Scholar 

  • Xing, Y. L., Brugger, J., Tomkins, A., & Shvarov, Y. (2019). Arsenic evolution as a tool for understanding formation of pyritic gold ores. Geology, 47(4), 335–338.

    Article  Google Scholar 

  • Xu, D. R., Deng, T., Chi, G. X., Wang, Z. L., Zou, F. H., Zhang, J. L., & Zou, S. H. (2017). Gold mineralization in the Jiangnan Orogenic Belt of South China: Geological, geochemical and geochronological characteristics, ore deposit-type and geodynamic setting. Ore Geology Reviews, 88, 565–618.

    Article  Google Scholar 

  • Yan, Y. T., Jia, B. J., Zhang, N., & Yan, L. N. (2012). Composition typomorphic characteristics and statistic analysis of pyrite in gold deposits of different genetic types. Earth Science Frontiers, 19, 214–226. (in Chinese with English abstract).

    Google Scholar 

  • Yap, B. W., Rani, K. A., Rahman, H. A. A., Fong, S., Khairudin, Z., & Abdullah, N. N. (2014, 2014//). An Application of Oversampling, Undersampling, Bagging and Boosting in Handling Imbalanced Datasets. Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng–2013), Singapore.

  • Zhang, J. R., & Luo, X. L. (1989). Metallogenetic epochs of endogenic gold deposits in South China. J. Guilin Coll. Geol, 9(4), 369–379. (in Chinese with English abstract).

    Google Scholar 

  • Zhang, J., Chen, Y. J., Pirajno, F., Deng, J., Chen, H. Y., & Wang, C. M. (2013). Geology, C-H-O-S-Pb isotope systematics and geochronology of the Yindongpo gold deposit, Tongbai mountains, central China: Implication for ore genesis. Ore Geology Reviews, 53, 343–356.

    Article  Google Scholar 

  • Zhang, J., Deng, J., Chen, H. Y., Yang, L. Q., Cooke, D., Danyushevsky, L., & Gong, Q. J. (2014). LA-ICP-MS trace element analysis of pyrite from the Chang’an gold deposit, Sanjiang region, China: Implication for ore-forming process. Gondwana Research, 26(2), 557–575.

    Article  Google Scholar 

  • Zhang, L., Yang, L. Q., Groves, D. I., Sun, S. C., Liu, Y., Wang, J. Y., Li, R. H., Wu, S. G., Gao, L., Guo, J. L., Chen, X. G., & Chen, J. H. (2019). An overview of timing and structural geometry of gold, gold-antimony and antimony mineralization in the Jiangnan Orogen, southern China. Ore Geology Reviews, 115, 103173.

    Article  Google Scholar 

  • Zhang, W., Lentz, D. R., Thorne, K. G., & Massawe, R. J. R. (2020). Late Silurian-Early Devonian slab break-off beneath the Canadian Appalachians: Insights from the Nashwaak Granite, west-central New Brunswick Canada. Lithos, 358–359, 105393.

    Article  Google Scholar 

  • Zhang, P., Zhang, Z. J., Yang, J., & Cheng, Q. M. (2023). Machine learning prediction of ore deposit genetic type using magnetite geochemistry. Natural Resources Research, 32(1), 99–116.

    Article  Google Scholar 

  • Zhong, R. C., Deng, Y., Li, W. B., Danyushevsky, L. V., Cracknell, M. J., Belousov, I., Chen, Y. J., & Li, L. M. (2021). Revealing the multi-stage ore-forming history of a mineral deposit using pyrite geochemistry and machine learning-based data interpretation. Ore Geology Reviews, 133, 104079.

    Article  Google Scholar 

  • Zhu, Y. N., & Peng, J. T. (2015). Infrared microthermometric and noble gas isotope study of fluid inclusions in ore minerals at the Woxi orogenic Au-Sb-W deposit, Western Hunan, South China. Ore Geology Reviews, 65, 55–69.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Plan (Grant No. 2018YFC0603901), the Hunan Nuclear Industry Geological Bureau (Grant KY2019-301-01), and the Postgraduate Research and Innovation Project of Central South University (independent exploration) (2022ZZTS0459). We appreciate the comments and suggestions from Chief Editor John Carranza and two anonymous reviewers, which greatly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Kong.

Ethics declarations

Conflict of Interest

The authors declare that they have no knowledge of meeting financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Y., Kong, H., Liu, B. et al. Distinguishing the Type of Ore-Forming Fluids in Gold Deposits Using Pyrite Geochemistry and Machine Learning. Nat Resour Res 33, 107–127 (2024). https://doi.org/10.1007/s11053-023-10282-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-023-10282-5

Keywords

Navigation