Skip to main content

Advertisement

Log in

Quantitative Classification and Prediction of Diagenetic Facies in Tight Gas Sandstone Reservoirs via Unsupervised and Supervised Machine Learning Models: Ledong Area, Yinggehai Basin

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Tight gas sandstone reservoirs are commonly characterized by complex diagenetic processes, resulting in time-consuming analysis for manual classification and prediction of diagenetic facies types with inherent preference and accuracy limitations. This work explores the feasibility of automatically classifying and predicting diagenetic facies types in tight gas sandstone reservoirs using unsupervised and supervised machine learning models. Firstly, petrophysical and petrological parameters, including porosity, permeability, bulk density, cement content, plane porosity, intergranular volume, and dissolution pore volume were used as input to identify diagenetic facies types automatically through an unsupervised machine learning model based on K-means algorithm. The classified diagenetic facies types exhibited significant diagenetic differences as shown in rock thin sections. Subsequently, with the identified diagenetic facies type as the learning target and logging series data as input, three types of supervised machine learning models were employed to predict the single-well vertical profile of diagenetic facies type distribution. The results indicated that the XGBoost model had optimal performance with the accuracy of 0.87. This work provides a complete automated workflow from basic petrophysical data to complex diagenetic facies profiles based on supervised and unsupervised machine learning models for diagenetic facies type analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

Notes

  1. * 1 mD = 1 millidarcy = 9.869233−16 m2.

References

  • Al-Anazi, A., & Gates, I. (2010a). On the capability of support vector machines to classify lithology from well logs. Natural Resources Research, 19(2), 125–139.

    Article  Google Scholar 

  • Al-Anazi, A., & Gates, I. D. (2010b). A support vector machine algorithm to classify lithofacies and model permeability in heterogeneous reservoirs. Engineering Geology, 114(3–4), 267–277.

    Article  Google Scholar 

  • Ali, A., Sheng-Chang, C., & Shah, M. (2021). Integration of cluster analysis and rock physics for the identification of potential hydrocarbon reservoir. Natural Resources Research, 30(2), 1395–1409.

    Article  Google Scholar 

  • Cao, L., Jiang, T., Wang, Z., Zhang, Y., & Sun, H. (2015). Provenance of Upper Miocene sediments in the Yinggehai and Qiongdongnan basins, northwestern South China Sea: Evidence from REE, heavy minerals and zircon U-Pb ages. Marine Geology, 361, 136–146.

    Article  Google Scholar 

  • Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., & Chen, K. (2015). Xgboost: extreme gradient boosting. R package version 0.4-2, 1(4), 1-4.

  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273–297.

    Google Scholar 

  • Critelli, S., & Nilsen, T. H. (1996). Petrology and diagenesis of the Eocene Butano sandstone, La Honda basin, California. The Journal of Geology, 104(3), 295–315.

    Article  Google Scholar 

  • Dev, V. A., & Eden, M. R. (2019). Gradient boosted decision trees for lithology classification. In S. G. Muñoz, C. D. Laird, & M. J. Realff (Eds.), Computer aided chemical engineering (Vol. 47, pp. 113–118). Elsevier.

    Google Scholar 

  • Di Giuseppe, M. G., Troiano, A., Patella, D., Piochi, M., & Carlino, S. (2018). A geophysical k-means cluster analysis of the Solfatara-Pisciarelli volcano-geothermal system, Campi Flegrei (Naples, Italy). Journal of Applied Geophysics, 156, 44–54.

    Article  Google Scholar 

  • Garzanti, E. (2019). Petrographic classification of sand and sandstone. Earth-Science Reviews, 192, 545–563.

    Article  Google Scholar 

  • Grigsby, J. D., & Langford, R. P. (1996). Effects of diagenesis on enhanced-resolution bulk density logs in Tertiary Gulf Coast sandstones: an example from the Lower Vicksburg Formation, McAllen Ranch field, south Texas. AAPG Bulletin, 80(11), 1801–1819.

    Google Scholar 

  • Huang, B., Xiao, X., Hu, Z., & Yi, P. (2005). Geochemistry and episodic accumulation of natural gases from the Ledong gas field in the Yinggehai Basin, offshore South China Sea. Organic Geochemistry, 36(12), 1689–1702.

    Article  Google Scholar 

  • Javadi, S., Hashemy, S. M., Mohammadi, K., Howard, K. W. F., & Neshat, A. (2017). Classification of aquifer vulnerability using K-means cluster analysis. Journal of Hydrology, 549, 27–37.

    Article  Google Scholar 

  • Jiang, T., Cao, L., Xie, X., Wang, Z., Li, X., Zhang, Y., & Sun, H. (2015). Insights from heavy minerals and zircon U-Pb ages into the middle Miocene-Pliocene provenance evolution of the Yinggehai Basin, northwestern South China Sea. Sedimentary Geology, 327, 32–42.

    Article  Google Scholar 

  • Lai, J., Fan, X., Liu, B., Pang, X., Zhu, S., Xie, W., & Wang, G. (2020). Qualitative and quantitative prediction of diagenetic facies via well logs. Marine and Petroleum Geology, 120, 104486.

    Article  Google Scholar 

  • Lai, J., Wang, G., Wang, S., Cao, J., Li, M., Pang, X., & Qin, Z. (2018). Review of diagenetic facies in tight sandstones: Diagenesis, diagenetic minerals, and prediction via well logs. Earth-Science Reviews, 185, 234–258.

    Article  Google Scholar 

  • Li, S., Han, R., Du, Y., Liu, P., & Bie, H. (2020). Quantitative characterization of diagenetic reservoir facies of the Karamay alluvial fan in the Junggar Basin, western China. Journal of Petroleum Science and Engineering. 188, 106921.

  • Li, Y., Chang, X., Yin, W., Wang, G., Zhang, J., Shi, B., & Mao, L. (2019). Quantitative identification of diagenetic facies and controls on reservoir quality for tight sandstones: A case study of the Triassic Chang 9 oil layer, Zhenjing area, Ordos Basin. Marine and Petroleum Geology, 102, 680–694.

    Article  Google Scholar 

  • Li, Z., Zhang, L., Yuan, W., Chen, X., Zhang, L., & Li, M. (2022). Logging identification for diagenetic facies of tight sandstone reservoirs: A case study in the Lower Jurassic Ahe Formation, Kuqa Depression of Tarim Basin. Marine and Petroleum Geology, 139, 105601.

    Article  Google Scholar 

  • Lu, Y., Liu, K., & Wang, Y. (2020). Identification of diagenetic facies in low-permeability sandstone reservoirs based on self-organizing-map neural network algorithm. Paper presented at the International Petroleum Technology Conference.

  • Luo, C., Chen, X., Shi, Z., Chen, J., Wu, T., Shi, C., & Yang, T. (2022). Effects of precipitation and dissolution of carbonate cements on the quality of deeply buried high-temperature and overpressured clastic reservoirs: XD 10 block, Yinggehai Basin, South China Sea. Marine and Petroleum Geology, 139, 105591.

    Article  Google Scholar 

  • MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Paper presented at the Proceedings of the fifth Berkeley symposium on mathematical statistics and probability.

  • Naghibi, S. A., Hashemi, H., Berndtsson, R., & Lee, S. (2020). Application of extreme gradient boosting and parallel random forest algorithms for assessing groundwater spring potential using DEM-derived factors. Journal of Hydrology, 589, 125197.

    Article  Google Scholar 

  • Najafzadeh, M., & Niazmardi, S. (2021). A novel multiple-kernel support vector regression algorithm for estimation of water quality parameters. Natural Resources Research, 30(5), 3761–3775.

    Article  Google Scholar 

  • Oyedere, M., & Gray, K. (2020). ROP and TOB optimization using machine learning classification algorithms. Journal of Natural Gas Science and Engineering, 77, 103230.

    Article  Google Scholar 

  • Troccoli, E. B., Cerqueira, A. G., Lemos, J. B., & Holz, M. (2022). K-means clustering using principal component analysis to automate label organization in multi-attribute seismic facies analysis. Journal of Applied Geophysics, 198, 104555.

    Article  Google Scholar 

  • Van Arkel, Z., & Kaleita, A. L. (2014). Identifying sampling locations for field-scale soil moisture estimation using K-means clustering. Water Resources Research, 50(8), 7050–7057.

    Article  Google Scholar 

  • Wang, J., Cao, Y., Liu, K., Liu, J., & Kashif, M. (2017). Identification of sedimentary-diagenetic facies and reservoir porosity and permeability prediction: An example from the Eocene beach-bar sandstone in the Dongying Depression, China. Marine and Petroleum Geology, 82, 69–84.

    Article  Google Scholar 

  • Wang, S., Liu, S., Zhang, J., Che, X., Yuan, Y., Wang, Z., & Kong, D. (2020). A new method of diesel fuel brands identification: SMOTE oversampling combined with XGBoost ensemble learning. Fuel, 282, 118848.

    Article  Google Scholar 

  • Wang, W., Lin, C., Zhang, X., Dong, C., Ren, L., & Lin, J. (2022). Discussion of seismic diagenetic facies of deep reservoir in the East China Sea Basin. Journal of Petroleum Science and Engineering, 208, 109352.

    Article  Google Scholar 

  • Wang, Y., & Lu, Y. (2021). Diagenetic facies prediction using a LDA-assisted SSOM method for the Eocene beach-bar sandstones of Dongying Depression, East China. Journal of Petroleum Science and Engineering, 196, 108040.

    Article  Google Scholar 

  • Wang, Z., Xian, B., Liu, J., Fan, C., Li, H., Wang, J., & Liu, J. (2021). Large-scale turbidite systems of a semi-enclosed shelf sea: The upper Miocene of Eastern Yinggehai Basin, South China Sea. Sedimentary Geology, 425, 106006.

    Article  Google Scholar 

  • Wu, D., Liu, S., Chen, H., Lin, L., Yu, Y., Xu, C., & Pan, B. (2020). Investigation and prediction of diagenetic facies using well logs in tight gas reservoirs: Evidences from the Xu-2 member in the Xinchang structural belt of the western Sichuan Basin, western China. Journal of Petroleum Science and Engineering, 192, 107326.

    Article  Google Scholar 

  • Xiong, N., Qiu, H., & Niu, F. (2021). Data-driven velocity model evaluation using K-means clustering. Geophysical Research Letters, 48(23), 2021gl096040.

    Article  Google Scholar 

  • Yang, J., & Huang, B. (2019). Origin and migration model of natural gas in L gas field, eastern slope of Yinggehai Sag, China. Petroleum Exploration and Development, 46(3), 471–481.

    Article  Google Scholar 

  • Yao, Y., Guo, S., Zhu, H., Huang, Y., Liu, H., & Wang, X. (2021). Source-to-sink characteristics of the channelized submarine fan system of the Huangliu formation in the Dongfang block, Yinggehai basin, south China sea. Journal of Petroleum Science and Engineering, 206, 109009.

    Article  Google Scholar 

  • Yu, Z., Wang, Z., Zeng, F., Song, P., Baffour, B. A., Wang, P., & Li, L. (2021). Volcanic lithology identification based on parameter-optimized GBDT algorithm: A case study in the Jilin Oilfield, Songliao Basin, NE China. Journal of Applied Geophysics, 194, 104443.

    Article  Google Scholar 

  • Zhang, J., Sun, Y., Shang, L., Feng, Q., Gong, L., & Wu, K. (2020). A unified intelligent model for estimating the (gas + n-alkane) interfacial tension based on the eXtreme gradient boosting (XGBoost) trees. Fuel, 282, 118783.

    Article  Google Scholar 

  • Zhong, R., Johnson, R., & Chen, Z. (2020). Generating pseudo density log from drilling and logging-while-drilling data using extreme gradient boosting (XGBoost). International Journal of Coal Geology, 220, 103416.

    Article  Google Scholar 

  • Zhou, K., Zhang, J., Ren, Y., Huang, Z., & Zhao, L. (2020). A gradient boosting decision tree algorithm combining synthetic minority oversampling technique for lithology identification. Geophysics, 85(4), WA147–WA158.

    Article  Google Scholar 

  • Zhou, X., Zhang, C., Zhang, Z., Zhang, R., Zhu, L., & Zhang, C. (2019). A saturation evaluation method in tight gas sandstones based on diagenetic facies. Marine and Petroleum Geology, 107, 310–325.

    Article  Google Scholar 

  • Zou, C., Tao, S., Zhou, H., Zhang, X., He, D., Zhou, C., & Yang, H. (2008). Genesis, classification, and evaluation method of diagenetic facies. Petroleum Exploration and Development, 35(5), 526–540.

    Article  Google Scholar 

  • Zou, Y., Chen, Y., & Deng, H. (2021). Gradient boosting decision tree for lithology identification with well logs: A case study of Zhaoxian Gold Deposit, Shandong Peninsula, China. Natural Resources Research, 30(5), 3197–3217.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 42002171), Joint Funds of the National Natural Science Foundation of China (No. U19B2007), China Postdoctoral Science Foundation (and Special Foundation) (Nos. 2020TQ0299, 2020M682520), and Postdoctoral Innovation Science Foundation of Hubei Province of China. Grateful acknowledgment is extended to the China Scholarship Council for funding Chen's research. Zhanjiang Branch of CNOOC is appreciated for the support of experiments and samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix

Appendix

Parameter Setting of K-Means Clustering Model

Parameter setting of K-means clustering model: Algorithm = auto, copy_x = True, init = k-means +  + , max_iter = 300, n_init = 10, n_jobs = deprecated, precompute_distances = deprecated, random_state = 42, tol = 0.0001, verbose = 0.

Parameter Setting of SVM Model

Parameter setting of SVM model: C = 1.0, cache_size = 200, class_weight = None, coef0 = 0.0, decision_function_shape = 'ovr', degree = 3, gamma = 'auto', kernel = 'linear', max_iter = − 1, probability = False, random_state = 2, shrinking = True, tol = 0.001, verbose = False.

Parameter Setting of GBDT Model

Parameter setting of GBDT model: Loss = 'deviance', learning_rate = 0.1, n_estimators = 160, subsample = 1, min_samples_split = 2, min_samples_leaf = 1, max_depth = 3, init = None, random_state = 2, max_features = None, verbose = 0, max_leaf_nodes = None, warm_start = False.

Parameter Setting of XGBoost Model

Parameter setting of XGBoost model: max_depth = 8, eval_metric = ['logloss','auc','error'], learning_rate = 0.1, n_estimators = 200, objective = 'multi: softmax', nthread = − 1, gamma = 0, min_child_weight = 1, max_delta_step = 0, subsample = 0.5, colsample_bytree = 0.8, colsample_bylevel = 1, reg_alpha = 0, eg_lambda = 1, seed = 1440.

Petrological and Petrophysical Parameters and Calculated Diagenetic Strength of Samples

See Table 9.

Table 9 Petrological parameters, petrophysical parameters, and calculated diagenetic strength (partial)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Chen, X., Chen, W. et al. Quantitative Classification and Prediction of Diagenetic Facies in Tight Gas Sandstone Reservoirs via Unsupervised and Supervised Machine Learning Models: Ledong Area, Yinggehai Basin. Nat Resour Res 32, 2685–2710 (2023). https://doi.org/10.1007/s11053-023-10252-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-023-10252-x

Keywords

Navigation