Skip to main content
Log in

Multi-scale Quantitative Risk Analysis of Seabed Minerals: Principles and Application to Seafloor Massive Sulfide Prospects

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The potential for mining hydrothermal mineral deposits on the seafloor, such as seafloor massive sulfides, has become technically possible, and some companies (currently not many) are considering their exploration and development. Yet, no present methodology has been designed to quantify the ore potential and assess the risks relative to prospectivity at prospect and regional scales. Multi-scale exploration techniques, similar to those of the play analysis that are used in the oil and gas industry, can help to fulfill this task by identifying the characteristics of geologic environments indicative of ore-forming processes. Such characteristics can represent a combination of, e.g., heat source, pathway, trap and reservoir that all dictate how and where ore components are mobilized from source to deposition. In this study, the understanding of these key elements is developed as a mineral system, which serves as a guide for mapping the risk of the presence or absence of ore-forming processes within the region of interest (the permissive tract). The risk analysis is carried out using geoscience data, and it is paired with quantitative resource estimation analysis to estimate the in-place mineral potential. Resource estimates are simulated stochastically with the help of available data (bathymetric features in this study), conventional grade–tonnage models and Monte Carlo simulation techniques. In this paper, the workflow for a multi-scale quantitative risk analysis, from the definition to the evaluation of a permissive tract and related prospect(s), is described with the help of multi-beam data of a known hydrothermal vent site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Notes

  1. A global database of active submarine hydrothermal vent fields (https://vents-data.interridge.org/).

  2. A decision support software for risk, resource and economic evaluation of exploration projects, licensed by Schlumberger Ltd. (https://www.software.slb.com/products/geox).

  3. Document available online at http://www.ccop.or.th/assets/publication_digital/2912004_4_pdf.pdf.

References

  • Allen, P. A., & Allen, J. R. (2013). Basin analysis: Principles and application to petroleum play assessment (3rd ed., p. 632p). Somerset, NJ: Wiley.

    Google Scholar 

  • Attanasi, E. D., & Freeman, P. A. (2009). Economics of undiscovered oil and gas in the North Slope of Alaska; Economic update and synthesis: U.S. Geological Survey Open-File Report 2009–1112. https://pubs.usgs.gov/of/2009/1112/pdf/ofr2009-1112.pdf.

  • Baddeley, M. C., Curtis, A., & Wood, R. (2004). An introduction to prior information from probabilistic judgements: elicitation of knowledge, cognitive bias and herding. In A. Curtis & R. Wood (Eds.), Geological prior information: Informing science and engineering (Vol. 239, pp. 15–27). London: Geological Society.

    Google Scholar 

  • Baker, E. T., & German, C. R. (2004). On the global distribution of hydrothermal vent fields. In C. R. German, et al. (Eds.), Mid-ocean ridges: Hydrothermal interactions between the lithosphere and oceans (Vol. 148). Washington: AGU Geophysical Monograph Series.

    Google Scholar 

  • Baker, E. T., McDuff, R. E., & Massoth, G. J. (1990). Hydrothermal Venting from the Summit of a Ridge Axis Seamount: Axial Volcano, Juan de Fuca Ridge. Journal of Geophysical Research, 95, 12843–12854.

    Article  Google Scholar 

  • Bani-Hassan, N., Iyer, K., Rüpke, L. H., & Borgia, A. (2012). Controls of bathymetric relief on hydrothermal fluid flow at mid-ocean ridges. Geochemistry, Geophysics, Geosystems, 13(5), 1525–2027.

    Google Scholar 

  • Beaulieu, S. E., Baker, E. T., German, C. R., & Maffei, A. (2013). An authoritative global database for active submarine hydrothermal vent fields. Geochemistry, Geophysics, Geosystems, 14, 4892–4905.

    Article  Google Scholar 

  • Bruvoll, V., Breivik, A. J., Mjelde, R., & Pedersen, R. B. (2009). Burial of the Mohn-Knipovich seafloor spreading ridge by the Bear Island Fan: Time constraints on tectonic evolution from seismic stratigraphy, Tectonic of the Mohn/Knipovich Bend. Tectonics, 28, TC4001.

  • Butterfield, D. A., Jonasson, I. R., Massoth, G. J., Feely, R. A., Roe, K. K., Embley, R. E., et al. (1997). Seafloor eruptions and evolution of hydrothermal fluid chemistry. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 355, 369–386.

    Article  Google Scholar 

  • Canavan, F. (1973). Notes on the terms ‘stratiform’, ‘stratabound’ and ‘stratigraphic control’ as applied to mineral deposits. Australian Journal of Earth Sciences, 19(4), 543–546.

    Google Scholar 

  • Cannat, M., Mangeney, A., Ondréas, H., Fouquet, Y., & Normand, A. (2013). High-resolution bathymetry reveals contrasting landslide activity shaping the walls of the Mid-Atlantic Ridge axial valley. Geochemistry, Geophysics, Geosystems, 14(4), 996–1011. https://doi.org/10.1002/ggge.20056.

    Article  Google Scholar 

  • Carbotte, S. M., Solomon, A., & Ponce-Correa, G. (2000). Evaluation of morphological indicators of magma supply and segmentation from a seismic reflection study of the East Pacific Rise 15°30′–17°N. Journal of Geophysical Research, 105(B2), 2737–2759.

    Article  Google Scholar 

  • Caress, D. W., Thomas, H., Kirkwood, W. J., McEwen, R., Henthorn, R., Clague, D. A., et al. (2008). High-resolution multibeam, sidescan and subbottom surveys using the MBARI AUV D. Allan B. In J. R. Reynolds & H. G. Greene (Eds.), Marine habitat mapping technology for Alaska (pp. 47–69). Fairbanks: Alaska Sea Grant College Program.

    Google Scholar 

  • Cherkashov, G., Beltenev, V., Ivanov, V., Lazareva, L., Samovarov, M., Shilov, V., et al. (2008). Two new hydrothermal fields at the Mid-Atlantic Ridge. Marine Georesources and Geotechnology, 26, 308–316. https://doi.org/10.1080/10641190802400708.

    Article  Google Scholar 

  • Cherkashov, G., Kuznetsov, V., Kuksa, K., Tabuns, E., Maksimov, F., & Bel’tenev, V. (2016). Sulfide geochronology along the Northern Equatorial Mid-Atlantic Ridge. Ore Geology Review, 87, 147–154.

    Article  Google Scholar 

  • Clague, D. A., Moore, J. G., & Reynolds, J. R. (2000). Formation of submarine flat-topped volcanic cones in Hawai’i. Bulletin of volcanology, 62(3), 214–233.

    Article  Google Scholar 

  • Clague, J. J., & Stead, D. (2012). Landslides: types, mechanism and modeling (pp. 345–358). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Cox, D. P., & Singer, D. A. (1986). Mineral deposit models. U.S. Geological Survey Bulletin, 1693, 318–348.

    Google Scholar 

  • Curewitz, D., & Karson, J. A. (1997). Structural settings of hydrothermal outflow: Fracture permeability maintained by fault propagation and interaction. Journal of Volcanology and Geothermal Research, 79(3–4), 149–168.

    Article  Google Scholar 

  • Dauteuil, O., & Brun, J. P. (1996). Deformation partitioning in a slow spreading ridge undergoing oblique extension: Mohns Ridge, Norwegian Sea. Tectonics, 15, 870–884.

    Article  Google Scholar 

  • Davis, E. E., Mottl, M. J., Fisher, A., et al. (1992). Proceedings of the Ocean Drilling Program, initial reports (139th ed., p. 1026). College Station, TX: Ocean Drilling Program.

    Google Scholar 

  • de Moustier, C., & Kleinrock, M. C. (1986). Bathymetric artifacts in Sea Beam data: how to recognize them and what causes them. Journal of Geophysical Research, 91, 3407–3424.

    Article  Google Scholar 

  • Delaney, J. R., Robigou, V., McDuff, R. E., & Tivey, M. K. (1992). Geology of a vigorous hydrothermal system on the Endeavour segment, Juan de Fuca Ridge. Journal of Geophysical Research, 97, 19663–19682.

    Article  Google Scholar 

  • deMartin, B. J., Sohn, R. A., Canales, J. P., & Humphris, S. E. (2007). Kinematics and geometry of active detachment faulting beneath the Trans-Atlantic Geotraverse (TAG) hydrothermal field on the Mid-Atlantic Ridge. Geology, 35, 711–714.

    Article  Google Scholar 

  • Dick, H. J. B., Natland, J. H., Alt, J. C., Bach, W., Bideau, D., Gee, J. S., et al. (2000). A long in situ section of the lower ocean crust: Results of ODP Leg 176 drilling at the Southwest Indian Ridge. Earth and Planetary Science Letters, 179, 31–51.

    Article  Google Scholar 

  • Duff, B. A., & Hall, D. (1996). A model-based approach to evaluation of exploration opportunities. In A. G. Doré & R. Sinding-Larsen (Eds.), Quantification and prediction of petroleum resources. NPF Special Publication (Vol. 6, pp. 183–198). Amsterdam: Elsevier.

    Google Scholar 

  • Dutton, S. P., Kim, E. M., Broadhead, R. F., Raatz, W., Breton, C., & Ruppel, S. C., et al. (2003). Play analysis and digital portfolio of major oil reservoirs in the Permian Basin: Application and transfer of advanced geological and engineering technologies for incremental production opportunities. The University of Texas at Austin, Bureau of Economic Geology, and New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, annual report prepared for U.S. Department of Energy. https://www.osti.gov/servlets/purl/825581. Accessed 3 Nov 2018.

  • Dvorak, D. H., Hedin, R. S., Edenborn, H. M., & McIntire, P. E. (1992). Treatment of metal-contaminated water using bacterial sulfate reduction: results from pilot-scale reactors. Biotechnology and Bioengineering, 40, 609–616.

    Article  Google Scholar 

  • Ehrlich, H. L. (1999). Microbes as geologic agents: Their role in mineral formation. Geomicrobiology Journal, 16, 135–153.

    Article  Google Scholar 

  • Escartin, J., Smith, D. K., Cann, J., Shouten, H., Langmuir, C. L., & Escrig, S. (2008). Central role of detachment faults in accretion of slow spreading oceanic lithosphere. Nature, 455, 790–794.

    Article  Google Scholar 

  • Ferrario, A., & Garuti, G. (1980). Copper deposits in the basal breccias and volcano-sedimentary sequences of the eastern Ligurian ophiolites (Italy). Mineralium Deposita, 15, 291–303.

    Article  Google Scholar 

  • Firstova, A., Stepanova, T., Cherkashov, G., Goncharov, A., & Babaeva, S. (2016). Composition and formation of gabbro-peridotite hosted seafloor massive sulfide deposits from the Ashadze-1 hydrothermal field Mid-Atlantic Ridge. Minerals, 6, 19.

    Article  Google Scholar 

  • Fisher, A. T., Becker, K., & Narasimhan, T. N. (1994). Off-axis hydrothermal circulation: parametric tests of a refined model of processes at Deep Sea Drilling Project/Ocean Drilling Program site 504. Journal of Geophysical Research, 99, 3097–3121.

    Article  Google Scholar 

  • Fouquet, Y., Auclair, G., Cambon, P., & Etoubleau, J. (1988). Geological setting and mineralogical and geochemical investigations on sulfide deposits near 13°N on the East Pacific Rise. Marine Geology, 84, 143–178.

    Article  Google Scholar 

  • Fouquet, Y., Cambon, P., Etoubleau, J., Charlou, J. L., Ondreas, H., Barriga, F. J. A. S., et al. (2010). Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and ultramafic-hosted mineralization: A new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit. Article in Geophysical Monograph Series, 188, 321–367.

    Google Scholar 

  • Fouquet, Y., Wafik, A., Cambon, P., Mevel, C., Meyer, G., & Gente, P. (1993). Tectonic setting and mineralogical and geochemical zonation in the Snakepit sulphide deposit (Mid-Atlantic Ridge at 23°N). Economic Geology, 88, 2018–2036.

    Article  Google Scholar 

  • Fouquet, Y., Zierenberg, R. A., Miller, D. J., Bahr, J. M., Baker, P. A., Bjerkgård, T., et al. (1998). Investigation of hydrothermal circulation and genesis of massive sulfide deposits at sediment-covered spreading centers at Middle Valley and Escanaba trough. Proceedings of the Ocean Drilling Program. Initial Reports, 169, 7–16.

    Google Scholar 

  • Galley, A. G., Hannington, M., & Jonasson, I. (2007). Volcanogenic massive sulphide deposits. In W. D. Goodfellow (Ed.), Mineral deposits of Canada - A synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods (Vol. 5, pp. 141–161). London: Geological Association of Canada, Mineral Deposits Division.

    Google Scholar 

  • Garuti, G., Alfonso, P., Zaccarini, F., & Proenza, J. A. (2009). Sulfur-isotope variations in sulfide minerals from massive sulfide deposits of the northern Apennine ophiolites: inorganic and biogenic constraints. Ofioliti, 34, 43–62.

    Google Scholar 

  • Garuti, G., Bartoli, O., Scacchetti, M., & Zaccarini, F. (2008). Geological setting and structural styles of Volcanic Massive Sulfide deposits in the northern Apennines (Italy): Evidence for seafloor and subseafloor hydrothermal activity in unconventional ophiolites of the Mesozoic Tethys. Boletín de la Sociedad Geológica Mexicana, 60, 121–145.

    Article  Google Scholar 

  • Garuti, G., & Zaccarini, F. (2005). Minerals of Au, Ag And U in volcanic-rock-associated massive sulfide deposits of the Northern Apennine Ophiolite (Italy). Canadian Mineralogist, 43, 935–950.

    Article  Google Scholar 

  • Gautier, D. L., Dolton, G. L., Takahashi, K. I., & Varnes, K. L. (1995). National assessment of US oil and gas resources. Overview of the 1995 national assessment. Results, methodology, and supporting data: US Geological Survey Digital Data Series 30 (available online).

  • Géli, L., Renard, V., & Rommevaux, C. (1994). Ocean crust formation processes at very slow spreading centers: A model for the Mohns Ridge, near 72°N, based on magnetic, gravity, and seismic data. Journal of Geophysical Research, 99, 2995–3013.

    Article  Google Scholar 

  • German, C. R., & Von Damm, K. L. (2004). Hydrothermal processes. In H. D. Holland, K. K. Turekian, & H. Elderfield (Eds.), Treatise on geochemistry (Vol. 6, pp. 181–222)., The oceans and marine geochemistry Oxford: Elsevier-Pergamon.

    Google Scholar 

  • Gillis, K. M. (2003). Subseafloor geology of hydrothermal root-zones at oceanic spreading centers. In P. E. Halbach, V. Tunnicliffe, & J. R. Hein (Eds.), Energy and mass. Transfer in marine hydrothermal systems (pp. 53–70). Berlin: Dahlem University Press.

    Google Scholar 

  • Gràcia, E., Bideau, D., Hekinian, R., Lagabfielle, Y., & Parson, L. M. (1997). Along-axis magmatic oscillations and exposure of ultramafic rocks in a second-order segment of the Mid-Atlantic Ridge (33°43′N to 34°07′N). Geology, 25, 1059–1062.

    Article  Google Scholar 

  • Grant, S., Milton, N., & Thompson, M. (1996). Play fairway analysis and risk mapping: an example using the Middle Jurassic Brent Group in the northern North See. In A. G. Doré & R. Sinding-Larsen (Eds.), Quantification and prediction of petroleum resources. NPF Special Publication (Vol. 6, pp. 167–181). London: Elsevier.

    Google Scholar 

  • Hagemann, S. G., Lisitsin, V. A., & Huston, D. L. (2016). Mineral system. Analysis: Quo Vadis. Ore Geology Reviews, 76, 504–522.

    Article  Google Scholar 

  • Hall, J. M., & Yang, J. S. (1994). A preferred environment of preservation for volcanic massive sulfide deposits in Troodos Ophiolite (Cyprus). Economic Geology, 89, 851–857.

    Article  Google Scholar 

  • Hannington, M. D., de Ronde, C. E. J., & Petersen, S. (2005). Sea-floor tectonics and submarine hydrothermal systems. In J. W. Hedenquist, J. F. H. Thompson, R. J. Goldfarb, & J. P. Richards (Eds.), Economic geology one hundredth Anniversary (pp. 111–141). Littleton: Society of Economic Geologists.

    Google Scholar 

  • Hannington, M. D., Galley, A. G., Herzig, P. M., & Petersen, S. (1998). Comparison of the TAG mound and stockwork complex with Cyprus-type massive sulphide deposits. Proceedings of the Ocean Drilling Program. Scientific Results, 158, 389–415.

    Google Scholar 

  • Hannington, M. D., Jamieson, J., Monecke, T., & Petersen, S. (2010). Modern sea-floor massive sulfides and base metal resources: toward an estimate of global sea-floor massive sulfide potential. Special Publication Society of Economic Geology, 15, 317–338.

    Google Scholar 

  • Hannington, M. D., Jamieson, J., Monecke, T., Petersen, S., & Beaulieu, S. (2011). The abundance of seafloor massive sulfide deposits. Geology, 39(12), 1155–1158.

    Article  Google Scholar 

  • Haymon, R., Fornari, D., Von Damm, K., Lilley, M. D., Perfit, M. R., Edmond, J. M., et al. (1993). Volcanic eruption of the mid-ocean ridge along the East Pacific Rise at 9°45–52′N: Direct submersible observation of seafloor phenomena associated with an eruption event in April 1991. Earth and Planetary Science Letters, 119, 85–101.

    Article  Google Scholar 

  • Honsho, C., Ura, T., Asada, A., Kim, K., & Nagahashi, K. (2015). High-resolution acoustic mapping to understand the ore deposit in the Bayonnaise knoll caldera, Izu-Ogasawara arc. Journal of Geophysical Research, Solid Earth, 120, 2070–2092.

    Article  Google Scholar 

  • Hronsky, J. M. A., & Groves, D. (2008). Science of targeting: definition, strategies, targeting and performance measurement. Australian Journal of Earth Sciences, 55, 3–12.

    Article  Google Scholar 

  • Humphris, S. E., Fornari, D., Scheirer, D., German, C. R., & Parson, L. M. (2002). Geotectonic setting of hydrothermal activity on the summit of Lucky Strike Seamount (37°17′N) (Mid-Atlantic Ridge). Geochemistry, Geophysics, Geosystems, 3(8), 1.

    Article  Google Scholar 

  • Jamieson, J. W., Clague, D. A., & Hannington, M. D. (2014). Hydrothermal sulfide accumulation along the Endeavour Segment, Juan de Fuca Ridge. Earth and Planetary Science Letters, 395, 136–148.

    Article  Google Scholar 

  • Johnson, H. P., Karsten, J. L., Vine, F. J., Smith, G. C., & Schonharting, G. (1982). A low-level magnetic survey over a massive sulfide ore body in the Troodos ophiolite complex, Cyprus. Marine Technology Society Journal, 16, 76.

    Google Scholar 

  • Jones, R. M., & Hillis, R. R. (2003). An integrated, quantitative approach to assessing fault-seal risk. AAPG Bulletin, 87, 507–24. Earth-Science Reviews, 150, 453–476.

    Google Scholar 

  • Juliani, C., & Ellefmo, S. L. (2018). Probabilistic estimates of permissive areas for undiscovered seafloor massive sulfide deposits on an Arctic Mid-Ocean Ridge. Ore Geology Reviews, 95, 917–930.

    Article  Google Scholar 

  • Karson, J. A., & Rona, P. A. (1990). Block-tilting, transfer faults and structural control of magmatic and hydrothermal processes in the TAG area, Mid-Atlantic Ridge 26°N. Geological Society of America Bulletin, 102, 1635–1645.

    Article  Google Scholar 

  • Kawada, Y., & Kasaya, T. (2017). Marine self-potential survey for exploring seafloor hydrothermal ore deposits. Scientific Reports, 7, 13552.

    Article  Google Scholar 

  • Kent, G. M., Singh, S. C., Harding, A. J., Sihna, M. C., Orcutt, J. A., Barton, P. J., et al. (2000). Evidence from three-dimensional seismic reflectivity images for enhanced melt supply beneath mid-ocean ridge discontinuities. Nature, 406, 614–618.

    Article  Google Scholar 

  • Knox-Robinson, C., & Wyborn, L. A. I. (1997). Towards a holistic exploration strategy: using geographic information systems as a tool to enhance exploration. Australian Journal of Earth Sciences, 44, 453–463.

    Article  Google Scholar 

  • Koski, R. A., Benninger, L. M., Zierenberg, R. A., & Jonasson, I. R. (1994). Composition and growth history of hydrothermal deposits in Escanaba Trough, southern Gorda Ridge. In J. L. Morton, R. A. Zierenberg, & C. A. Riess (Eds.), Geologic, Hydrothermal, and Biologic Studies at Escanaba Trough, Gorda Ridge, Offshore Northern California (Vol. 2022, pp. 293–324). London: U.S. Geological Survey Bulletin.

    Google Scholar 

  • Koski, R. A., Lonsdale, P. F., Shanks, W. C., Berndt, M. E., & Howe, S. S. (1985). Mineralogy and geochemistry of a sediment hosted hydrothermal sulfide deposit from the southern trough of Guaymas basin, Gulf of California. Journal of Geophysical Research, 90, 6695–6707.

    Article  Google Scholar 

  • Koski, R. A., Shanks, W. C., III, Bohrson, W. A., & Oscarson, R. L. (1988). The composition of massive sulfide deposits from the sediment-covered floor of Escanaba Trough, Gorda Ridge: implications for depositional processes. Canadian Mineralogist, 26, 655–673.

    Google Scholar 

  • Labrenz, M., Druschel, G. K., Thomsen-ebert, T., et al. (2000). Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science, 290, 1744–1747.

    Article  Google Scholar 

  • Lalou, C., Reyss, J. L., Brichet, E., Rona, P. A., & Thompson, G. (1995). Hydrothermal activity on a 105-year scale at a slow-spreading ridge. TAG hydrothermal field, Mid-Atlantic Ridge 26°N. Journal of Geophysical Research, 100, 17855–17862.

    Article  Google Scholar 

  • Langmuir, C. H., Humphris, S., Fornari, D., Van Dover, C., Von Damm, K., Tivey, M. K., et al. (1997). Hydrothermal vents near a mantle hot-spot: the Lucky Strike vent field at 37°N on the Mid-Atlantic Ridge. Earth and Planetary Science Letters, 148, 69–91.

    Article  Google Scholar 

  • Lavier, L., Buck, W. R., & Poliakov, A. (1999). Self-consistent rolling-hinge model for the evolution of large-onset low-angle normal faults. Geology, 27, 1127–1130.

    Article  Google Scholar 

  • Lawson, K., Searle, R. C., Pearce, J. A., Browning, P., & Kempton, P. (1996). Detailed volcanic geology of the MARNOK area, Mid-Atlantic Ridge north of Kane transform. In C. J. MacLeod, P. A. Tyler, & C. L. Walker (Eds.), Tectonic, magmatic, hydrothermal and biological segmentation of Mid-Ocean Ridges (Vol. 118, pp. 61–102). London: Geological Society.

    Google Scholar 

  • Lilley, M. D., Butterfield, D. A., Lupton, J. E., & Olson, E. J. (2003). Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature, 422, 878–881.

    Article  Google Scholar 

  • Lipton, I. (2008). Mineral resource estimate, Solwara 1 project, Bismarck Sea, Papua New Guinea, Canadian NI 43-101 Technical Report for Nautilus Minerals Inc., 277 p.

  • Lipton, I. L. (2012). Mineral Resource Estimate, Solwara 1 Project, Bismark Sea, Papua New Guinea. Technical Report compiled under NI140-101, 1-240.

  • Lisitsyn, A. P., Bogdanov, Y. A., Zonenshayn, L. P., Kuz’min, M. I., & Sagalevich, A. M. (1989). Hydrothermal phenomena in the Mid-Atlantic Ridge at Lat. 26°N (TAG hydrothermal field). International Geology Review, 31, 1183–1198.

    Article  Google Scholar 

  • Ludvigsen, M., Aasly, K., Ellefmo, S. L., Hilário, A., Ramirez-Llodra, E., & Søreide, F. X., et al. (2016). MarMine cruise report: Arctic Mid-Ocean Ridge 15.08.2016–05.09.2016. https://brage.bibsys.no/xmlui/handle/11250/2427715. Accessed 3 Nov 2018.

  • McAllister, E., & Cann, J. (1996). Initiation and evolution of boundary wall faults along the Mid-Atlantic Ridge, 25-29°N. In C. J. MacLeod, P. A. Tyler, & C. L. Walker (Eds.), Tectonic, magmatic, hydrothermal and biological segmentation of mid-ocean ridges (Vol. 118, pp. 29–48). London: Geological Society Special Publication.

    Google Scholar 

  • McCaig, A. M., Cliff, R. A., Escartin, J., Fallick, A. E., & MacLeod, C. J. (2007). Oceanic detachment faults focus very large volumes of black smoker fluid. Geology, 35, 935–938.

    Article  Google Scholar 

  • McCuaig, T. C., & Hronsky, J. M. A. (2014). The mineral system concept: The key to exploration targeting. Society of Economic Geologists Special Publication, 18, 153–175.

    Google Scholar 

  • Melchert, B., Devey, C. W., German, C. R., Lackschewitz, K. S., Seifert, R., Walter, M., et al. (2008). First evidence for high-temperature off-axis venting of deep crustal/mantle heat: The Nibelungen hydrothermal field, southern Mid-Atlantic Ridge. Earth and Planetary Science Letters, 275(1–2), 61–69.

    Article  Google Scholar 

  • Milkov, A. V. (2015). Risk tables for less biased and more consistent estimation of probability of geological success (pos) for segments with conventional oil and gas prospective resources. Earth-Science Reviews, 150, 453–476.

    Article  Google Scholar 

  • Miller, K. A., Thompson, K. F., Johnston, P., & Santillo, D. (2018). An overview of seabed mining including the current state of development, environmental impacts and knowledge gaps. Frontiers in Marine Science, 4, 418.

    Article  Google Scholar 

  • Mills, R. A., Teagle, D. A. H., & Tivey, M. K. (1998). Fluid mixing and anhydrite precipitation within the TAG mound. In P. M. Herzig, S. E. Humphris, D. J. Miller, & R. A. Zierenberg (Eds.), Proceedings from the Oceanic Drilling Program Scientific Results (vol. 158, pp. 119–127). College Station, TX: Ocean Drilling Program, Texas A&M University.

  • Mills, R. A., & Tivey, M. K. (1999). Sea water entrainment and fluid evolution within the TAG hydrothermal mound: evidence from analyses of anhydrite. In J. R. Cann, H. Elderfield, & A. Laughton (Eds.), Mid-Ocean Ridges (pp. 225–263). Cambridge: The Royal Society.

    Chapter  Google Scholar 

  • Mosar, J., Lewis, G., & Torsvik, T. H. (2002). North Atlantic sea-floor spreading rates: implications for the Tertiary development of inversion structures of the Norwegian-Greenland Sea. Journal of the Geological Society, London, 159, 503–515.

    Article  Google Scholar 

  • Mosier, D. L., Berger, V. I., & Singer, D. A. (2009). Volcanogenic massive sulfide deposits of the world: Database and grade and tonnage models. Open-File Report 2009-1034, U.S. Department of the Interior/U.S. Geological Survey, 50 p.

  • Murton, B. J., & Rona, P. A. (2015). Carlsberg Ridge and Mid-Atlantic Ridge: Comparison of slow-spreading centre analogues. Deep Sea Research II, Topical Studies in Oceanography, 32, 71–84.

    Article  Google Scholar 

  • Mutton, B. J., Klinkhammer, G., Becker, K., Briais, A., Edge, D., Hayward, N., et al. (1994). Direct measurements of the distribution and occurrence of hydrothermal activity between 27 and 30 degrees north on the Mid-Atlantic Ridge. Earth and Planetary Science Letters, 125, 119–128.

    Article  Google Scholar 

  • Norwegian Petroleum Directorate (NPD). (2017). The Shelf in 2017. http://www.npd.no/Global/Engelsk/1-Whats-new/News/The-Shelf-2017/Sokkelaret2017-samlet-E.pdf. Accessed 3 Nov 2018.

  • Ondréas, H., Cannat, M., Fouquet, Y., Normand, A., Sarradin, P. M., & Sarrazin, J. (2009). Recent volcanic events and the distribution of hydrothermal venting at the Lucky Strike hydrothermal field, Mid-Atlantic Ridge, Geochemistry, Geophysics. Geosystems, 10, Q02006. https://doi.org/10.1029/20086C002171.

    Article  Google Scholar 

  • Otis, R. M., & Schneidermann, N. (1997). A process for evaluating exploration prospects. AAPG Bulletin, 81, 1087–1109.

    Google Scholar 

  • Parsons, T., & Thompson, G. A. (1993). Does magmatism influence low-angle normal faulting? Geology, 21, 247–250.

    Article  Google Scholar 

  • Pedersen, R. B., Thorseth, I. H., Nygård, T. E., Lilley, M. D., & Kelley, D. S. (2010). Hydrothermal activity at the Arctic Mid-Ocean Ridges. In P. A. Rona, C. W. Devey, J. Dyment, & B. J. Murton (Eds.), Geophysical monograph series (pp. 67–89). Washington, D.C.: American Geophysical Union.

    Google Scholar 

  • Petersen, S., Kuhn, L., Kuhn, T., Augusting, N., Hekinian, R., Franz, L., et al. (2009). The geological setting of the ultramafic-hosted Logatchev hydrothermal field (14°45′N, Mid-Atlantic Ridge) and its influence on massive sulfide formation. Lithos, 112, 40–56.

    Article  Google Scholar 

  • Reed, M. H., & Palandri, J. (2006). Sulfide mineral precipitation from hydrothermal fluids. Reviews in Mineralogy and Geochemistry, 61, 609–631.

    Article  Google Scholar 

  • Reston, T. J., & Ranero, C. R. (2011). The 3-D geometry of detachment faulting at mid-ocean ridges. Geochemistry, Geophysics, Geosystems, 12(7), Q0AG05.

    Article  Google Scholar 

  • Rona, P. A., Hannington, M. D., Raman, C. V., Thompson, G., Tivey, M. K., Humphris, S. E., et al. (1993). Active and relict seafloor hydrothermal mineralization at the TAG hydrothermal field, Mid-Atlantic Ridge. Economic Geology, 88, 1987–2013.

    Google Scholar 

  • Rose, P. R. (2001). Risk analysis and management of petroleum exploration ventures. AAPG Methods in Exploration Series, 12, 164.

    Google Scholar 

  • Rubin, A. M. (1992). Dike-induced faulting and graben subsidence in volcanic rift zones. Journal of Geophysical Research, 97, 1839–1858.

    Article  Google Scholar 

  • Rubin, A. M., & Pollard, D. D. (1988). Dike-induced faulting in rift zones of Iceland and Afar. Geology, 16, 413–417.

    Article  Google Scholar 

  • Rubin, K. H., Soule, S. A., Chadwick, W. W., Fornari, D. J., Clague, D. A., Embley, R. W., et al. (2012). Volcanic eruptions in the deep sea. Oceanography, 25, 142–157. https://doi.org/10.5670/oceanog.2012.12.

    Article  Google Scholar 

  • Scheirer, D. S., & Macdonald, K. C. (1993). Variation in cross-sectional area of the axial ridge along the East Pacific Rise: Evidence for the magmatic budget of a fast spreading center. Journal of Geophysical Research, 98, 7871–7885.

    Article  Google Scholar 

  • Schiozer, D. J., Ligero, E. L., & Santos, J. A. M. (2004). Risk assessment for reservoir development under uncertainty. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 26(2), 213–217.

    Article  Google Scholar 

  • Schlindwein, V., Demuth, A., Korger, E., Läderach, C., & Schmid, F. (2015). Seismicity of the Arctic mid-ocean ridge system. Polar Science, 9(1), 146–157.

    Article  Google Scholar 

  • Schroeder, T., John, B. E., & Frost, B. R. (2002). Geologic implications of seawater circulation through peridotite exposed at slow spreading mid-ocean ridges. Geology, 30, 367–370.

    Article  Google Scholar 

  • Seyfried, W. E., Seewald, J. S., Berndt, M. E., Ding, K., & Foustoukos, D. I. (2003). Chemistry of hydrothermal vent fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: Geochemical controls in the aftermath of June 1999 seismic events. Journal of Geophysical Research, 108(B9), 2429. https://doi.org/10.1029/2002JB001957.

    Article  Google Scholar 

  • Singer, D. A. (1993). Basic concepts in three-part quantitative assessments of undiscovered mineral resources. Non-Renewable Resources, 2(2), 69–81.

    Article  Google Scholar 

  • Singer, D. A. (2008). Mineral deposit densities for estimating mineral resources. Mathematical Geosciences, 40, 33–46.

    Article  Google Scholar 

  • Singer, D. A., & Menzie, W. D. (2010). Quantitative mineral resource assessments, an integrated approach. Oxford: Oxford University Press.

    Google Scholar 

  • Singh, S. C., Crawford, W. C., Carton, H., Seher, T., Combier, V., Cannat, M., et al. (2006). Discovery of a magma chamber and faults beneath Mid-Atlantic Ridge hydrothermal field. Nature, 442, 1029–1032.

    Article  Google Scholar 

  • Sinha, M., Constable, S., Peirce, C., White, A., Heinson, G., MacGregor, L., et al. (1998). Magmatic processes at slow spreading ridges: implications of the RAMESSES experiment at 57°45′N on the Mid-Atlantic Ridge. Geophysical Journal International, 135(3), 731–745.

    Article  Google Scholar 

  • Smith, D. K., & Cann, J. R. (1990). Hundreds of small volcanoes on the median valley floor of the Mid-Atlantic Ridge at 24°30′N. Nature, 348, 152–155.

    Article  Google Scholar 

  • Smith, D. K., & Cann, J. R. (1999). Constructing the upper crust of the Mid-Atlantic Ridge: a reinterpretation based on Puna Ridge, Kilauea Volcano. Journal of Geophysical Research, 104, 25379–25399.

    Article  Google Scholar 

  • Smith, D. K., Escartin, J., Schouten, H., & Cann, J. R. (2008). Fault rotation and core complex formation: Significant processes in seafloor formation at slow-spreading mid-ocean ridges (Mid-Atlantic Ridge, 13°–15°N). Geochemistry, Geophysics, Geosystems, 9, Q03003. https://doi.org/10.1029/2007GC001699.

    Article  Google Scholar 

  • Smith, D. K., Humphris, S. E., & Bryan, W. B. (1995). A comparison of volcanic edifices at the Reykjanes Ridge and the Mid-Atlantic Ridge at 24°–30°N. Journal of Geophysical Research, 100(B11), 22485–22498.

    Article  Google Scholar 

  • Sørensen, M. B., Ottemoller, L., Havskov, J., Atakan, K., Hellevang, B., & Pedersen, R. B. (2007). Tectonic processes in the Jan Mayen fracture zone based on earthquake occurrence and bathymetry. Bulletin of the Seismological Society of America, 97, 772–779.

    Article  Google Scholar 

  • Suslick, S. B., Shiozer, D., & Rodrigues, M. R. (2009). Uncertainty and risk analysis in petroleum exploration and production. TERRÆ, 3(2), 36–47.

    Google Scholar 

  • Tivey, M. K., Humphris, S. E., Thompson, G., Hannington, M. D., & Rona, P. A. (1995). Deducing patterns of fluid flow and mixing within the active TAG mound using mineralogical and geochemical data. Journal of Geophysical Research, 100, 12527–12555. https://doi.org/10.1029/95JB00610.

    Article  Google Scholar 

  • Tivey, M. A., & Johnson, H. P. (2002). Crustal magnetization reveals subsurface structure of Juan de Fuca Ridge hydrothermal vent fields. Geology, 30, 979–982.

    Article  Google Scholar 

  • Tivey, M. K., Mills, R. A., & Teagle, D. A. H. (1998). Temperature and salinity of fluid inclusions in anhydrite as indicators of seawater entrainment and heating in the TAG active mound. In P. M. Herzig & S. E. Humphris (Eds.), Proceedings of the Ocean Drilling Program. Scientific results (Vol. 158, pp. 179–190). College Station, TA: Ocean Drilling Program.

    Google Scholar 

  • Tivey, M. A., Rona, P. A., & Schouten, H. (1993). Reduced crustal magnetization beneath the active sulfide mound, TAG hydrothermal field. Mid-Atlantic Ridge 26°N. Earth and Planetary Science Letters, 115, 101–115.

    Article  Google Scholar 

  • Tolstoy, M., Waldhauser, F., Bohnenstiehl, D. R., Weekly, R. T., & Kim, W. Y. (2008). Seismic identification of along-axis hydrothermal flow on the East Pacific Rise. Nature, 451, 181–184.

    Article  Google Scholar 

  • Tucholke, B. E., Behn, M. D., Buck, W. R., & Lin, J. (2008). Role of melt supply in oceanic detachment faulting and formation of megamullions. Geology, 36, 455–458.

    Article  Google Scholar 

  • U.S. Department of the Interior and U.S. Geological Survey 1991. Mineral reserves, resources, resource potential, and certainty. In: Suggestions to authors of the reports of the United States geological survey, 7th edition (pp. 95–97). Washington, US Government Printing Office. http://www.nwrc.usgs.gov/techrpt/sta13.pdf.

  • Von Damm, K. L. (1995). Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. Geophysical Monograph (AGU), 91, 222–247.

    Google Scholar 

  • Von Damm, K. L., Buttermore, L. G., Oosting, S. E., Bray, A. M., Fornari, D. J., Lilley, M. D., et al. (1997). Direct observation of the evolution of a seafloor “black smoker” from vapor to brine. Earth and Planetary Science Letters, 149, 101–111.

    Article  Google Scholar 

  • Walker, S. L., Baker, E. T., Massoth, G. J., & Hey, R. N. (2004). Short-term variations in the distribution of hydrothermal plumes along a superfast spreading center, East Pacific Rise, 27°30′–32°20′S. Geochemistry, Geophysics, Geosystems, 5, Q12005. https://doi.org/10.1029/2004GC000789.

    Article  Google Scholar 

  • Webber, A. P., Roberts, S., Murton, B. J., & Hodgkinson, M. R. S. (2015). Geology, sulfide geochemistry and supercritical venting at the Beebe Hydrothermal Vent Field, Cayman Trough. Geochemistry, Geophysics, Geosystems, 16, 2661–2678.

    Article  Google Scholar 

  • Wheeler, A. J., Murton, B., Copley, J., Lim, A., Carlsson, J., Collins, P., et al. (2013). Moytirra: Discovery of the first known deep-sea hydrothermal vent field on the slow-spreading Mid-Atlantic Ridge north of the Azores. Geochemistry, Geophysics, Geosystems, 14, 4170–4184. https://doi.org/10.1002/ggge.20243.

    Article  Google Scholar 

  • White, D. A. (1988). Oil and gas play maps in exploration and assessment. AAPG Bulletin, 72(8), 944–949.

    Google Scholar 

  • White, D. A. (1993). Geologic risking guide for prospects and plays. AAPG Bulletin, 77, 2048–2061.

    Google Scholar 

  • Wilcock, W. S. D., & Delaney, J. R. (1996). Mid-ocean ridge sulfide deposits: Evidence for heat extraction from magma chambers or cracking fronts? Earth and Planetary Science Letters, 145, 49–64.

    Article  Google Scholar 

  • Wilcock, W. S. D., Hooft, E. E. E., Toomey, D. R., McGill, P. R., Barclay, A. H., Stakes, D. S., et al. (2009). The role of magma injection in localizing black-smoker activity. Nature Geoscience, 2, 509–513.

    Article  Google Scholar 

  • Wyborn, L. A. I., Heinrich, C. A., & Jaques, A. L. (1994). Australian Proterozoic mineral systems: essential ingredients and mappable criteria. In Proceedings of the Australian institute of mining and metallurgy annual conference, Melbourne (pp. 109–115).

  • Yang, J. (2002). Influence of normal faults and basement topography on ridge- flank hydrothermal fluid. Geophysical Journal International, 151(1), 83–87.

    Article  Google Scholar 

  • Yeo, I. A., Clague, D. A., Martin, J. F., Paduan, J. B., & Caress, D. W. (2013). Pre-eruptive flow focussing in dikes feeding historical pillow Ridges on the Juan de Fuca and Gorda Ridges. Geochemistry, Geophysics, Geosystems, 14(9), 3586–3599. https://doi.org/10.1002/ggge.20210.

    Article  Google Scholar 

  • Yeo, I. A., & Searle, R. C. (2013). High-resolution remotely operated vehicle (ROV) mapping of a slow-spreading ridge: Mid-Atlantic Ridge 45°N. Geochemistry, Geophysics, Geosystems, 14, 1693–1702. https://doi.org/10.1002/ggge.20082.

    Article  Google Scholar 

  • Yeo, I. A., Searle, R. C., Achenbach, K. L., Le Bas, T. P., & Murton, B. J. (2012). Eruptive hummocks: Building blocks of the upper ocean crust. Geological Society of America, 40(1), 91–94.

    Google Scholar 

  • Zierenberg, R. A., Fouquet, Y., Miller, D. J., Bahr, J. M., Baker, P. A., Bjerkgard, T., et al. (1998). The deep structure of a sea-floor hydrothermal deposit. Nature, 392, 485–488.

    Article  Google Scholar 

  • Zierenberg, R. A., Schiffman, P., Jonasson, I. R., Tosdal, R., Pickthorn, W., & McClain, J. (1995). Alteration of basalt hyaloclastite at the off-axis Sea Cliff hydrothermal field, Gorda Ridge. Chemical Geology, 126, 77–99.

    Article  Google Scholar 

Download references

Acknowledgments

Very helpful corrections and comments by Stephen John Lippard and Richard Sinding-Larsen improved the quality of this paper. Two anonymous reviewers also improved many aspects of the early manuscript draft with important suggestions. This work was made possible with bathymetric data acquired during the MarMine cruise by the Norwegian University of Science and Technology (NTNU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Juliani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juliani, C., Ellefmo, S.L. Multi-scale Quantitative Risk Analysis of Seabed Minerals: Principles and Application to Seafloor Massive Sulfide Prospects. Nat Resour Res 28, 909–930 (2019). https://doi.org/10.1007/s11053-018-9427-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-018-9427-y

Keywords

Navigation