Skip to main content
Log in

Concentration Dependence of the Diffusion Coefficient During Adsorption of Methane into Partially Water-Saturated Crushed Shale

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

A numerical model that simulates methane transport and adsorption in crushed shale was developed. This model uses the finite element method to solve the diffusion coefficient (D) and adsorption rate of methane in a spherical particle region, and it was calibrated by fitting experimental data on the adsorption process of methane in unsaturated crushed shale. The results show that the methane free concentration in shale reflected the strength of methane’s diffusion ability. The D increased by 2.2–4.9 times for each 900 mol/m3 increment in the free concentration. The D was 1.43 × 10−11–1.23 × 10−9 m2/s as the boundary concentration ranged from 461 to 2766 mol/m3. Furthermore, the diffusion behavior can be divided into three stages during the adsorption–diffusion process. The increasing trend of the D was slow in the early and late stages of the adsorption–diffusion process, while the D obviously increased in the middle stage. The middle period accounted for 16.2–71.7% of the entire process. Moreover, the variation in the D along the radial axis that started at the center of the model and pointed to the model surface can be divided into two regions. The change in the D tended to be horizontal in a region close to the center, whereas in the other region, the D was positively correlated with the distance to the center. The horizontal area decreased as adsorption–diffusion proceeded, and the rate of shrinkage of this area can be described with an exponential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

Notes

  1. * 1 mD = 1 millidarcy = 9.869233×10−16 m2

References

  • An, F., Jia, H., & Feng, Y. (2022). Effect of stress, concentration and temperature on gas diffusion coefficient of coal measured through a direct method and its model application [Article]. Fuel, 312, 122991.

    Article  Google Scholar 

  • Chapman, S., & Cowling, T. G. (1990). The mathematical theory of non-uniform gases: An account of the kinetic theory of viscosity, thermal conduction and diffusion in gases (3rd ed.). Cambridge University Press.

    Google Scholar 

  • Chen, M. J., Kang, Y. L., Zhang, T. S., You, L. J., Li, X. C., Chen, Z. X., Wu, K. L., & Yang, B. (2018). Methane diffusion in shales with multiple pore sizes at supercritical conditions. Chemical Engineering Journal, 334, 1455–1465.

    Article  Google Scholar 

  • Chen, Y. T., Jiang, S., Zhang, D. X., & Liu, C. Y. (2017). An adsorbed gas estimation model for shale gas reservoirs via statistical learning. Applied Energy, 197, 327–341.

    Article  Google Scholar 

  • Chen, Y. D., & Yang, R. T. (1991). Concentration-dependence of surface-diffusion and zeolitic diffusion [note]. Aiche Journal, 37(10), 1579–1582.

    Article  Google Scholar 

  • Crank, J. (1979). The mathematics of diffusion. Clarendon Press. https://books.google.com.hk/books?id=eHANhZwVouYC

  • Cronin, M., Emami-Meybodi, H., & Johns, R. T. (2018). Diffusion-dominated proxy model for solvent injection in ultratight oil reservoirs. SPE Journal, 24(02), 660–680.

    Article  Google Scholar 

  • Curtis, J. B. (2002). Fractured shale-gas systems. Aapg Bulletin, 86(11), 1921–1938.

    Google Scholar 

  • Dang, W., Zhang, J., Nie, H., Wang, F., Tang, X., Wu, N., Chen, Q., Wei, X., & Wang, R. (2020). Isotherms, thermodynamics and kinetics of methane-shale adsorption pair under supercritical condition: Implications for understanding the nature of shale gas adsorption process. Chemical Engineering Journal, 383, 12391.

    Article  Google Scholar 

  • Ghaderi, S. M., Tabatabaie, S. H., Hassanzadeh, H., & Pooladi-Darvish, M. (2011). Estimation of concentration-dependent diffusion coefficient in pressure-decay experiment of heavy oils and bitumen. Fluid Phase Equilibria, 305(2), 132–144.

    Article  Google Scholar 

  • Higashi, K., Ito, H., & Oishi, J. (1963). Surface diffusion phenomena in gaseous diffusion. I. Surface diffusion of pure gas. Nippon Genshiryoku Gakkaishi, 5(10), 846–853.

    Google Scholar 

  • Javadpour, F. (2009). Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone). Journal of Canadian Petroleum Technology, 48(8), 16–21.

    Article  Google Scholar 

  • Li, C., Wang, C., Zhang, S., Yu, J., Kang, J., Wang, Y., & Dai, Y. (2021a). Recent advances in waterless fracturing technology for the petroleum industry: An overview. Journal of Natural Gas Science and Engineering, 92, 103999.

    Article  Google Scholar 

  • Li, J., Li, X. F., Wang, X. Z., Li, Y. Y., Wu, K. L., Shi, J. T., Yang, L., Feng, D., Zhang, T., & Yu, P. L. (2016). Water distribution characteristic and effect on methane adsorption capacity in shale clay. International Journal of Coal Geology, 159, 135–154.

    Article  Google Scholar 

  • Li, X., Chen, S., Wang, Y., Zhang, Y., Wang, Y., Wu, J., Zhang, J., & Khan, J. (2022a). Influence of pore structure particularity and pore water on the occurrence of deep shale gas: Wufeng-Longmaxi Formation, Luzhou Block, Sichuan Basin. Natural Resources Research, 31(3), 1403–1423.

    Article  Google Scholar 

  • Li, Y., Pan, J., Cheng, N., Wang, Z., Zhang, L., & Liu, W. (2022b). Relationship between micropore structure of different coal ranks and methane diffusion. Natural Resources Research, 31(5), 2901–2917.

    Article  Google Scholar 

  • Li, Z., Peng, J., Li, L., Qi, L., & Li, W. (2021b). Novel dynamic multiscale model of apparent diffusion permeability of methane through low-permeability coal seams. Energy & Fuels, 35(9), 7844–7857.

    Article  Google Scholar 

  • Lin, B. Q., & Kuang, Y. M. (2020). Natural gas subsidies in the industrial sector in China: National and regional perspectives. Applied Energy, 260, 114329.

    Article  Google Scholar 

  • Liu, B., Babaei, S., Bai, L., Tian, S., Ghasemzadeh, H., Rashidi, M., & Ostadhassan, M. (2022). A dilemma in calculating ethane absolute adsorption in shale gas reservoirs: A theoretical approach. Chemical Engineering Journal, 450, 138242.

    Article  Google Scholar 

  • Liu, H. H., Mou, J. H., & Cheng, Y. P. (2015). Impact of pore structure on gas adsorption and diffusion dynamics for long-flame coal. Journal of Natural Gas Science and Engineering, 22, 203–213.

    Article  Google Scholar 

  • Liu, T., & Lin, B. Q. (2019). Time-dependent dynamic diffusion processes in coal: Model development and analysis. International Journal of Heat and Mass Transfer, 134, 1–9.

    Article  Google Scholar 

  • Liu, W., Xu, H., Wu, D., Qin, Y., Liu, J., & Zhao, W. (2021). Gases migration behavior of adsorption processes in coal particles: Density gradient model and its experimental validation. Process Safety and Environmental Protection, 152, 264–277.

    Article  Google Scholar 

  • Liu, Z. D., Cheng, Y. P., Dong, J., Jiang, J. Y., Wang, L., & Li, W. (2018). Master role conversion between diffusion and seepage on coalbed methane production: Implications for adjusting suction pressure on extraction borehole. Fuel, 223, 373–384.

    Article  Google Scholar 

  • Liu, Z., & Emami-Meybodi, H. (2021a). Diffusion-based modeling of gas transport in organic-rich ultratight reservoirs. Spe Journal, 26(02), 857–882.

    Article  Google Scholar 

  • Liu, Z. Z., & Emami-Meybodi, H. (2021b). Diffusion-based modeling of gas transport in organic-rich ultratight reservoirs [Article]. Spe Journal, 26(2), 857–882.

    Article  Google Scholar 

  • Liu, Z., & Emami-Meybodi, H. (2022). Apparent diffusion coefficient for adsorption-controlled gas transport in nanoporous media. Chemical Engineering Journal, 450, 138105.

    Article  Google Scholar 

  • Lu, S. Q., Wang, C. F., Li, M. J., Sa, Z. Y., Zhang, Y. L., Liu, J., Wang, H., & Wang, S. C. (2021). Gas time-dependent diffusion in pores of deformed coal particles: Model development and analysis. Fuel, 295, 120566.

    Article  Google Scholar 

  • Lyu, Q., Tan, J. Q., Li, L., Ju, Y. W., Busch, A., Wood, D. A., Ranjith, P. G., Middleton, R., Shu, B., Hu, C. E., Wang, Z. H., & Hu, R. N. (2021). The role of supercritical carbon dioxide for recovery of shale gas and sequestration in gas shale reservoirs. Energy & Environmental Science, 14(8), 4203–4227.

    Article  Google Scholar 

  • Ma, L. J., & Yu, Q. C. (2020). Dynamic behaviors of methane adsorption on partially saturated shales. Journal of Petroleum Science and Engineering, 190, 107071.

    Article  Google Scholar 

  • Ma, L., & Yu, Q. (2022). Experimental investigation into simultaneous adsorption of water vapor and methane onto shales. Journal of Hydrology, 604, 127200.

    Article  Google Scholar 

  • Mianowski, A., & Marecka, A. (2009). The isokinetic effect as related to the activation energy for the gases diffusion in coal at ambient temperatures: Part I. Fick’s diffusion parameter estimated from kinetic curves. Journal of thermal analysis and calorimetry, 95(1), 285–292.

    Article  Google Scholar 

  • Mojid, M. R., Negash, B. M., Abdulelah, H., Jufar, S. R., & Adewumi, B. K. (2021). A state-of-art review on waterless gas shale fracturing technologies. Journal of Petroleum Science and Engineering, 196, 108048.

    Article  Google Scholar 

  • Pillalamarry, M., Harpalani, S., & Liu, S. M. (2011). Gas diffusion behavior of coal and its impact on production from coalbed methane reservoirs. International Journal of Coal Geology, 86(4), 342–348.

    Article  Google Scholar 

  • Pranesh, V. (2018). Subsurface CO2 storage estimation in Bakken tight oil and Eagle Ford shale gas condensate reservoirs by retention mechanism. Fuel, 215, 580–591.

    Article  Google Scholar 

  • Qian, C., Li, X., Zhang, Q., Li, Y., Shen, W., Xing, H., Shu, P., Han, L., Cui, Y., & Huang, Y. (2023). Methane adsorption characteristics under in situ reservoir conditions of the Wufeng-Longmaxi Shale in Southern Sichuan Basin, China: Implications for gas content evaluation. Natural Resources Research, 32(3), 1111–1133.

    Article  Google Scholar 

  • Ren, J., Wang, Z., Li, B., Chen, F., Liu, J., Liu, G., & Song, Z. (2022). Fractal-time-dependent fick diffusion model of coal particles based on desorption-diffusion experiments. Energy & Fuels, 36(12), 6198–6215.

    Article  Google Scholar 

  • Vengosh, A., Jackson, R. B., Warner, N., Darrah, T. H., & Kondash, A. (2014). A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environmental Science & Technology, 48(15), 8334–8348.

    Article  Google Scholar 

  • Wang, J., & Guo, X. (2020). Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere, 258, 127279.

    Article  Google Scholar 

  • Wang, L., Tian, Y., Yu, X. Y., Wang, C., Yao, B. W., Wang, S. H., Winterfeld, P. H., Wang, X., Yang, Z. Z., Wang, Y. H., Cui, J. Y., & Wu, Y. S. (2017). Advances in improved/enhanced oil recovery technologies for tight and shale reservoirs. Fuel, 210, 425–445.

    Article  Google Scholar 

  • Wang, L., Wan, J. M., Tokunaga, T. K., Kim, Y. M., & Yu, Q. C. (2018). Experimental and modeling study of methane adsorption onto partially saturated shales. Water Resources Research, 54(7), 5017–5029.

    Article  Google Scholar 

  • Wang, L., & Yu, Q. C. (2016). The effect of moisture on the methane adsorption capacity of shales: A study case in the eastern Qaidam Basin in China. Journal of Hydrology, 542, 487–505.

    Article  Google Scholar 

  • Wang, Q., Chen, X., Jha, A. N., & Rogers, H. (2014). Natural gas from shale formation—The evolution, evidences and challenges of shale gas revolution in United States. Renewable & Sustainable Energy Reviews, 30, 1–28.

    Article  Google Scholar 

  • Wang, X., Cheng, Y., Zhang, D., Yang, H., Zhou, X., & Jiang, Z. (2021). Experimental study on methane adsorption and time-dependent dynamic diffusion coefficient of intact and tectonic coals: Implications for CO2-enhanced coalbed methane projects. Process Safety and Environmental Protection, 156, 568–580.

    Article  Google Scholar 

  • Wanniarachchi, W. A. M., Ranjith, P. G., & Perera, M. S. A. (2017). Shale gas fracturing using foam-based fracturing fluid: A review. Environmental Earth Sciences, 76(2), 91.

    Article  Google Scholar 

  • Wu, K. L., Li, X. F., Guo, C. H., Wang, C. C., & Chen, Z. X. (2016). A unified model for gas transfer in nanopores of shale-gas reservoirs: Coupling pore diffusion and surface diffusion [Article]. Spe Journal, 21(5), 1583–1611.

    Article  Google Scholar 

  • Wu, S., Jin, Z., & Deng, C. (2019). Molecular simulation of coal-fired plant flue gas competitive adsorption and diffusion on coal. Fuel, 239, 87–96.

    Article  Google Scholar 

  • Wua, K., Li, X., Guo, C., & Chen, Z. (2015). Adsorbed gas surface diffusion and bulk gas transport in nanopores of shale reservoirs with real gas effect-adsorption-mechanical coupling. SPE Reservoir Simulation Symposium, Houston, Texas, USA, 23–25 February

  • Xu, H., Tang, D. Z., Zhao, J. L., Li, S., & Tao, S. (2015). A new laboratory method for accurate measurement of the methane diffusion coefficient and its influencing factors in the coal matrix. Fuel, 158, 239–247.

    Article  Google Scholar 

  • Yang, B., Kang, Y. L., You, L. J., Li, X. C., & Chen, Q. (2016). Measurement of the surface diffusion coefficient for adsorbed gas in the fine mesopores and micropores of shale organic matter. Fuel, 181, 793–804.

    Article  Google Scholar 

  • Yanze, Y., & Clemens, T. (2011). The role of diffusion for non-miscible gas injection into a fractured reservoir. SPE EUROPEC/EAGE Annual Conference and Exhibition, Vienna, Austria, 23-26 May.

  • Yi, M. H., Wang, L., Cheng, Y. P., Wang, C. H., & Hu, B. (2022). Calculation of gas concentration-dependent diffusion coefficient in coal particles: Influencing mechanism of gas pressure and desorption time on diffusion behavior. Fuel, 320, 123973.

    Article  Google Scholar 

  • Zhang, M., Chakraborty, N., Karpyn, Z., Emami-Meybodi, H., & Ayala, L. (2019). Numerical and experimental analysis of diffusion and sorption kinetics effects in Marcellus shale gas transport. SPE Reservoir Simulation Conference, Galveston, Texas, USA, 10–11 April.

  • Zhang, C., & Yu, Q. C. (2016). The effect of water saturation on methane breakthrough pressure: An experimental study on the Carboniferous shales from the eastern Qaidam Basin, China. Journal of Hydrology, 543, 832–848.

    Article  Google Scholar 

  • Zhang, C., & Yu, Q. (2019). Breakthrough pressure and permeability in partially water-saturated shales using methane–carbon dioxide gas mixtures: An experimental study of Carboniferous shales from the eastern Qaidam Basin, China. Aapg Bulletin, 103(2), 273–301.

    Article  Google Scholar 

  • Zhang, L., Liu, C., Liu, Y., Li, Q., Cheng, Q., & Cai, S. (2020). Transport property of methane and ethane in K-Illite nanopores of shale: Insights from molecular dynamic simulations. Energy & Fuels, 34(2), 1710–1719.

    Article  Google Scholar 

  • Zhang, M., Chakraborty, N., Karpyn, Z. T., Emami-Meybodi, H., & Ayala, L. F. (2021). Experimental and numerical study of gas diffusion and sorption kinetics in ultratight rocks. Fuel, 286, 119300.

    Article  Google Scholar 

  • Zhang, W., & Mehrabian, A. (2022). Full coupling of CO2–CH4 transport and sorption with solid deformation in gas shale enhances natural gas recovery and geological CO2 storage capacity. Journal of Natural Gas Science and Engineering, 106, 104736.

    Article  Google Scholar 

  • Zhang, Z., & Yu, Q. (2022a). Dynamic model for the simultaneous adsorption of water vapor and methane on shales. Journal of Natural Gas Science and Engineering, 102, 104578.

    Article  Google Scholar 

  • Zhang, Z., & Yu, Q. (2022b). The effect of water vapor on methane adsorption in the nanopores of shale. Journal of Natural Gas Science and Engineering, 101, 104536.

    Article  Google Scholar 

  • Zhong, Y., She, J. P., Zhang, H., Kuru, E., Yang, B., & Kuang, J. C. (2019). Experimental and numerical analyses of apparent gas diffusion coefficient in gas shales. Fuel, 258, 116123.

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Sciences Foundation of China (Grant Nos. 41877196, U1612441 and 41272387).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingchun Yu.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relations appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ban, W., Yu, Q. Concentration Dependence of the Diffusion Coefficient During Adsorption of Methane into Partially Water-Saturated Crushed Shale. Nat Resour Res 33, 299–319 (2024). https://doi.org/10.1007/s11053-023-10281-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-023-10281-6

Keywords

Navigation