Skip to main content

Advertisement

Log in

Short-Wavelength Infrared Spectral Analysis and 3D Vector Modeling for Deep Exploration in the Weilasituo Magmatic–Hydrothermal Li–Sn Polymetallic Deposit, Inner Mongolia, NE China

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The Weilasituo magmatic–hydrothermal Li–Sn polymetallic deposit is located in the eastern part of the Central Asian Orogenic Belt. It is the first giant greisen lithium deposit in Inner Mongolia. It consists of deep quartz porphyry Sn orebodies (No. I), a central cryptoexplosive breccia Li–Rb orebody (No. II), and shallow hydrothermal quartz vein polymetallic orebodies (No. III). Newly obtained short-wavelength infrared (SWIR) data from six drillholes that intersected the deposit were used to characterize hydrothermal minerals and model 3D alteration zonation. Tracking the SWIR scalars (i.e., Pos2200 and IC for white mica, Pos2250 for chlorite, and Dep2080 for topaz), the metallogenic conditions were characterized and the 3D regions of distinct mineralization were modeled by SKUA-GOCAD. The results reveal that (1) the dominant alteration mineral assemblages of orebodies Nos. I, II, and III are kaolinite + topaz, phengite + topaz ± biotite, and chlorite + muscovite ± biotite, respectively; (2) phengite (AlVI-poor) and topaz preferentially occur toward the high-temperature and alkaline core part, whereas muscovite (AlVI-rich) and chlorite are present in the low-temperature and acidic edge part of the hydrothermal alteration system; (3) the proximal Li–Rb mineralization range accompanying phengite and topaz was precisely mapped by larger IC (> 2.5) and longer Pos2200 (> 2209 nm). The proximal Sn vein mineralization range closely associated with F element was traced by larger Dep2080 (> 0.2), and the proximal Mo–Cu–Pb sulfides vein range associated with the precipitation of Fe was characterized by longer Pos2250 (> 2253 nm). The above vector indicators were validated in the Weilasituo deposit’s 3D orebody models. Therefore, we propose that SWIR spectroscopy provides a potential visual vectoring tool for deep exploration and prospecting for other similar magmatic–hydrothermal deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

References

  • Abweny, M. S., van Ruitenbeek, F. J. A., de Smeth, B., Woldai, T., van der Meer, F. D., Cudahy, T., et al. (2016). Short-wavelength infrared (SWIR) spectroscopy of low-grade metamorphic volcanic rocks of the Pilbara Craton. Journal of African Earth Sciences, 117, 124–134. https://doi.org/10.1016/j.jafrearsci.2016.01.024

    Article  Google Scholar 

  • Bishop, J., Madejová, J., Komadel, P., & Fröschl, H. (2002a). The influence of structural Fe, Al and Mg on the infrared OH bands in spectra of dioctahedral smectites. Clay Minerals, 37(4), 607–616. https://doi.org/10.1180/0009855023740063

    Article  Google Scholar 

  • Bishop, J., Murad, E., & Dyar, M. D. (2002b). The influence of octahedral and tetrahedral cation substitution on the structure of smectites and serpentines as observed through infrared spectroscopy. Clay Minerals, 37(4), 617–628. https://doi.org/10.1180/0009855023740064

    Article  Google Scholar 

  • Bishop, J. L., Lane, M. D., Dyar, M. D., & Brown, A. J. (2008). Reflectance and emission spectroscopy study of four groups of phyllosilicates: Smectites, kaolinite-serpentines, chlorites and micas. Clay Minerals, 43(1), 35–54. https://doi.org/10.1180/claymin.2008.043.1.03

    Article  Google Scholar 

  • Chang, Z., Hedenquist, J. W., White, N. C., Cooke, D. R., Roach, M., Deyell, C. L., et al. (2011). Exploration tools for linked porphyry and epithermal deposits: Example from the mankayan intrusion-centered Cu-Au district, Luzon, Philippines. Economic Geology, 106(8), 1365–1398. https://doi.org/10.2113/econgeo.106.8.1365

    Article  Google Scholar 

  • Chen, H., Zhang, S., Chu, G., Zhang, Y., Cheng, J., Tian, J., & Han, J. (2019). The short wave infrared (SWIR) spectral characteristics of alteration minerals and applications for ore exploration in the typical skarn-porphyry deposits, Edong ore district, eastern China. Acta Petrologica Sinica, 35(12), 3629–3643. https://doi.org/10.18654/1000-0569/2019.12.04 in Chinese with English abstract.

    Article  Google Scholar 

  • Clark, R. N., & Roush, T. L. (1984). Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research, 89(B7), 6329–6340. https://doi.org/10.1029/JB089iB07p06329

    Article  Google Scholar 

  • Cudahy, T., Jones, M., Thomas, M., Laukamp, C., Caccetta, M., Hewson, R., et al. (2008). Next generation mineral mapping: Queensland airborne HyMap and satellite ASTER surveys 2006–2008. In CSIRO exploration and mining report P2007/364, (December) (pp. 152). https://doi.org/10.13140/RG.2.1.2828.1844

  • Cudahy, T., Okada, K., & Brauhart, C. (2000a). Targeting VMS style Zn mineralisation at Panorama, Australia, using airborne hyperspectral VNIR-SWIR HyMap data. In ERIM proceedings of the 14th international conference on applied geologic remote sensing (pp. 395–402).

  • Cudahy, T., Okada, K., Yamato, Y., Huntington, J., & Hackwell, J. (2000b). Mapping skarn alteration mineralogy at Yerington, Nevada, using airborne hyperspectral TIR SEBASS imaging data. In ERIM proceedings of the 14th international conference on applied geologic remote sensing (pp. 70–79).

  • Cudahy, T. J., Wilson, J., Hewson, R., Linton, P., Harris, P., Sears, M., et al. (2001). Mapping porphyry-skarn alteration at Yerington, Nevada, using airborne hyperspectral VNIR-SWIR-TIR imaging data. In International geoscience and remote sensing symposium (IGARSS) (pp. 631–633). https://doi.org/10.1109/igarss.2001.976573

  • Dai, J., Zhao, L., Jiang, Q., Wang, H., & Liu, T. (2020). Review of thermal-infrared spectroscopy applied in geological ore exploration (in Chinese with English abstract). Acta Geologica Sinica, 94(8), 2520–2533. https://doi.org/10.19762/j.cnki.dizhixuebao.2020172

    Article  Google Scholar 

  • Deer, W. A., Howie, R. A., & Iussman, J. (1962). Rock-forming minerals: sheet silicates. Longman, London. http://refhub.elsevier.com/S0169-1368(21)00181-5/h0045

  • Doublier, M. P., Roache, A., & Potel, S. (2010). Application of SWIR spectroscopy in very low-grade metamorphic environments: a comparison with XRD methods (Vol. 2010). West Perth, Western Australia. https://nla.gov.au/nla.obj-2131686453

  • Duke, E. F. (1994). Near infrared spectra of muscovite, Tschermak substitution, and metamorphic reaction progress: Implications for remote sensing. Geology, 22(7), 621–624. https://doi.org/10.1130/0091-7613(1994)022%3c0621:NISOMT%3e2.3.CO;2

    Article  Google Scholar 

  • Feng, Y., Xiao, B., Li, R., Deng, C., Han, J., Wu, C., et al. (2019). Alteration mapping with short wavelength infrared (SWIR) spectroscopy on Xiaokelehe porphyry Cu–Mo deposit in the Great Xing’an Range, NE China: Metallogenic and exploration implications. Ore Geology Reviews, 112, 103062. https://doi.org/10.1016/j.oregeorev.2019.103062

    Article  Google Scholar 

  • Frost, R. L., & Jonansson, U. (1998). Combination bands in the infrared spectroscopy of kaolins—A drift spectroscopic study. Clays and Clay Minerals, 46(4), 466–477. https://doi.org/10.1346/CCMN.1998.0460411

    Article  Google Scholar 

  • Gates, W. P. (2005). Infrared spectroscopy and the chemistry of dioctahedral smectites. In Kloprogge, J. T. (Ed.), Clay Minerals Society. https://doi.org/10.1346/CMS-WLS-13.6

  • Guo, N., Guo, W., Shi, W., Huang, Y., Guo, Y., & Lian, D. (2020). Characterization of Illite Clays associated with the Sinongduo low sulfidation epithermal deposit, Central Tibet using field SWIR spectrometry. Ore Geology Reviews, 120(1), 103228. https://doi.org/10.1016/j.oregeorev.2019.103228

    Article  Google Scholar 

  • Guo, N., Huang, Y. R., Zheng, L., Tang, N., Fu, Y., & Wang, C. (2017). Alteration zoning and prospecting model of epithermal deposit revealed by shortwave infrared technique: A case study of Tiegelongnan and Sinongduo deposits (in Chinese with English abstract). Acta Geoscientica Sinica, 38(5), 767–778. https://doi.org/10.3975/cagsb.2017.05.16

    Article  Google Scholar 

  • Haest, M., Cudahy, T., Laukamp, C., & Gregory, S. (2012). Quantitative mineralogy from infrared spectroscopic data. I. Validation of mineral abundance and composition scripts at the rocklea channel iron deposit in Western Australia. Economic Geology, 107(2), 209–228. https://doi.org/10.2113/econgeo.107.2.209

    Article  Google Scholar 

  • Halley, S., Dilles, J. H., & Tosdal, R. M. (2015). Footprints: Hydrothermal alteration and geochemical dispersion around porphyry copper deposits. SEG Discovery, 100, 1–17. https://doi.org/10.5382/segnews.2015-100.fea

    Article  Google Scholar 

  • Han, J., Chu, G., Chen, H., Hollings, P., Sun, S., & Chen, M. (2018). Hydrothermal alteration and short wavelength infrared (SWIR) characteristics of the Tongshankou porphyry-skarn Cu-Mo deposit, Yangtze craton, Eastern China. Ore Geology Reviews, 101, 143–164. https://doi.org/10.1016/j.oregeorev.2018.07.018

    Article  Google Scholar 

  • Harraden, C. L., McNulty, B. A., Gregory, M. J., & Lang, J. R. (2013). Shortwave infrared spectral analysis of hydrothermal alteration associated with the Pebble porphyry copper-gold-molybdenum deposit, Iliamna, Alaska. Economic Geology, 108(3), 483–494. https://doi.org/10.2113/econgeo.108.3.483

    Article  Google Scholar 

  • Herrmann, W., Blake, M., Doyle, M., Huston, D., Kamprad, J., Merry, N., & Pontual, S. (2001). Short Wavelength Infrared (SWIR) spectral analysis of hydrothermal alteration zones associated with base metal sulfide deposits at Rosebery and Western Tharsis, Tasmania, and Highway-Reward, Queensland. Economic Geology, 96(5), 939–955. https://doi.org/10.2113/gsecongeo.96.5.939

    Article  Google Scholar 

  • Huang, J., Chen, H., Han, J., Deng, X., Lu, W., & Zhu, R. (2018). Alteration zonation and short wavelength infrared (SWIR) characteristics of the Honghai VMS Cu-Zn deposit, Eastern Tianshan, NW China. Ore Geology Reviews, 100, 263–279. https://doi.org/10.1016/j.oregeorev.2017.02.037

    Article  Google Scholar 

  • Jahn, B., Wu, F., & Chen, B. (2000). Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 91(1–2), 181–193. https://doi.org/10.1017/S0263593300007367

    Article  Google Scholar 

  • Jin, X., Wang, G., Tang, P., Hu, C., Liu, Y., & Zhang, S. (2020). 3D geological modelling and uncertainty analysis for 3D targeting in Shanggong gold deposit (China). Journal of Geochemical Exploration, 210(2019), 106442. https://doi.org/10.1016/j.gexplo.2019.106442

    Article  Google Scholar 

  • Jones, S., Herrmann, W., & Gemmell, J. B. (2005). Short wavelength infrared spectral characteristics of the HW horizon: Implications for exploration in the Myra Falls volcanic-hosted massive sulfide camp, Vancouver Island, British Columbia, Canada. Economic Geology, 100(2), 273–294. https://doi.org/10.2113/gsecongeo.100.2.273

    Article  Google Scholar 

  • King, T. V. V., & Clark, R. N. (1989). Spectral characteristics of chlorites and Mg-serpentines using high-resolution reflectance spectroscopy. Journal of Geophysical Research, 94(10), 13997–14008. https://doi.org/10.1029/JB094iB10p13997

    Article  Google Scholar 

  • Kokaly, R. F., Clark, R. N., Swayze, G. A., Livo, K. E., Hoefen, T. M., Pearson, N. C., et al. (2017). USGS Spectral Library Version 7: U.S. Geological Survey Data Series 1035. U.S. Geological Survey. Reston, Virginia. https://doi.org/10.3133/ds1035

  • Laakso, K., Rivard, B., Peter, J. M., White, H. P., Maloley, M., Harris, J., & Rogge, D. (2015). Application of airborne, laboratory, and field hyperspectral methods to mineral exploration in the Canadian arctic: Recognition and characterization of volcanogenic massive sulfide-associated hydrothermal alteration in the Izok Lake Deposit Area, Nunavut. Economic Geology, 110(4), 925–941. https://doi.org/10.2113/econgeo.110.4.925

    Article  Google Scholar 

  • Lampinen, H. M., Laukamp, C., Occhipinti, S. A., & Hardy, L. (2019). Mineral footprints of the Paleoproterozoic sediment-hosted Abra Pb-Zn-Cu-Au deposit Capricorn Orogen, Western Australia. Ore Geology Reviews, 104(2018), 436–461. https://doi.org/10.1016/j.oregeorev.2018.11.004

    Article  Google Scholar 

  • Li, B. Y., Jiang, D. W., Fu, X., Wang, L., Gao, S. Q., Fan, Z. Y., et al. (2018). Geological characteristics and prospecting significance of Weilasituo Li polymetallic deposit, Inner Mongolia (in Chinese with English abstract). Mineral Exploration, 9(6), 1185–1191.

    Google Scholar 

  • Li, R., Chen, H., Li, G., Feng, Y., Xiao, B., Han, J., et al. (2020a). Geological characteristics and application of short wavelength infra-red technology (SWIR) in the Fukeshan porphyry copper deposit in the great Xing’an Range Area (in Chinese with English abstract). Earth Science, 45(5), 1517–1530. https://doi.org/10.3799/dqkx.2019.192

    Article  Google Scholar 

  • Li, S. S., Chen, H. Y., Zhang, S. T., Sun, S. Q., Jin, S. G., Wei, K. T., et al. (2020b). Validity analysis of geochemical exploration methods for a deep orebody in the Tonglüshan skarn Cu-Fe-Au deposit, Hubei Province (in Chinese with English abstract). Geochimica (Beijing), 49(2), 205–217. https://doi.org/10.19700/j.0379-1726.2020b.02.006

    Article  Google Scholar 

  • Lian, C. Y., Zhang, G., Yuan, C. H., & Yang, K. (2005). Application of SWIR reflectance spectroscopy in mapping of hydrothermal alteration minerals: A case study of the Tuwu porphyry copper prospect, Xinjiang (in Chinese with English abstract). Geology in China, 32(3), 494–495.

    Google Scholar 

  • Liu, B., & Liu, H. (2016). Short-wave infrared spectroscopy study on wall rock alteration of the Gan-zhuershande silver-lead-zinc deposit in Inner Mongolia (in Chinese with English abstract). Geology and Exploration, 52(4), 0703–0711.

    Google Scholar 

  • Liu, Y., Fan, Z., Jiang, H., Nie, F., Jiang, S., Ding, C., & Wang, F. (2014). Genesis of the Weilasituo–Bairendaba porphyry-hydrothermal vein type system in inner Mongolia, China (in Chinese with English abstract). Acta Geologica Sinica, 88, 148–162.

    Google Scholar 

  • Liu, Y., Jiang, S., & Bagas, L. (2016). The genesis of metal zonation in the Weilasituo and Bairendaba Ag-Zn-Pb-Cu-(Sn-W) deposits in the shallow part of a porphyry Sn-W-Rb system, Inner Mongolia, China. Ore Geology Reviews, 75, 150–173. https://doi.org/10.1016/j.oregeorev.2015.12.006

    Article  Google Scholar 

  • Marinoni, O. (2003). Improving geological models using a combined ordinary-indicator kriging approach. Engineering Geology, 69(1–2), 37–45. https://doi.org/10.1016/S0013-7952(02)00246-6

    Article  Google Scholar 

  • Mason, P., Mark, B., Yi, G., Warren, P., Ryan, L., & Leanne, B. (2011). The spectral geologist: TSG manual help file. Commonwealth Scientific and Industrial Research Organisation (CSIRO). Australia.

  • Peng, Z., Shen, J., Cao, W., Li, J., & Liu, T. (2016). The application of near-infrared spectroscopy to identify altered minerals and its implications for geologic prospecting: A case study of the Gangcha gold deposit in Gansu Province (in Chinese with English abstract). Geological Bulletin of China, 35(5), 822–831.

    Google Scholar 

  • Pontual, S., Merry, N., & Gamson, P. (2008). Spectral interpretation field manual: Geologically-based spectral analysis guides for mineral exploration (G-MEX). AusSpec International Pty. (Vol. 1). New South Wales, Australia. https://katalog.ub.tu-freiberg.de/Record/0-1404618287/Holdings

  • Ren, H., Zheng, Y., Wu, S., Zhang, X., Ye, J., & Chen, X. (2020). Short-wavelength infrared characteristics and indications of exploration of the demingding copper-molybdenum deposit in Tibet (in Chinese with English abstract). Earth Science, 45(3), 930–944. https://doi.org/10.3799/dqkx.2019.983

    Article  Google Scholar 

  • Shao, X., Peng, Y., Wang, G., Zhao, X., Tang, J., Huang, L., et al. (2021). Application of SWIR, XRF and thermoelectricity analysis of pyrite in deep prospecting in the Xincheng gold orefield, Jiaodong Peninsula (in Chinese with English abstract). Earth Science Frontiers, 28(3), 236–251. https://doi.org/10.13745/j.esf.sf.2021.1.24

    Article  Google Scholar 

  • Sonntag, I., Laukamp, C., & Hagemann, S. G. (2012). Low potassium hydrothermal alteration in low sulfidation epithermal systems as detected by IRS and XRD: An example from the Co-O mine, Eastern Mindanao, Philippines. Ore Geology Reviews, 45, 47–60. https://doi.org/10.1016/j.oregeorev.2011.08.001

    Article  Google Scholar 

  • Sun, Y. (2018). Characteristics and evolution of ore-forming fluids and Mineralization model for the Weilasituo tin polymetallic deposit,Inner Mongolia. , master 64. China: China University of Geoscience (Beijing). https://kns.cnki.net/kcms/detail/detail.aspx?FileName=1018009635.nh&DbName=CMFD2018

  • Tappert, M., Rivard, B., Giles, D., Tappert, R., & Mauger, A. (2011). Automated drill core logging using visible and near-infrared reflectance spectroscopy: A case study from the Olympic Dam Iocg deposit, South Australia. Economic Geology, 106(2), 289–296. https://doi.org/10.2113/econgeo.106.2.289

    Article  Google Scholar 

  • Thompson, A., Scott, K., Huntington, J., & Yang, K. (2009). Mapping mineralogy with reflectance spectroscopy: Examples from Volcanogenic Massive Sulfide Deposits. Reviews in Economic Geology, 16, 25–40.

    Google Scholar 

  • Tian, J., Zhang, Y., Cheng, J., Sun, S., & Zhao, Y. (2019). Short wavelength infrared (SWIR) characteristics of hydrothermal alteration minerals in skarn deposits: Example from the Jiguanzui Cu-Au deposit, Eastern China. Ore Geology Reviews, 106, 134–149. https://doi.org/10.1016/j.oregeorev.2019.01.025

    Article  Google Scholar 

  • Tischendorf, G., Gottesmann, B., Förster, H.-J., & Trumbull, R. B. (1997). On Li-bearing micas: Estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineralogical Magazine, 61(409), 809–834. https://doi.org/10.1180/minmag.1997.061.409.05

    Article  Google Scholar 

  • Vedder, W., & McDonald, R. S. (1963). Vibrations of the OH ions in muscovite. The Journal of Chemical Physics, 38(7), 1583–1590. https://doi.org/10.1063/1.1776925

    Article  Google Scholar 

  • Wang, B., & Tu, J. (2000). The spectroscopic study of topaz (in Chinese with English abstract). Spectroscopy and Spectral Analysis, 20(1), 40–43.

    Google Scholar 

  • Wang, F., Bagas, L., Jiang, S., & Liu, Y. (2017a). Geological, geochemical, and geochronological characteristics of Weilasituo Sn-polymetal deposit, Inner Mongolia, China. Ore Geology Reviews, 80, 1206–1229. https://doi.org/10.1016/j.oregeorev.2016.09.021

    Article  Google Scholar 

  • Wang, L., Percival, J. B., Hedenquist, J. W., Hattori, K., & Qin, K. (2021). Alteration mineralogy of the zhengguang epithermal Au-Zn deposit, Northeast China: Interpretation of shortwave infrared analyses during mineral exploration and assessment. Economic Geology, 116(2), 389–406. https://doi.org/10.5382/ECONGEO.4792

    Article  Google Scholar 

  • Wang, R., Cudahy, T., Laukamp, C., Walshe, J. L., Bath, A., Mei, Y., et al. (2017b). White mica as a hyperspectral tool in exploration for the sunrise dam and Kanowna belle gold deposits, Western Australia. Economic Geology, 112(5), 1153–1176. https://doi.org/10.5382/ECONGEO.2017.4505

    Article  Google Scholar 

  • Xiao, B., Chu, G., & Feng, Y. (2021). Short-wave infrared (SWIR) spectral and geochemical characteristics of hydrothermal alteration minerals in the Laowangou Au deposit: Implications for ore genesis and vectoring. Ore Geology Reviews, 139, 104463. https://doi.org/10.1016/j.oregeorev.2021.104463

    Article  Google Scholar 

  • Xiao, W., Windley, B. F., Hao, J., & Zhai, M. (2003). Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics, 22(6), 1069. https://doi.org/10.1029/2002tc001484

    Article  Google Scholar 

  • Xu, C., Chen, H., Qi, J., & Zhang, L. (2017). Alteration and mineralization of the Southwest Cu-Mo ore deposit, Zijinshan Orefield, Fujian Province and the application of Short Wavelength Infra-red (SWIR) in exploration (in Chinese with English abstract). Mineral Deposits, 36(5), 1013–1038. https://doi.org/10.16111/j.0258-7106.2017.05.001

    Article  Google Scholar 

  • Xue, Q., Wang, R., Liu, S., Shi, W., Tong, X., Li, Y., & Sun, F. (2021). Significance of chlorite hyperspectral and geochemical characteristics in exploration: A case study of the giant Qulong porphyry Cu-Mo deposit in collisional orogeny, Southern Tibet. Ore Geology Reviews, 134(September 2020), 104156. https://doi.org/10.1016/j.oregeorev.2021.104156

    Article  Google Scholar 

  • Yang, K., Huntington, J. F., Gemmell, J. B., & Scott, K. M. (2011). Variations in composition and abundance of white mica in the hydrothermal alteration system at Hellyer, Tasmania, as revealed by infrared reflectance spectroscopy. Journal of Geochemical Exploration, 108(2), 143–156. https://doi.org/10.1016/j.gexplo.2011.01.001

    Article  Google Scholar 

  • Yang, K., Lian, C., Huntington, J. F., Peng, Q., & Wang, Q. (2005). Infrared spectral reflectance characterization of the hydrothermal alteration at the Tuwu Cu-Au deposit, Xinjiang, China. Mineralium Deposita, 40, 324–336. https://doi.org/10.1007/s00126-005-0479-7

    Article  Google Scholar 

  • Yang, Z., Hou, Z., Yang, Z., Qu, H., Li, Z., & Liu, Y. (2012). Application of short wavelength infrared (SWIR) technique in exploration of poorly eroded porphyry Cu district: A case study of Niancun ore district, Tibet (in Chinese with English abstract). Mineral Deposits, 31(4), 699–717. https://doi.org/10.16111/j.0258-7106.2012.04.004

    Article  Google Scholar 

  • Yao, Y., Zhu, Y., Liu, J., & Li, W. (2021). Footprints of ore fluid pathway and implications to mineral exploration in the Shihu Gold Deposit, North China: Evidence from short wave infrared spectroscopy of illitic alteration rocks. Journal of Geochemical Exploration, 229, 106833. https://doi.org/10.1016/j.gexplo.2021.106833

    Article  Google Scholar 

  • Zang, W., & Fyfe, W. S. (1995). Chloritization of the hydrothermally altered bedrock at the Igarapé Bahia gold deposit, Carajás, Brazil. Mineralium Deposita, 30(1), 30–38.

    Article  Google Scholar 

  • Zhai, D., Liu, J., & Li, J. (2016). Geochronological study of Weilasituo porphyry type Sn deposit in Inner Mongolia and its Geological significance (in Chinese with English abstract). Mineral Deposits, 35(5), 1011–1022. https://doi.org/10.16111/j.0258-7106.2016.05.009

    Article  Google Scholar 

  • Zhang, S., Chen, H., Zhang, X., Zhang, W., Xu, C., Han, J., & Chen, M. (2017). Application of short wavelength infrared (SWIR) technique to exploration of skarn deposit: A case study of Tonglvshan Cu-Fe-Au deposit, Edongnan (southeast Hubei) ore concentration area (in Chinese with English abstract). Mineral Deposits, 36(6), 1263–1288. https://doi.org/10.16111/j.0258_7106.2017.06.002

    Article  Google Scholar 

  • Zhang, S., Chu, G., Cheng, J., Zhang, Y., Tian, J., Li, J., et al. (2020). Short wavelength infrared (SWIR) spectroscopy of phyllosilicate minerals from the Tonglushan Cu-Au-Fe deposit, Eastern China: New exploration indicators for concealed skarn orebodies. Ore Geology Reviews, 122, 103516. https://doi.org/10.1016/j.oregeorev.2020.103516

    Article  Google Scholar 

  • Zhou, Y., Li, L., Yang, K., Xing, G., Xiao, W., Zhang, H., et al. (2020). Hydrothermal alteration characteristics of the Chating Cu-Au deposit in Xuancheng City, Anhui Province, China: Significance of sericite alteration for Cu-Au exploration. Ore Geology Reviews, 127, 103844. https://doi.org/10.1016/j.oregeorev.2020.103844

    Article  Google Scholar 

  • Zhou, Z., Gao, X., & Ouyang, H. (2019). Formation mechanism and intrinsic genetic relationship between tin-tungsten- lithium mineralization and peripheral lead-zinc-silver-copper mineralization: Exemplified by Weilasituo tin-tungsten-lithium polymetallic deposit, Inner Mongolia(in Chinese with English abstract). Mineral Deposits, 38(5), 1004–1022. https://doi.org/10.16111/j.0258-7106.2019.05.004

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Inner Mongolia Geological Prospecting Co., Ltd. and Inner Mongolia Weilasituo Mining Co., Ltd. for providing the assistance for fieldwork. At the same time, we gratefully thank Dr. Huan Ren from China University of Geosciences (Beijing) for providing us with comprehensive technical support in EMPA processing. This research was supported by the National Key Research and Development Program of China (Grant No. 2017YFC0601204), China Geological Survey (Grant No. DD20190570), 2021 Graduate Innovation Fund Project of China University of Geosciences, Beijing (Grant No. ZD2021YC042). We thank Prof. Katsuaki Koike (Associate Editor of NRR) for editorial handling of our manuscript, and two anonymous reviewers for their positive critical comments, which helped improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gongwen Wang.

Ethics declarations

Conflict of Interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, L., Wang, G., Carranza, E.J.M. et al. Short-Wavelength Infrared Spectral Analysis and 3D Vector Modeling for Deep Exploration in the Weilasituo Magmatic–Hydrothermal Li–Sn Polymetallic Deposit, Inner Mongolia, NE China. Nat Resour Res 31, 3121–3153 (2022). https://doi.org/10.1007/s11053-022-10111-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-022-10111-1

Keywords

Navigation