Skip to main content
Log in

Positional Prediction of Undiscovered Seafloor Massive Sulfide Resources on Carlsberg Ridge, Northwest Indian Ocean

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Increasingly more attention is being paid to the exploration of seafloor massive sulfide (SMS) resources because of the rich metal resources in them. Research has shown that the slow-spreading mid-ocean ridge is a hotspot for large-scale massive sulfide deposits, and should be prioritized in the future. Because of the complex technology and high cost of investigating the location of the mid-ocean ridge, it is necessary to narrow the prospecting space. In this study, a novel method is proposed that combines weights-of-evidence method and prospecting-information content method to quantitatively predict locations of undiscovered SMS resources on the typical slow-spreading Carlsberg Ridge. First, controlling factors were selected, which included topography, geophysics, and geology aspects. Then, the favorable value range of each controlling factor was determined to develop the prospecting prediction model. Finally, this study developed a mineral prospectivity map with four levels of likelihood for the occurrence of SMS deposits. Eight prospective targets were delineated, four of which were level A and four were level B (level A is better than level B). This research has great significance in guiding future research of SMS resources on the Carlsberg Ridge and similar ridges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  • Agterberg, F. P., Bonham-Carter, G. F., & Wright, D. F. (1990). Statistical pattern integration for mineral exploration. In G. Gaál & D. F. Merriam (Eds.), Computer applications in re-source estimation prediction and assessment for metals and petroleum (pp. 1–21). Pergamon Press.

    Google Scholar 

  • Almasi, A., Yousefi, M., & Carranza, E. J. M. (2018). Prospectivity analysis of orogenic gold deposits in Saqez-Sardasht Goldfield, Zagros Orogen, Iran. Ore Geology Reviews, 95, 1198.

    Article  Google Scholar 

  • Banerjee, R., & Iyer, S. D. (1991). Petrography and chemistry of basalts from the Carlsberg Ridge. Journal of the Geological Society of India, 38(4), 369–386.

    Google Scholar 

  • Banerjee, R., & Iyer, S. D. (1993). A note on the sulphide-oxide mineralization in Carlsberg Ridge. Journal of the Geological Society of India, 42(6), 579–584.

    Google Scholar 

  • Banerjee, R., & Iyer, S. D. (2003). Genetic aspects of basalts from the Carlsberg Ridge. Current Science, 85(3), 299–305.

    Google Scholar 

  • Batley, G. E., Burton, G. A., Chapman, P. M., & Forbes, V. E. (2002). Uncertainties in sediment quality weight-of-evidence (WOE) assessments. Human and Ecological Risk Assessment, 8(7), 1517–1547.

    Article  Google Scholar 

  • Bonham Carter, G. F., & Agterberg, F. P. (1990). Application of a microcomputer based geographic information system to mineral-potential mapping. In J. T. Hanley & D. F. Merriam (Eds.), Microcomputer-based applications in geology, II, petroleum (pp. 49–74). Pergamon Press.

    Chapter  Google Scholar 

  • Cann, J. R. (1969). Spilites from the Carlsberg Ridge, Indian Ocean. Journal of Petrology, 10(1), 1–19.

    Article  Google Scholar 

  • Cann, J. R., & Vine, F. J. (1966). An area on the crest of the Carlsberg Ridge: Petrology and magnetic survey. Philosophical Transactions of the Royal Society. A: Mathematical, Physical and Engineering Sciences, 259(1099), 198–217.

  • Cannat, M., Mangeney, A., Ondréas, H., Fouquet, Y., & Normand, A. (2013). High-resolution bathymetry reveals contrasting landslide activity shaping the walls of the Mid-Atlantic Ridge axial valley: Landslides at axial valley walls. Geochemistry, Geophysics, Geosystems, 14(4), 996–1011.

    Article  Google Scholar 

  • Carranza, E. J. M. (2008). Geochemical anomaly and mineral prospectivity mapping in GIS. Handbook of Exploration and Environmental Geochemistry, 11, 66.

    Google Scholar 

  • Chatterjee, S., Bhattacharyya, R., & Majumdar, T. J. (2007). Utilization of high resolution satellite gravity over the Carlsberg Ridge. Marine Geophysical Researches, 28(4), 309–317.

    Article  Google Scholar 

  • Chen, D. Y., Chen, J. P., Zhang, D., Lin, S. Y., Chen, X. Z., Li, K., & Wang, Q. (2014). Contributions of secular changes in the regional evolution of ore deposits to predictive mineral exploration: a case study of the zhongtiao mountain cu metallogenic area, southern North China Craton. Journal of Asian Earth Sciences, 94, 282–298.

    Article  Google Scholar 

  • Chen, G. Z., Xu, X. C., & Wang, J. Q. (2013). A method for metallogenic diagnosis based on coupling of prospecting-information contents and expert weight of evidence model. Science of Surveying and Mapping, 38(1), 146–149. (in Chinese with English abstract).

    Google Scholar 

  • Chen, J., Yousefi, M., Zhao, Y., Zhang, C., Zhang, S., Mao, Z., Peng, M., & Han, R. (2019). Modelling ore-forming processes through a cosine similarity measure: Improved targeting of porphyry copper deposits in the Manzhouli belt, China. Ore Geology Reviews, 107, 108–118.

    Article  Google Scholar 

  • Chen, L., Tang, L. M., Yu, X., & Dong, Y. H. (2017). Mantle source heterogeneity and magmatic evolution at Carlsberg Ridge (3.7°N): Constrains from elemental and isotopic (Sr, Nd, Pb) data. Marine Geophysical Research, 38(1–2), 47–60.

  • Chen, P., Zhang, L. M., Wang, J., Ruan, J. S., Han, X. Q., & Huang, Y. (2016). Brevibacterium sediminis sp. Nov., isolated from deep-sea sediments from the Carlsberg and Southwest Indian Ridges. International Journal of Systematic and Evolutionary Microbiology, 66(12), 7.

    Article  Google Scholar 

  • Chen, Y., Han, X. Q., Wang, Y. J., & Lu, J. G. (2020). Precipitation of calcite veins in serpentinized harzburgite at Tianxiu hydrothermal field on Carlsberg Ridge (3.67°N), Northwest Indian Ocean: Implications for fluid circulation. Journal of Earth Science, 31(1), 91–101.

    Article  Google Scholar 

  • Chun, M. H., Yu, Z. H., Li, H. M., & Zhai, S. K. (2016). Mantle source features of basalts in the northwest Indian Ridge. Marine Sciences, 40(8), 108–118. (in Chinese with English abstract).

    Google Scholar 

  • Chun, M. H., Yu, Z. H., & Zhai, S. K. (2015). The geochemistry and geological significances of basalts from Carlsberg Ridge in Indian Ocean. Haiyang Xuebao, 37(8), 47–62. (in Chinese with English abstract).

    Google Scholar 

  • Cui, R. Y. (2001). Large-scale oceanic hydrothermal sulfide deposits formation conditions. Marine Geology Letters, 17(2), 1–5. (in Chinese).

    Google Scholar 

  • de Sá, V. R., Koike, K., Goto, T., Nozaki, T., Takaya, Y., & Yamasaki, T. (2021a). 3D geostatistical modeling of metal contents and lithofacies for mineralization mechanism determination of a seafloor hydrothermal deposit in the middle Okinawa Trough, Izena Hole. Ore Geology Reviews, 135, 66.

    Google Scholar 

  • de Sá, V. R., Koike, K., Goto, T., Nozaki, T., Takaya, Y., & Yamasaki, T. (2021b). A combination of geostatistical methods and principal components analysis for detection of mineralized zones in seafloor hydrothermal systems. Natural Resources Research, 30(4), 66.

  • DeMartin, B. J., Sohn, R. A., Canales, J. P., & Humphris, S. E. (2007). Kinematics and geometry of active detachment faulting beneath the Trans-Atlantic Geotraverse (TAG) hydrothermal field on the Mid-Atlantic Ridge. Geology, 35(8), 711–714.

    Article  Google Scholar 

  • Dong, Q. J., Xiao, K. Y., Chen, J. P., & Cong, Y. (2010). The quantitative analysis of regional metallogenic fault in the northern segment of the Sanjiang metallogenic belt, southwestern China. Geological Bulletin of China, 29(10), 1479–1485. (in Chinese with English abstract).

    Google Scholar 

  • Drummond, S. E., & Ohmoto, H. (1985). Chemical evolution and mineral deposition on boiling hydrothermal systems. Economic Geology, 80, 126–147.

    Article  Google Scholar 

  • Dupré, B., & Allègre, C. J. (1983). Pb–Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature, 303(5913), 142–146.

    Article  Google Scholar 

  • Fang, J., Sun, J. W., Xu, H. Q., Ye, J. H., Chen, J. P., Ren, M. Y., & Tang, C. (2015). Prediction of seafloors polymetallic sulphides resources in the North Atlantic Ridge area. Advances in Earth Science, 30(1), 60–68. (in Chinese with English abstract).

    Google Scholar 

  • Fornari, D. J., & Embley, R. W. (1995). Tectonic and volcanic controls on hydrothermal processes at the mid-ocean ridge: An overview based on near-bottom and submersible studies. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, 91, 1–46.

    Google Scholar 

  • Fouquet, Y. (1997). Where are the large hydrothermal sulphide deposits in the oceans? Royal Society of London Philosophical Transactions, 355, 427–441.

    Article  Google Scholar 

  • Frey, F. A., Dickey, J. S., Thompson, G., Bryan, W. B., & Davies, H. L. (1980). Evidence for heterogeneous primary MORB and mantle sources, NW Indian Ocean. Contributions to Mineralogy and Petrology, 74(4), 387–402.

    Article  Google Scholar 

  • Gao, A. G. (1996). Summarizing on the study of hydrothermal activities on the seafloor. Marine Geology and Quaternary Geology, 16(1), 103–110.

    Google Scholar 

  • German, C. R., Petersen, S., & Hannington, M. D. (2016). Hydrothermal exploration of mid-ocean ridges: Where might the largest sulfide deposits be forming? Chemical Geology, 420(1), 114–126.

    Article  Google Scholar 

  • Ghasemzadeh, S., Maghsoudi, A., & Yousefi, M. (2021). Identifying porphyry-Cu geochemical footprints using local neighborhood statistics in Baft area, Iran. Frontiers of Earth Science, 15(1), 106–120.

    Article  Google Scholar 

  • Ghasemzadeh, S., Maghsoudi, A., Yousefi, M., & Mihalasky, M. J. (2019). Stream sediment geochemical data analysis for district-scale mineral exploration targeting: Measuring the performance of the spatial U-statistic and C-A fractal modeling. Ore Geology Reviews, 113, 103115.

    Article  Google Scholar 

  • Glasby, G. P. (1998). The relation between earthquakes, faulting, and submarine hydrothermal mineralization. Marine Georesources and Geotechnology, 16(2), 145–175.

    Article  Google Scholar 

  • Hamelin, B., & Allègre, C. J. (1985). Large-scale regional units in the depleted upper mantle revealed by an isotope study of the South-West Indian Ridge. Nature, 315(6016), 196–199.

    Article  Google Scholar 

  • Hannington, M. D., de Ronde, C. E. J., & Petersen, S. (2005). Sea-floor tectonics and submarine hydrothermal systems. In Economic geology 100th anniversary volume (pp.111–141).

  • Hannington, M. D., Jamieson, J., Monecke, T., & Petersen, S. (2010). Modern sea-floor massive sulfides and base metal resources: Toward an estimate of global sea-floor massive sulfide potential. Society of Economic Geologists, 6, 66.

    Google Scholar 

  • Hannington, M. D., Jamieson, J., Monecke, T., Petersen, S., & Beaulieu, S. (2011). The abundance of seafloor massive sulfide deposits. Geology, 39(12), 1155–1158.

    Article  Google Scholar 

  • Hekinian, R. (1968). Rocks from the Mid-Oceanic Ridge in the Indian Ocean. Deep-Sea Research, 15(2), 195–213.

    Google Scholar 

  • Herrington, R. (2013). Road map to mineral supply. Nature Geoscience, 6(11), 892–894.

    Article  Google Scholar 

  • Hou, Z. Q., Han, F., & Xia, L. Q. (2002). Modern and ancient submarine hydrothermal mineralization: examples from some volcanic massive sulfide deposits. Beijing: Geological Publishing House, 66, 1–423. (in Chinese).

    Google Scholar 

  • Huang, K. H., Han, X. Q., Wang, Y. J., Qiu, Z. Y., & Li, H. L. (2017). Geochemical characteristics of basalt samples from the ridges adjacent to Aden-Owen-Carlsberg Triple Junction and their mantle sources. Journal of Marine Sciences, 35(4), 44–60. (in Chinese with English abstract).

    Google Scholar 

  • Ishizu, K., Goto, T., Ohta, Y., Kasaya, T., Iwamoto, H., Vachiratienchai, C., Siripunvaraporn, W., Tsuji, T., Kumagai, H., & Koike, K. (2019). Internal structure of a seafloor massive sulfide deposit by electrical resistivity tomography, Okinawa Trough. Geophysical Research Letters, 46(20), 11025–11034.

    Article  Google Scholar 

  • Iyer, S. D., & Banerjee, R. (1993). Mineral chemistry of Carlsberg Ridge basalts at 3o35′–3o41′N. Geo-Marine Letters, 13(3), 153–158.

    Article  Google Scholar 

  • Iyer, S. D., & Banerjee, R. (1998). Importance of plagioclase morphology and composition in magmagenesis of the Carlsberg Ridge basalts. Journal of Indian Geophysical Union, 1(2), 63–72.

    Google Scholar 

  • Iyer, S. D., & Ray, D. (2003). Structure, tectonic and petrology of mid-oceanic ridges and the Indian scenario. Current Science, 85(3), 277–289.

    Google Scholar 

  • Jiang, Z. J., Han, X. Q., Wang, Y. J., & Qiu, Z. Y. (2017). Characteristics of water chemistry and constituents of particles in the hydrothermal plume near 6°48′ N, Carlsberg Ridge, Northwest Indian Ocean. Journal of Marine Sciences, 35(4), 34–43. (in Chinese with English abstract).

    Google Scholar 

  • Jing, C. L. (2012). Analysis on the regional geological background and ore-controlling factors of submarine hydrothermal sulfide. Qingdao: First Institute of Oceanography, State Oceanic Administration, 66, 1–77. (in Chinese with English abstract).

    Google Scholar 

  • Jing, C. L., Zheng, Y. P., Liu, B. H., & Cui, Y. C. (2013). Distribution pattern of submarine hydrothermal sulfide deposits and controlling factors. Marine Geology & Quaternary Geology, 33(1), 57–64. (in Chinese with English abstract).

    Article  Google Scholar 

  • Juliani, C., & Ellefmo, S. L. (2018a). Probabilistic estimates of permissive areas for undiscovered seafloor massive sulfide deposits on an Arctic Mid-Ocean Ridge. Ore Geology Reviews, 95, 917–930.

    Article  Google Scholar 

  • Juliani, C., & Ellefmo, S. L. (2018b). Resource assessment of undiscovered seafloor massive sulfide deposits on an Arctic mid-ocean ridge: Application of grade and tonnage models. Ore Geology Reviews, 102, 818–828.

    Article  Google Scholar 

  • Juliani, C., & Ellefmo, S. L. (2019). Multi-scale quantitative risk analysis of seabed minerals: Principles and application to seafloor massive sulfide prospects. Natural Resources Research, 28, 909–930.

    Article  Google Scholar 

  • Kamesh Raju, K. A. (2008). Recent cruise onboard R/V Sonne to the Carlsberg Ridge and the Andaman Sea. InterRidge News, 17, 34–35.

    Google Scholar 

  • Kamesh Raju, K. A., Chaubey, A. K., Amarnath, D., & Mudholkar, A. (2008). Morphotectonics of the Carlsberg Ridge between 62°20’ and 66°20’E, Northwest Indian Ocean. Marine Geology, 252(3–4), 120–128.

    Article  Google Scholar 

  • Kreuzer, O. P., Yousefi, M., & Nykänen, V. (2020). Introduction to the special issue on spatial modelling and analysis of ore forming processes in mineral exploration targeting. Ore Geology Reviews, 119, 103391.

    Article  Google Scholar 

  • Liu, L. S., Lu, J. L., Tao, C. H., Liao, S. L., & Chen, S. B. (2021). GIS-based mineral prospectivity mapping of seafloor massive sulfide on ultraslow-spreading ridges: A case study of Southwest Indian Ridge 48.7°–50.5° E. Natural Resources Research, 11, 66.

    Google Scholar 

  • Luan, X. W. (2004). Distribution and tectonic environments of the hydrothermal fields. Advances in Earth Science, 19(6), 931–938. (in Chinese with English abstract).

    Google Scholar 

  • Matthews, D. H., Vine, F. J., & Cann, J. R. (1965). Geology of an area of the Carlsberg Ridge, Indian Ocean. Geological Society of America Bulletin, 76(6), 675–682.

    Article  Google Scholar 

  • McCaig, A. M., Cliff, R. A., Escartin, J., Fallick, A. E., & Macleod, C. J. (2007). Oceanic detachment faults focus very large volumes of black smoker fluids. Geology, 35(10), 935–938.

    Article  Google Scholar 

  • McKenzie, D., & Sclater, J. G. (1971). The evolution of the Indian Ocean since the late cretaceous. Geophysical Journal International, 24(5), 437–528.

    Article  Google Scholar 

  • McKenzie, D. P., Davies, D., & Molnar, P. (1970). Plate tectonics of the Red Sea and East Africa. Nature, 226, 243–248.

    Article  Google Scholar 

  • Merkouriev, S. A., & Sotchevanova, N. A. (2003). Structure and evolution of the Carlsberg Ridge: Evidence for non-stationary spreading on old and modern spreading centres. Current Science, 85(3), 334–338.

    Google Scholar 

  • Monecke, T., Petersen, S., & Hannington, M. D. (2014). Constraints on water depth of massive sulfide formation: Evidence from modern seafloor hydrothermal systems in arc-related settings. Economic Geology, 109, 2079–2101.

    Article  Google Scholar 

  • Mourya, B. S., Shyama, S. K., Sujith, P. P., Krishnamurthi, S., Meena, R. M., & Loka Bharathi, P. A. (2015). Microcosom investigation of Mn mobilization in basalt rock by potential bacteria R6 from Carlsberg Ridge ecosystem. Biolife, 3(2), 405–427.

    Article  Google Scholar 

  • Mudholkar, A. V., Kodagali, V. N., Kamesh Raju, K. A., Valsangkar, A. B., Ranade, G. H., & Ambre, N. V. (2002). Geomorphological and petrological observations along a segment of slow-spreading Carlsberg Ridge. Current Science, 82(8), 982–989.

    Google Scholar 

  • Murton, B. J., Baker, E. T., Sands, C. M., & German, C. R. (2006). Detection of an unusually large hydrothermal event plume above the slow-spreading Carlsberg Ridge: NW Indian Ocean. Geophysical Research Letters, 33(10), 66.

    Article  Google Scholar 

  • Murton, B. J., & Rona, P. A. (2015). Carlsberg Ridge and Mid-Atlantic Ridge: Comparison of slow spreading centre analogues. Deep-Sea Research Part II, 121, 71–84.

    Article  Google Scholar 

  • Murton, B. J., & Taylor, R. N. (2003). Spreading-ridge geometry, hydrothermal activity, and the influence of modern and ancient hotspots on the Carlsberg Ridge-Northwestern Indian Ocean. Southampton Oceanography Centre, 37, 66.

    Google Scholar 

  • Olatunde Popoola, S., Han, X. Q., Wang, Y. J., Qiu, Z. Y., & Ye, Y. (2018). Geochemical investigations of Fe-Si-Mn oxyhydroxides deposits in Wocan hydrothermal field on the slow-spreading Carlsberg Ridge, Indian Ocean: Constraints on their types and origin. Minerals, 9(1), 66.

    Article  Google Scholar 

  • Olatunde Popoola, S., Han, X. Q., Wang, Y. J., Qiu, Z. Y., Ye, Y., & Cai, Y. Y. (2019). Mineralogical and geochemical signatures of metalliferous sediments in Wocan-1 and Wocan-2 hydrothermal sites on the Carlsberg Ridge, Indian Ocean. Minerals, 9(1), 66.

    Google Scholar 

  • Parsa, M., Maghsoudi, A., & Yousefi, M. (2017a). A receiver operating characteristics-based geochemical data fusion technique for targeting undiscovered mineral deposits. Natural Resources Research, 27, 15–28.

    Article  Google Scholar 

  • Parsa, M., Maghsoudi, A., & Yousefi, M. (2017b). An improved data-driven fuzzy mineral prospectivity mapping procedure; cosine amplitude-based similarity approach to delineate exploration targets. International Journal of Applied Earth Observation and Geoinformation, 58, 157–167.

    Article  Google Scholar 

  • Pattan, J. N., & Higgs, N. C. (1995). Rare earth element studies of surficial sediments from the southwestern Carlsberg Ridge, Indian Ocean. Proceedings of the Indian Academy of Sciences - Earth and Planetary Sciences, 104(4), 569–578.

    Google Scholar 

  • Price, R. C., Kennedy, A. K., Riggs Sneeringer, M., & Frey, F. A. (1986). Geochemistry of basalts from the Indian Ocean triple junction: Implications for the generation and evolution of Indian Ocean ridge basalts. Earth and Planetary Science Letters, 78(4), 379–396.

    Article  Google Scholar 

  • Qiu, Z. Y., Han, X. Q., Wang, Y. J., & Jiang, Z. J. (2015). Characteristics of Carlsberg Ridge in Northwest Indian Ocean and its prospecting implications. Acta Mineralogica Sinica, A1, 776. (in Chinese).

    Google Scholar 

  • Rahimi, H., Abedi, M., Yousefi, M., Bahroudi, A., & Elyasi, G. R. (2021). Supervised mineral exploration targeting and the challenges with the selection of deposit and non-deposit sites thereof. Applied Geochemistry, 128, 104940.

    Article  Google Scholar 

  • Ramana, M. V., Ramprasad, T., Kamesh Raju, K. A., & Desa, M. (1993). Geophysical studies over a segment of the Carlsberg Ridge, Indian Ocean. Marine Geology, 115(1–2), 21–28.

    Article  Google Scholar 

  • Ray, D., Kamesh Raju, K. A., Baker, E. T., Srinivas Rao, A., Mudholkar, A. V., Lupton, J. E., Surya Prakash, L., Gawas, R. B., & Vijaya Kumar, T. (2012). Hydrothermal plumes over the Carlsberg Ridge, Indian Ocean. Geochemistry, Geophysics, Geosystems, 13(1), Q01009–Q01023.

    Article  Google Scholar 

  • Ray, D., Mirza, I. H., Prakash, L. S., Kaisary, S., Sarma, Y. V., Rao, B. R., Somayajulu, Y. K., Drolia, R. K., & Raju, K. K. (2009). Water-column geochemical anomalies associated with the remnants of a mega plume: A case study after CR-2003 hydrothermal event in Carlsberg Ridge, NW Indian Ocean. Current Science, 95(3), 355–360.

    Google Scholar 

  • Ray, D., Misra, S., & Banerjee, R. (2013). Geochemical variability of MORBs along slow to intermediate spreading Carlsberg-Central Indian Ridge, Indian Ocean. Journal of Asian Earth Sciences, 70–71, 125–141.

    Article  Google Scholar 

  • Ren, M. Y., Chen, J. P., Shao, K., & Zhang, S. (2016). Metallogenic information extraction and quantitative prediction process of seafloor massive sulfide resources in the Southwest Indian Ocean. Ore Geology Reviews, 76, 108–121.

    Article  Google Scholar 

  • Saha, A., Sensarma, S., Hazra, A., Ganguly, S., Peketi, A., Doley, B., & Mudholkar, A. V. (2020). Imprints of ancient recycled oceanic lithosphere in heterogeneous Indian Ocean mantle: Evidence from petrogenesis of Carlsberg Ridge basalts from Northwest Indian Ocean. Gondwana Research, 86, 60–82.

    Article  Google Scholar 

  • Sautya, S. A., Ingole, B., Jones, D. O. B., Ray, D., & Kamesh Raju, K. A. (2017). First quantitative exploration of benthic megafaunal assemblages on the mid-oceanic ridge system of the Carlsberg Ridge, Indian Ocean. Journal of the Marine Biological Association of the United Kingdom, 97(2), 409–417.

    Article  Google Scholar 

  • Sempéré, J. C., & Klein, E. M. (2013). New insights in crustal accretion expected from Indian Ocean spreading centers. Eos, Transactions, American Geophysical Union, 76(11), 113–116.

    Article  Google Scholar 

  • Shao, K. (2016). Quantitative prediction and evaluation of polymetallic sulfide mineral resources in the North Atlantic Ocean (pp. 1–82). China University of Geosciences (Beijing) (in Chinese with English abstract).

  • Shao, K., Chen, J. P., & Ren, M. Y. (2015). Evaluation methodology and indicator system of polymetallic sulfide mineral resources in the Indian Ocean. Advances in Earth Science, 30(7), 812–822. (in Chinese with English abstract).

    Google Scholar 

  • Singer, D. A. (2014). Base and precious metal resources in seafloor massive sulfide deposits. Ore Geology Reviews, 59, 66–72.

    Article  Google Scholar 

  • Tao, C. H., Chen, J. P., & Liao, S. L. (2019). Metallogenic prediction and resource estimation of polymetallic sulfide in mid-ocean ridge (pp. 1–204). Science Press (in Chinese).

  • Tao, C. H., Wu, G. H., Deng, X. M., Qiu, Z. Y., Han, C. H., & Long, Y. M. (2013). New discovery of seafloor hydrothermal activity on the Indian Ocean Carlsberg Ridge and Southern North Atlantic Ridge-progress during the 26th Chinese COMRA cruise. Acta Oceanologica Sinica, 32(8), 85–88.

    Article  Google Scholar 

  • Tian, J. H. (2001). Discussion on ore-forming fluid evolution and deposit genesis of Yongping copper deposit in Jiangxi Province (pp. 1–63). Nanjing University (in Chinese with English abstract).

  • Tomita, S. A., Koike, K., Goto, T., & Suzuki, K. (2020). Numerical simulation-based clarification of a fluid-flow system in a seafloor hydrothermal vent area in the Middle Okinawa Trough. Geophysical Research Letters, 47(20), 1–10.

    Article  Google Scholar 

  • Valsangkar, A. B., Borole, D. V., Shejwalkar, A. S., Kalangutkar, N. G., Fernandes, N. O., & Dias, C. C. (2009). Potential diagenetic and detrital sources for calcareous sediments from the Carlsberg Ridge, Indian Ocean. Current Science, 96(8), 1090–1099.

    Google Scholar 

  • Wang, S. J., Huang, J., & Zhai, S. K. (2021). Iron and sulfur isotopes of sulfides from the Wocan hydrothermal field, on the Carlsberg Ridge, Indian Ocean. Ore Geology Reviews, 133, 66.

    Article  Google Scholar 

  • Wang, Y., Chen, J. P., & Jia, D. H. (2020). Three-dimensional mineral potential mapping for reducing multiplicity and uncertainty: Kaerqueka polymetallic deposit, Qinghai province, China. Natural Resources Research, 29(1), 365–393.

    Article  Google Scholar 

  • Wang, Y., Han, X., Petersen, S., Frische, M., Qiu, Z., Li, H., Li, H., Wu, Z., & Cui, R. (2017). Mineralogy and trace element geochemistry of sulfide minerals from the Wocan hydrothermal field on the slow-spreading Carlsberg Ridge, Indian Ocean. Ore Geology Reviews, 84, 1–19.

    Article  Google Scholar 

  • Wang, Y., Han, X., Zhou, Y., Qiu, Z., Yu, X., Petersen, S., Li, H., Yang, M., Chen, Y., Liu, J., & Wu, X. (2021). The Daxi vent field: An active mafic-hosted hydrothermal system at a non-transform offset on the slow-spreading Carlsberg Ridge, 6°48′ N. Ore Geology Reviews, 129, 103888.

    Article  Google Scholar 

  • Wiseman J. D. H. (1937). Basalts from the Carlsberg Ridge, Indian Ocean. The John Murray Expedition (1933–1934) (1),1–28.

  • Xiao, K. Y., Zhang, X. H., Chen, Z. H., Song, G. Y., Ge, Y., Liu, D. L., Wang, S. L., Ning, S. N., & Cao, Y. (1999). Comparison of method of weights of evidence and information. Computing Techniques for Geophysical and Geochemical Exploration, 21(3), 223–227. (in Chinese with English abstract).

    Google Scholar 

  • Yang, W. F. (2017). Study of hydrothermal mineralization of Duanqiao hydrothermal field in Southwest Indian Ridge (Ph.D. thesis) (pp. 1–147). Zhejiang University (in Chinese with English abstract).

  • Yang, C., Han, X. Q., Wang, Y. J., Li, H. L., Qiu, Z. Y., & Wu, Z. C. (2018). Characteristics of the multibeam backscatter of Carlsberg Ridge (60°–61°E) and its indication on the tectonism and magmatism. Journal of Marine Sciences, 36(3), 37–49. (in Chinese with English abstract).

    Google Scholar 

  • Yang, Y., Yao, H. Q., & Deng, X. G. (2011). Application of gravity and magnetic methods in exploration of seafloor hydrothermal sulfide. Journal of Central South University, 42(z2), 127–134. (in Chinese with English abstract).

    Google Scholar 

  • Yang, Y. M., Shi, X. F., Liu, J. H., & Bu, W. R. (2007). The regional metallogenic evolution and controlling factors of seafloor hydrothermal sulfide. Acta Mineralogica Sinica, 27(Z1), 367–368. (in Chinese).

    Google Scholar 

  • You, Y. H., Yang, J. Z., Hu, M., & Yang, B. (2006). Application of prospecting-information contents method for minerogenetic prediction: A case study on prediction of lead-zinc-copper deposit in western Wudang area. Contributions to Geology and Mineral Resources Research, 21(1), 58–62. (in Chinese with English abstract).

    Google Scholar 

  • Yousefi, M. (2017a). Recognition of an enhanced multi-element geochemical signature of porphyry copper deposits for vectoring into mineralized zones and delimiting exploration targets in Jiroft area, SE Iran. Ore Geology Reviews, 83, 200–214.

    Article  Google Scholar 

  • Yousefi, M. (2017b). Analysis of zoning pattern of geochemical indicators for targeting of porphyry-Cu mineralization: A pixel-based mapping approach. Natural Resources Research, 26(4), 429–441.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2015a). Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping. Computers & Geosciences, 74, 97–109.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2015b). Prediction-area (P-A) plot and C-A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Computers & Geosciences, 79, 69–81.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2015c). Geometric average of spatial evidence data layers: A GIS-based multi-criteria decision-making approach to mineral prospectivity mapping. Computers & Geosciences, 83, 72–79.

    Article  Google Scholar 

  • Yousefi, M., Carranza, E. J. M., Kreuzer, O. P., Nykänen, V., Hronsky, J. M. A., & Mihalasky, M. J. (2021). Data analysis methods for prospectivity modelling as applied to mineral exploration targeting: State-of-the-art and outlook. Journal of Geochemical Exploration, 229, 106839.

    Article  Google Scholar 

  • Yousefi, M., Kreuzer, O. P., Nykänen, V., & Hronsky, J. M. A. (2019). Exploration information systems—A proposal for the future use of GIS in mineral exploration targeting. Ore Geology Reviews, 111, 103005.

    Article  Google Scholar 

  • Yousefi, M., & Nykänen, V. (2016). Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral prospectivity mapping. Journal of Geochemical Exploration, 164, 94–106.

    Article  Google Scholar 

  • Yousefi, M., & Nykänen, V. (2017). Introduction to the special issue: GIS-based mineral potential targeting. Journal of African Earth Sciences, 12, 1–4.

    Article  Google Scholar 

  • Yu, X., Han, X. Q., Qiu, Z. Y., Wang, Y. J., & Tang, L. M. (2019). Definition of Northwest Indian Ridge and its geologic and tectonic signatures. Earth Science, 44(2), 626–639. (in Chinese with English abstract).

    Google Scholar 

  • Yu, Z. H., Li, H. M., Li, M. X., & Zhai, S. K. (2018). Hydrothermal signature in the axial-sediments from the Carlsberg Ridge in the Northwest Indian Ocean. Journal of Marine Systems, 180, 173–181.

    Article  Google Scholar 

  • Zhang, Z., Zuo, R., & Xiong, Y. (2016). A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China. Science China Earth Science, 59, 556–572.

    Article  Google Scholar 

  • Zong, T., Han, X., Liu, J., Wang, Y., Qiu, Z., Li, H., & Yu, X. (2019). H2O in basaltic glasses from the slow-spreading Carlsberg Ridge: Implications for mantle source and magmatic processes. Lithos, 332, 274–286.

    Article  Google Scholar 

  • Zong, T., Han, X. Q., Liu, J. Q., Wang, Y. J., Qiu, Z. Y., & Yu, X. (2020). Fractional crystallization processes of magma beneath the Carlsberg Ridge (57°–65°E). Journal of Oceanology & Limnology, 38(1), 75–92.

    Article  Google Scholar 

  • Zou, Z. Y. (2016). Evolution of the NW Indian Ocean Carlsberg Ridge and response of global change (pp. 1–61). China University of Geosciences (in Chinese with English abstract).

  • Zuo, R. (2020). Geodata Science-based mineral prospectivity mapping: A review. Natural Resources Research, 29, 3415–3424.

    Article  Google Scholar 

  • Zuo, R., & Carranza, E. J. M. (2011). Support vector machine: A tool for mapping mineral prospectivity. Computers & Geosciences, 37, 1967–1975.

    Article  Google Scholar 

  • Zuo, R., Kreuzer, O. P., Wang, J., Xiong, Y., Zhang, Z., & Wang, Z. (2021). Uncertainties in GIS-based mineral prospectivity mapping: Key types, potential impacts and possible solutions. Natural Resources Research, 30(5), 3059–3079.

    Article  Google Scholar 

  • Zuo, R., & Wang, Z. (2020). Effects of random negative training samples on mineral prospectivity mapping. Natural Resources Research, 29, 3443–3455.

    Article  Google Scholar 

  • Zuo, R., Xiong, Y., Wang, J., & Carranza, E. J. M. (2019). Deep learning and its application in geochemical mapping. Earth-Science Reviews, 192, 1–14.

    Article  Google Scholar 

Download references

Acknowledgments

We sincerely thank Editor-in-Chief doctor John Carranza, associated editor professor Renguang Zuo, and the two reviewers Yong Yang and Mahyar Yousefi for their constructive suggestions which significantly improved the quality of manuscript. We also thank researcher Xiqiu Han, doctor Honglin Li, doctor Lushi Liu, and doctor Mengyi Ren for their help.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Chen.

Ethics declarations

Conflict of Interest

No.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Y., Chen, J. & Zhang, Q. Positional Prediction of Undiscovered Seafloor Massive Sulfide Resources on Carlsberg Ridge, Northwest Indian Ocean. Nat Resour Res 32, 57–78 (2023). https://doi.org/10.1007/s11053-022-10148-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-022-10148-2

Keywords

Navigation