Skip to main content

Advertisement

Log in

Deep Vector Exploration via Alteration Footprints and Thermal Infrared Scalars for the Weilasituo Magmatic–Hydrothermal Li–Sn Polymetallic Deposit, Inner Mongolia, NE China

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The Weilasituo Li–Sn polymetallic deposits exhibit spatial and genetic relationships with magmatic–hydrothermal alteration, resulting in distinguishable mineral zonation patterns across the different metallic orebodies. The mineral zonation of breccia, quartz vein, and quartz porphyry orebodies are distinguished efficiently by regularly spaced samples analyzed by shortwave infrared and thermal infrared (TIR) spectroscopy techniques. The method provides semiquantitative abundance estimates of the mineralogy and allows the reliable recognition of diagnostic alteration as well as mineralization-related alteration footprints from detailed mineral and geochemical ternary diagrams. The alteration footprints are the result of a sequence formation of albite, topaz, and phengite alteration in weakly acidic and high-temperature ore-forming environments, followed by muscovite alteration, chlorite alteration, and local calcareous plagioclase alteration in acidic and low-temperature ore-forming environments. Quartz, topaz, and phengite are predominantly associated with the economic Li–Sn mineralization. Likewise, the TIR scalars W9300 of quartz-bearing samples and TIR scalars H9660/H9920 and D9800 of plagioclase-bearing samples at Weilasituo follow some specific rules concerning mineralization types: (1) for porphyry Sn ores, D9800 is > 0.13; (2) for breccia Li–Rb orebody, W9300 within 9450–9600 nm and H9660/H9920 is > 15; (3) for quartz vein Sn orebodies, H9660/H9920 within 5–15 nm and W9300 within 9050–9250 nm; (4) for quartz vein sulfide orebodies, H9660/H9920 is < 2, and its W9300 within 9250–9350 nm or 9850–9900 nm. Specifically, the combination of mineralogical alteration footprints with TIR scalars obtained from The Spectral Geologist software (TSGTM) has the potential to direct a program of vectoring exploration toward Li–Sn-polymetallic orebodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  • Arne, D., House, E., Pontual, S., & Huntington, J. (2016). Hyperspectral interpretation of selected drill cores from orogenic gold deposits in central Victoria, Australia. Australian Journal of Earth Sciences, 63(8), 1003–1025. https://doi.org/10.1080/08120099.2016.1223171

    Article  Google Scholar 

  • Barker, R. D., Barker, S. L. L., Cracknell, M. J., Stock, E. D., & Holmes, G. (2021). Quantitative mineral mapping of drill core surfaces II: Long-wave infrared mineral characterization using µXRF and machine learning. Economic Geology, 116(4), 821–836. https://doi.org/10.5382/econgeo.4804

    Article  Google Scholar 

  • Byrnes, J. M., Ramsey, M. S., King, P. L., & Lee, R. J. (2007). Thermal infrared reflectance and emission spectroscopy of quartzofeldspathic glasses. Geophysical Research Letters, 34(1), 1–5. https://doi.org/10.1029/2006GL027893

    Article  Google Scholar 

  • Clark, R. N., Swayze, G. A., Livo, K. E., Kokaly, R. F., Sutley, S. J., Dalton, J. B., McDougal, R. R., & Gent, C. A. (2003). Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems. Journal of Geophysical Research. https://doi.org/10.1029/2002je001847

    Article  Google Scholar 

  • Coulter, D. W., Harris, P. D., Wickert, L. M., & Zhou, X. (2017). Advances in spectral geology and remote sensing: 2008–2017. In Proceedings of exploration 17: Sixth decennial international conference on mineral exploration (pp. 23–50).

  • Cudahy, T., Okada, K., Yamato, Y., Huntington, J., & Hackwell, J. (2000). Mapping skarn alteration mineralogy at Yering-ton, Nevada, using airborne hyperspectral TIR SEBASS imaging data. In ERIM proceedings of the 14th international conference on applied geologic remote sensing (pp. 70–79).

  • Cudahy, T. J., Wilson, J., Hewson, R., Linton, P., Harris, P., Sears, M., Okada, K., & Hackwell, J. A. (2001). Mapping porphyry-skarn alteration at Yerington, Nevada, using airborne hyperspectral VNIR-SWIR-TIR imaging data. In International geoscience and remote sensing symposium (IGARSS) (pp. 631–633). https://doi.org/10.1109/igarss.2001.976573

  • Cudahy, T., Hewson, R., Caccetta, M., Roache, A., Whitbourn, L., Connor, P., Coward, D., Mason, P., Yang, K., Huntington, J., & Quigley, M. (2009). Drill core logging of plagioclase feldspar composition and other minerals associated with Archean gold mineralization at Kambalda, Western Australia, using a bidirectional thermal infrared reflectance system. Remote Sensing and Spectral Geology, 1, 223–235. https://doi.org/10.5382/REV.16.17

    Article  Google Scholar 

  • Dai, J., Zhao, L., Jiang, Q., Wang, H., & Liu, T. (2020). Review of thermal-infrared spectroscopy applied in geological ore exploration (in Chinese with English abstract). Acta Geologica Sinica, 94(8), 2520–2533. https://doi.org/10.19762/j.cnki.dizhixuebao.202017

    Article  Google Scholar 

  • Dai, J., Zhao, L., Lin, B., Tang, P., & Fu, M. (2023). Thermal infrared spectroscopy studies on skarn minerals for exploration of the Jiama Cu–Mo deposit, Tibet, China. Ore Geology Reviews. https://doi.org/10.1016/j.oregeorev.2023.105437

    Article  Google Scholar 

  • Duke, E. F. (1994). Near infrared spectra of muscovite, Tschermak substitution, and metamorphic reaction progress: Implications for remote sensing. Geology, 22(7), 621–624. https://doi.org/10.1130/0091-7613(1994)022%3c0621:NISOMT%3e2.3.CO;2

    Article  Google Scholar 

  • Feng, Y., Xiao, B., Li, R., Deng, C., Han, J., Wu, C., Li, G., Shi, H., & Lai, C. (2019). Alteration mapping with short wavelength infrared (SWIR) spectroscopy on Xiaokelehe porphyry Cu–Mo deposit in the Great Xing’an Range, NE China: Metallogenic and exploration implications. Ore Geology Reviews, 112(2), 103062. https://doi.org/10.1016/j.oregeorev.2019.103062

    Article  Google Scholar 

  • Gao, X., Zhou, Z., Breiter, K., Ouyang, H., & Liu, J. (2019). Ore-formation mechanism of the Weilasituo tin–polymetallic deposit, NE China: Constraints from bulk-rock and mica chemistry, He–Ar isotopes, and Re–Os dating. Ore Geology Reviews, 109(September 2018), 163–183. https://doi.org/10.1016/j.oregeorev.2019.04.007

    Article  Google Scholar 

  • Green, D., & Schodlok, M. (2016). Characterisation of carbonate minerals from hyperspectral TIR scanning using features at 14 000 and 11 300 nm. Australian Journal of Earth Sciences, 63(8), 951–957. https://doi.org/10.1080/08120099.2016.1225601

    Article  Google Scholar 

  • Guo, N., Huang, Y. R., Zheng, L., Tang, N., Fu, Y., & Wang, C. (2017). Alteration zoning and prospecting model of epithermal deposit revealed by shortwave infrared technique: A case study of Tiegelongnan and Sinongduo deposits (in Chinese with English abstract). Acta Geoscientica Sinica, 38(5), 767–778. https://doi.org/10.3975/cagsb.2017.05.16

    Article  Google Scholar 

  • Guo, N., Thomas, C., Tang, J., & Tong, Q. (2019). Mapping white mica alteration associated with the Jiama porphyry-skarn Cu deposit, central Tibet using field SWIR spectrometry. Ore Geology Reviews, 108, 147–157. https://doi.org/10.1016/j.oregeorev.2017.07.027

    Article  Google Scholar 

  • Halley, S., Dilles, J. H., & Tosdal, R. M. (2015). Footprints: Hydrothermal alteration and geochemical dispersion around porphyry copper deposits. SEG Discovery, 100, 1–17. https://doi.org/10.5382/segnews.2015-100.fea

    Article  Google Scholar 

  • Han, J., Chu, G., Chen, H., Hollings, P., Sun, S., & Chen, M. (2018). Hydrothermal alteration and short wavelength infrared (SWIR) characteristics of the Tongshankou porphyry-skarn Cu–Mo deposit, Yangtze craton, Eastern China. Ore Geology Reviews, 101, 143–164. https://doi.org/10.1016/j.oregeorev.2018.07.018

    Article  Google Scholar 

  • Harraden, C. L., McNulty, B. A., Gregory, M. J., & Lang, J. R. (2013). Shortwave infrared spectral analysis of hydrothermal alteration associated with the Pebble porphyry copper-gold-molybdenum deposit, Iliamna, Alaska. Economic Geology, 108(3), 483–494. https://doi.org/10.2113/econgeo.108.3.483

    Article  Google Scholar 

  • Hecker, C., Dilles, J. H., Van Der Meijde, M., & Van Der Meer, F. D. (2012). Thermal infrared spectroscopy and partial least squares regression to determine mineral modes of granitoid rocks. Geochemistry, Geophysics, Geosystems, 13(3), 1–15. https://doi.org/10.1029/2011GC004004

    Article  Google Scholar 

  • Hecker, C., van der Meijde, M., & van der Meer, F. D. (2010). Thermal infrared spectroscopy on feldspars—Successes, limitations and their implications for remote sensing. Earth-Science Reviews, 103(1–2), 60–70. https://doi.org/10.1016/j.earscirev.2010.07.005

    Article  Google Scholar 

  • Huang, Y. R., Guo, N., Tang, J. X., Shi, W. X., & Ran, F. Q. (2021). Garnet characteristics associated with jiama porphyry-skarn cu deposit 1# skarn orebody, Tibet, using thermal infrared spectroscopy. Minerals, 11(1), 1–20. https://doi.org/10.3390/min11010005

    Article  Google Scholar 

  • Hunt, J. M., Wisherd, M. P., & Bonham, L. C. (1950). Infrared absorption spectra of minerals and other inorganic compounds. Analytical Chemistry, 22(12), 1478–1497. https://doi.org/10.1021/ac60048a006

    Article  Google Scholar 

  • Huntington, J. F., Mauger, A. J., Skirrow, R. G., Bastrakov, E. N., Connor, P., Mason, P., Keeling, J. L., Coward, D. A., Berman, M., Phillips, R., & Whitbourn, L. B. (2006). Automated mineralogical core logging at the Emmie Bluff iron oxide–copper–gold prospect. MESA Journal, 41(April), 38–44.

    Google Scholar 

  • Jin, X., Wang, G., Tang, P., Hu, C., Liu, Y., & Zhang, S. (2020). 3D geological modelling and uncertainty analysis for 3D targeting in Shanggong gold deposit (China). Journal of Geochemical Exploration, 210(November 2019), 106442. https://doi.org/10.1016/j.gexplo.2019.106442

    Article  Google Scholar 

  • Lampinen, H. M., Laukamp, C., Occhipinti, S. A., & Hardy, L. (2019). Mineral footprints of the paleoproterozoic sediment-hosted Abra Pb–Zn–Cu–Au deposit Capricorn Orogen, Western Australia. Ore Geology Reviews, 104(October 2018), 436–461. https://doi.org/10.1016/j.oregeorev.2018.11.004

    Article  Google Scholar 

  • Lampinen, H. M., Laukamp, C., Occhipinti, S. A., Metelka, V., & Spinks, S. C. (2017). Delineating alteration footprints from field and ASTER SWIR spectra, geochemistry, and gamma-ray spectrometry above regolith-covered base metal deposits—An example from Abra, Western Australia. Economic Geology, 112(8), 1977–2003. https://doi.org/10.5382/econgeo.2017.4537

    Article  Google Scholar 

  • Laukamp, C., LeGras, M., Montenegro, V., Windle, S., & McFarlane, A. (2022). Grandite-based resource characterization of the skarn-hosted Cu–Zn–Mo deposit of Antamina, Peru. Mineralium Deposita, 57(1), 107–128. https://doi.org/10.1007/s00126-021-01047-2

    Article  Google Scholar 

  • Laukamp, C., Rodger, A., LeGras, M., Lampinen, H., Lau, I. C., Pejcic, B., Stromberg, J., Francis, N., & Ramanaidou, E. (2021). Mineral physicochemistry underlying feature-based extraction of mineral abundance and composition from shortwave, mid and thermal infrared reflectance spectra. Minerals. https://doi.org/10.3390/min11040347

    Article  Google Scholar 

  • Li, B. Y., Fu, X., & Wang, X. (2018a). The exploration report of Weilasituo Li–Sn polymetallic mine in Keshiketeng, Inner Mongolia. Inner Mongolia Weilasituo Mining Co., Ltd.

    Google Scholar 

  • Li, B. Y., Jiang, D. W., Fu, X., Wang, L., Gao, S. Q., Fan, Z. Y., Wang, K. X., & Huge, J. T. (2018b). Geological characteristics and prospecting significance of Weilasituo Li polymetallic deposit, Inner Mongolia (in Chinese with English abstract). Mineral Exploration, 9(6), 1185–1191.

    Google Scholar 

  • Liu, R., Wu, G., Li, T., & Chen, G. (2018). LA-ICP-MS cassiterite and zircon U–Pb ages of the Weilasituo tin-polymetallic deposit in the southern Great Xing’an Range and their geological significance(in Chinese with English abstract). Earth Science Frontiers, 25(5), 183–201.

    Google Scholar 

  • Liu, Y., Fan, Z., Jiang, H., Nie, F., Jiang, S., Ding, C., & Wang, F. (2014). Genesis of the Weilasituo-Bairendaba porphyry-hydrothermal vein type system in Inner Mongolia, China (in Chinese with English abstract). Acta Geologica Sinica, 88(12), 2373–2385.

    Google Scholar 

  • Liu, Y., Jiang, S., & Bagas, L. (2016). The genesis of metal zonation in the Weilasituo and Bairendaba Ag–Zn–Pb–Cu-(Sn–W) deposits in the shallow part of a porphyry Sn–W–Rb system, Inner Mongolia, China. Ore Geology Reviews, 75, 150–173. https://doi.org/10.1016/j.oregeorev.2015.12.006

    Article  Google Scholar 

  • Mauger, A. J., Gordon, G. A., Reid, A., & Kitto, J. (2012). Quantifying downhole silicate mineralogy—HyLogger with thermal infrared. ASEG Extended Abstracts, 2012(1), 1–6. https://doi.org/10.1071/aseg2012ab347

    Article  Google Scholar 

  • Miller, F. A., & Wilkins, C. H. (1952). Infrared spectra and characteristic frequencies of inorganic ions—Their use in qualitative analysis. Analytical Chemistry, 24, 1253–1294. https://doi.org/10.7498/aps.58.3665

    Article  Google Scholar 

  • Ninomiya, Y. (1995). Quantitative estimation of SiO2 content in igneous rocks using thermal infrared spectra with a neural network approach. IEEE Transactions on Geoscience and Remote Sensing, 33(3), 684–691. https://doi.org/10.1109/36.387583

    Article  Google Scholar 

  • Ouyang, H., Mao, J., Santosh, M., Wu, Y., Hou, L., & Wang, X. (2014). The early cretaceous Weilasituo Zn–Cu–Ag vein deposit in the southern Great Xing’an Range, northeast China: Fluid inclusions, H, O, S, Pb isotope geochemistry and genetic implications. Ore Geology Reviews, 56, 503–515. https://doi.org/10.1016/j.oregeorev.2013.06.015

    Article  Google Scholar 

  • Pontual, S., Merry, N., & Gamson, P. (2008). Spectral interpretation field manual: Geologically-Based Spectral Analysis Guides for Mineral Exploration (G-MEX), Vol. 1. AusSpec International Pty, New South Wales, Australia. https://katalog.ub.tu-freiberg.de/Record/0-1404618287/Holdings

  • Ren, H., Zheng, Y., Wu, S., Zhang, X., Ye, J., & Chen, X. (2020). Short-wavelength infrared characteristics and indications of exploration of the Demingding copper-molybdenum deposit in Tibet (in Chinese with English abstract). Earth Science, 45(3), 930–944. https://doi.org/10.3799/dqkx.2019.983

    Article  Google Scholar 

  • Salisbury, J. W., & Walter, L. S. (1987). Mid-infrared (2.1-25 um) spectra of minerals (1st ed.). USGS Open-File Report, 390.

  • Schlegel, T. U., Birchall, R., Shelton, T. D., & Austin, J. R. (2022). Mapping the mineral zonation at the ernest henry iron oxide copper-gold deposit: Vectoring to cu-au mineralization using modal mineralogy. Economic Geology, 117(2), 485–494. https://doi.org/10.5382/ECONGEO.4915

    Article  Google Scholar 

  • Sun, Y. (2018). Characteristics and evolution of ore-forming fluids and Mineralization model for the Weilasituo tin polymetallic deposit, Inner Mongolia. Master 64. China University of Geoscience (Beijing). https://kns.cnki.net/kcms/detail/detail.aspx?FileName=1018009635.nh&DbName=CMFD2018

  • Sun, Y., Hong, X., Zhu, X., Liu, X., & Jiang, B. (2017). Characteristics of fluid inclusion and its geological significance in the Weilasituo tin poljymetallic deposit, Inner Mongolia (in Chinese with English abstract). Mineral Exploration, 8(6), 1044–1053. https://doi.org/10.3969/j.issn.1674-7801.2017.06.013

    Article  Google Scholar 

  • Tappert, M. C., Rivard, B., Fulop, A., Rogge, D., Feng, J., Tappert, R., & Stalder, R. (2015). Characterizing kimberlite dilution by crustal rocks at the Snap Lake diamond mine (Northwest Territories, Canada) using SWIR (1.90–2.36 μm) and LWIR (8.1–11.1 μm) hyperspectral imagery collected from drill core. Economic Geology, 110(6), 1375–1387. https://doi.org/10.2113/econgeo.110.6.1375

    Article  Google Scholar 

  • Tappert, M., Rivard, B., Giles, D., Tappert, R., & Mauger, A. (2011). Automated drill core logging using visible and near-infrared reflectance spectroscopy: A case study from the Olympic Dam Iocg deposit, South Australia. Economic Geology, 106(2), 289–296. https://doi.org/10.2113/econgeo.106.2.289

    Article  Google Scholar 

  • Van der Meer, F. D., van der Werff, H. M. A., van Ruitenbeek, F. J. A., Hecker, C. A., Bakker, W. H., Noomen, M. F., et al. (2012). Multi- and hyperspectral geologic remote sensing: A review. International Journal of Applied Earth Observation and Geoinformation, 14(1), 112–128. https://doi.org/10.1016/j.jag.2011.08.002

    Article  Google Scholar 

  • Vincent, R. K., Rowan, L. C., Gillespie, R. E., & Knapp, C. (1975). Thermal-infrared spectra and chemical analyses of twenty-six igneous rock samples. Remote Sensing of Environment, 4(C), 199–209. https://doi.org/10.1016/0034-4257(75)90016-4

    Article  Google Scholar 

  • Walter, L. S., & Salisbury, J. W. (1989). Spectral characterization of igneous rocks in the 8- to 12-μm region. Journal of Geophysical Research, 94(B7), 9203–9213. https://doi.org/10.1029/JB094iB07p09203

    Article  Google Scholar 

  • Wang, F., Bagas, L., Jiang, S., & Liu, Y. (2017). Geological, geochemical, and geochronological characteristics of Weilasituo Sn-polymetal deposit, Inner Mongolia, China. Ore Geology Reviews, 80, 1206–1229. https://doi.org/10.1016/j.oregeorev.2016.09.021

    Article  Google Scholar 

  • Wang, L., Percival, J. B., Hedenquist, J. W., Hattori, K., & Qin, K. (2021). Alteration mineralogy of the zhengguang epithermal Au–Zn deposit, Northeast China: Interpretation of shortwave infrared analyses during mineral exploration and assessment. Economic Geology, 116(2), 389–406. https://doi.org/10.5382/ECONGEO.4792

    Article  Google Scholar 

  • Xiao, B., Chu, G., & Feng, Y. (2021). Short-wave infrared (SWIR) spectral and geochemical characteristics of hydrothermal alteration minerals in the Laowangou Au deposit: Implications for ore genesis and vectoring. Ore Geology Reviews, 139, 104463. https://doi.org/10.1016/j.oregeorev.2021.104463

    Article  Google Scholar 

  • Xie, B., Mao, W., Peng, B., Zhou, S., & Wu, L. (2022). Thermal-infrared spectral feature analysis and spectral identification of monzonite using feature-oriented principal component analysis. Minerals. https://doi.org/10.3390/min12050508

    Article  Google Scholar 

  • Xiong, X., Zhu, J., Rao, B., & Lai, Y. (1999). Phase relations in the albite granite-H2O-HF system and the genesis of topaz-bearing granitic rocks. Geological Review, 45(3), 313–322.

    Google Scholar 

  • Yang, K., Huntington, J. F., Gemmell, J. B., & Scott, K. M. (2011). Variations in composition and abundance of white mica in the hydrothermal alteration system at Hellyer, Tasmania, as revealed by infrared reflectance spectroscopy. Journal of Geochemical Exploration, 108(2), 143–156. https://doi.org/10.1016/j.gexplo.2011.01.001

    Article  Google Scholar 

  • Yao, Y., Zhu, Y., Liu, J., & Li, W. (2021). Footprints of ore fluid pathway and implications to mineral exploration in the Shihu Gold Deposit, North China: Evidence from short wave infrared spectroscopy of illitic alteration rocks. Journal of Geochemical Exploration, 229(June), 106833. https://doi.org/10.1016/j.gexplo.2021.106833

    Article  Google Scholar 

  • Zhai, D., Liu, J., & Li, J. (2016). Geochronological study of Weilasituo porphyry type Sn deposit in Ineer Mongolia and its Geological significance (in Chinese with English abstract). Mineral Deposits, 35(5), 1011–1022. https://doi.org/10.16111/j.0258-7106.2016.05.009

    Article  Google Scholar 

  • Zhang, S., Chen, H., Zhang, X., Zhang, W., Xu, C., Han, J., & Chen, M. (2017). Application of short wavelength infrared (SWIR) technique to exploration of skarn deposit: A case study of Tonglvshan Cu-Fe-Au deposit, Edongnan (southeast Hubei) ore concentration area (in Chinese with English abstract). Mineral Deposits, 36(6), 1263–1288. https://doi.org/10.16111/j.0258_7106.2017.06.002

    Article  Google Scholar 

  • Zhang, S., Chu, G., Cheng, J., Zhang, Y., Tian, J., Li, J., Sun, S., & Wei, K. (2020). Short wavelength infrared (SWIR) spectroscopy of phyllosilicate minerals from the Tonglushan Cu–Au–Fe deposit, Eastern China: New exploration indicators for concealed skarn orebodies. Ore Geology Reviews, 122(March), 103516. https://doi.org/10.1016/j.oregeorev.2020.103516

    Article  Google Scholar 

  • Zhou, Y., Li, L., Yang, K., Xing, G., Xiao, W., Zhang, H., Xiu, L., Yao, Z., & Xie, Z. (2020). Hydrothermal alteration characteristics of the Chating Cu–Au deposit in Xuancheng City, Anhui Province, China: Significance of sericite alteration for Cu–Au exploration. Ore Geology Reviews, 127(October), 103844. https://doi.org/10.1016/j.oregeorev.2020.103844

    Article  Google Scholar 

  • Zhou, Z. H., Gao, X., Ouyang, H. G., Liu, J., & Zhao, J. Q. (2019). Formation mechanism and intrinsic genetic relationship between tin-tungsten-lithium mineralization and peripheral lead-zinc-silver-copper mineralization: Exemplified by Weilasituo tin-tungsten-lithium polymetallic deposit, Inner Mongolia (in Chinese with English abstract). Mineral Deposits, 38(5), 1004–1022. https://doi.org/10.16111/j.0258-7106.2019.05.004

    Article  Google Scholar 

  • Zuo, L., Wang, G., Carranza, E. J. M., Zhai, D., Pang, Z., Cao, K., Mou, N., & Huang, L. (2022). Short-wavelength infrared spectral analysis and 3D vector modeling for deep exploration in the Weilasituo magmatic-hydrothermal Li–Sn polymetallic deposit, Inner Mongolia, NE China. Natural Resources Research, 31(6), 3121–3153. https://doi.org/10.1007/s11053-022-10111-1

    Article  Google Scholar 

Download references

Acknowledgments

Sincere thanks to Inner Mongolia Geological Exploration Co., Ltd. and Inner Mongolia Weilasituo Mining Co., Ltd. for their assistance in fieldwork. This research was supported by the National Key Research and Development Program of China (Grant No. 2017YFC0601204), China Geological Survey (Grant No. DD20190570), China Geological Survey Development Research Center Project (Grant No. WKZB2011BJM300170/008), and the 2021 Graduate Innovation Fund Project of China University of Geosciences, Beijing (Grant No. ZD2021YC042). We would like to express our sincere gratitude to the associate editor and the two anonymous reviewers for their invaluable feedback and constructive suggestions on our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gongwen Wang.

Ethics declarations

Conflict of Interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or nonfinancial interest in the subject matter or materials discussed in this manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, L., Wang, G., Carranza, E.J.M. et al. Deep Vector Exploration via Alteration Footprints and Thermal Infrared Scalars for the Weilasituo Magmatic–Hydrothermal Li–Sn Polymetallic Deposit, Inner Mongolia, NE China. Nat Resour Res 32, 1871–1895 (2023). https://doi.org/10.1007/s11053-023-10224-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-023-10224-1

Keywords

Navigation