Skip to main content
Log in

Influence of Pore Structure Particularity and Pore Water on the Occurrence of Deep Shale Gas: Wufeng–Longmaxi Formation, Luzhou Block, Sichuan Basin

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The pore structure and pore water of deep shale gas reservoirs are unique. Their complex occurrence mechanism is the root cause of gas content variations, which restrict successful and economic exploration and exploitation. In this study, nuclear magnetic resonance experiments were performed to characterize the pore structure and pore water microscopic migration in deep shale gas reservoirs of the Wufeng–Longmaxi Formation in the Luzhou block. The pore structure particularity and its influence as well as that of pore water on gas occurrence are discussed here. The results show that total organic carbon (TOC) content has weak positive correlation with the proportion of micropores, negative correlation with the proportion of mesopores, and strong positive correlation with the proportion of macropores. These indicate that organic matter developed mainly macropores and micropores, while inorganic minerals produced mainly mesopores. The proportion of producible porosity is relatively low (11.81% on average), reflecting the poor pore connectivity in the studied deep shale. Both the proportion of macropores and the TOC content are strongly positively correlated with the proportion of producible porosity. Organic matter controls the pore connectivity of deep shale by controlling the development of macropores. The producible porosity correlates positively with total porosity, indicating that shale with high total porosity possesses high producible porosity. The pore structure at different burial depths (especially different beds) has significant differences, reflecting strong interlayer heterogeneity. Compared with the shallow Qiongzhusi Formation, the deep shale has lower porosity, smaller dominant pore size, poor pore connectivity, and similar T2 spectrum distribution. Mineral anti-compaction protection pores and reservoir fluid over-pressure are the key to the development of organic pores in deep shale gas reservoirs. When adsorbed gas converts to free gas, the gas-in-place will directly be affected by whether the deep shale gas reservoirs can provide enough storage space for excess free gas. After centrifugation, there was still considerable residual water in the studied deep shale, and available pores decreased with increase in water saturation. There was a negative correlation between gas content and water saturation, indicating that primary formation water has a vital influence on the occurrence and enrichment of shale gas. These findings provide a collective theoretical basis for accurate evaluation of deep shale gas reservoirs, which is significant for the commercial exploration and exploitation of deep shale gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

modified from Zhang et al. 2020)

Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

Notes

  1. * 1 psi = 6894.76 Pascals.

References

  • Ashutosh, T., Vinoth, S., & Singh, T. N. (2018). A comparative study on the pore size distribution of different indian shale gas reservoirs for gas production and potential CO2 sequestration. Energy & Fuels, 32(3), 3322–3334.

    Article  Google Scholar 

  • Bi, H., Jiang, Z., Li, J., Xiong, F., Li, P., & Chen, L. (2017). Ono–Kondo model for supercritical shale gas storage: A case study of silurian Longmaxi shale in southeast Chongqing, China. Energy & Fuels, 31(3), 2755–2764.

    Article  Google Scholar 

  • Cai, Y., Liu, D., Pan, Z., Yao, Y., & Qiu, Y. (2013). Petrophysical characterization of Chinese coal cores with heat treatment by nuclear magnetic resonance. Fuel, 108(11), 292–302.

    Article  Google Scholar 

  • Cao, H., Zhan, G., Yu, X., & Zhao, Y. (2019). Main factors affecting the productivity of deep shale gas wells: A case study of Yongchuan Block, Southern Sichuan Basin. Natural Gas Industry, 39(S1), 118–122.

    Google Scholar 

  • Chalmers, G., & Bustin, R. M. (2007). The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia, Canada. International Journal of Coal Geology, 70(1/3), 223–239.

    Article  Google Scholar 

  • Chen, S., Qin, Y., Wang, Y., Zhang, H., & Zuo, Z. (2015). Pore structure and heterogeneity of marine shales in the Middle-Upper Yangtze. Natural Gas Geoscience, 26(8), 1455–1463.

    Google Scholar 

  • Chen, S., Zhang, C., & Liu, Y. (2018). Research progress and prospect of shale gas occurrence and its molecular simulation. Coal Science and Technology, 46(1), 36–44.

    Google Scholar 

  • Chen, S., Zhu, Y., Wang, H., Liu, H., Wei, W., & Fang, J. (2011). Shale gas reservoir characterisation: A typical case in the southern Sichuan Basin of China. Energy, 36(11), 6609–6616.

    Article  Google Scholar 

  • Cheng, M., Fu, X., & Kang, J. (2020). Compressibility of different pore and fracture structures and its relationship with heterogeneity and minerals in low-rank coal reservoirs: An experimental study based on nuclear magnetic resonance and micro-CT. Energy & Fuels, 34(9), 10894–10903.

    Article  Google Scholar 

  • Coates, G. R., Xiao, L., & Prammer, M. G. (1999). NMR logging principles and applications. Gulf Publishing Company.

    Google Scholar 

  • Curtis, J. B. (2002). Fractured shale-gas systems. AAPG Bulletin, 86(11), 1921–1938.

    Google Scholar 

  • Dong, W. (2018). Effects of temperature and effective stress on stress sensitivity of shale reservoirs. Petrochemical Industry Application, 37(3), 62–66+72.

  • Dong, D., Wang, Y., Li, X., Zou, C., Guan, Q., Zhang, C., Huang, J., Wang, S., Wang, H., Liu, H., Bai, W., Liang, F., Lin, W., Zhao, Q., Liu, D., & Qiu, Z. (2016). Breakthrough and prospect of shale gas exploration and development in China. Natural Gas Industry, 36(1), 19–32.

    Google Scholar 

  • Fang, H., Zang, Y., Zhang, J., & Zhang, H. (2019). Technical difficulties and countermeasures of deep shale gas drilling. Drilling & Production Technology, 42(3), 20-23+7.

    Google Scholar 

  • Feng, G., Zhu, Y., Chen, S., Wang, Y., Ju, W., Hu, Y., You, Z., & Wang, G. G. X. (2020). Supercritical methane adsorption on shale over wide pressure and temperature ranges: Implications for gas-in-place estimation. Energy & Fuels, 34(3), 3121–3134.

    Article  Google Scholar 

  • Gasparik, M., Bertier, P., Gensterblum, Y., Ghanizadeh, A., & Littke, R. (2014). Geological controls on the methane storage capacity in organic-rich shales. International Journal of Coal Geology, 123(2), 34–51.

    Article  Google Scholar 

  • Gasparik, M., Ghanizadeh, A., Bertier, P., Gensterblum, Y., Bouw, S., & Krooss, B. M. (2012). High-pressure methane sorption isotherms of black shales from The Netherlands. Energy & Fuels, 26(8), 4995–5004.

    Article  Google Scholar 

  • Gross, D., Sachsenhofer, R. F., Bechtel, A., Pytlak, L., Rupprecht, B., & Wegerer, E. (2015). Organic geochemistry of Mississippian shales (Bowland Shale Formation) in central Britain: Implications for depositional environment, source rock and gas shale potential. Marine & Petroleum Geology, 59, 1–21.

    Article  Google Scholar 

  • Guo, X., Hu, D., Huang, R., Wei, Z., Duan, J., Wei, X., Fan, X., & Miao, Z. (2020). Deep and ultra-deep natural gas exploration in the Sichuan Basin: Progress and prospect. Natural Gas Industry, 40(5), 1–14.

    Google Scholar 

  • Hao, F., Zou, H., & Lu, Y. (2013). Mechanisms of shale gas storage: Implications for shale gas exploration in China. AAPG Bulletin, 97(8), 1325–1346.

    Article  Google Scholar 

  • Hassan, A., Mahmoud, M., Al-Majed, A., Elsayed, M., Al-Nakhli, A., & BaTaweel, M. (2020). Performance analysis of thermochemical fluids in removing the gas condensate from different gas formations. Journal of Natural Gas Science and Engineering, 78, 10333.

    Article  Google Scholar 

  • Hu, W., Li, F., Fan, C., & Zhou, Z. (2019). Prediction and evaluation on deeper marine shale-gas reservoirs, Dingshan area, Sichuan Basin. Natural Gas Exploration and Development, 42(3), 66–77.

    Google Scholar 

  • Hu, Z., Duan, X., He, Y., Wu, J., Chang, J., Liu, L., Wu, K., & Ma, Z. (2018). Influence of reservoir primary water on shale gas occurrence and flow capacity. Natural Gas Industry, 38(7), 44–51.

    Google Scholar 

  • Ji, L., Wu, Y., He, C., & Su, L. (2016). High-pressure hydrocarbon-generation simulation and pore evolution characteristics of organic-rich mudstone and shale. Acta Petrolei Sinica, 37(2), 172–181.

    Google Scholar 

  • Jiang, T., Bian, X., Wang, H., Li, S., Jia, C., Liu, H., & Sun, H. (2017). Volume fracturing of deep shale gas horizontal wells. Natural Gas Industry, 37(1), 90–96.

    Google Scholar 

  • Jiao, K., Ye, Y., Liu, S., Ran, B., Deng, B., Li, Z., Li, J., Yong, Z., & Sun, W. (2018). Characterization and evolution of nanoporosity in superdeeply buried shales: A case study of the Longmaxi and Qiongzhusi Shales from MS Well #1, North Sichuan Basin, China. Energy & Fuels, 32, 191–203.

    Article  Google Scholar 

  • Kang, J., Fu, X., Li, X., & Liang, S. (2019). Nitrogen injection to enhance methane and water production: An experimental study using the LF-NMR relaxation method. International Journal of Coal Geology, 211, 103228.

    Article  Google Scholar 

  • Krzyżak, A. T., Habina-Skrzyniarz, I., Machowski, G., & Mazur, W. (2020). Overcoming the barriers to the exploration of nanoporous shales porosity. Microporous and Mesoporous Materials, 298, 110003.

    Article  Google Scholar 

  • Li, J., Lu, S., Zhang, P., Li, W., Jin, T., & Feng, W. (2020). Quantitative characterization and microscopic occurrence mechanism of pore water in shale matrix. Acta Petrolei Sinica, 41(8), 979–990.

    Google Scholar 

  • Li, J., Wang, S., Lu, S., Zhang, P., Cai, J., Zhao, J., & Li, W. (2019). Microdistribution and mobility of water in gas shale: A theoretical and experimental study. Marine and Petroleum Geology, 102, 496–507.

    Article  Google Scholar 

  • Liu, W., Lu, L., Wei, Z., Yu, L., Zhang, W., Xu, C., Ye, D., Shen, B., & Fan, M. (2020). Microstructure characteristics of Wufeng-Longmaxi shale gas reservoirs with different depth, southeastern Sichuan Basin. Petroleum Geology & Experiment, 42(3), 378–386.

    Google Scholar 

  • Liu, Y., Yao, Y., Liu, D., Zheng, S., Sun, G., & Chang, Y. (2018). Shale pore size classification: An NMR fluid typing method. Marine and Petroleum Geology, 96, 591–601.

    Article  Google Scholar 

  • Liu, H., & Wang, H. (2013). UItra-low water saturation characteristics and the identification of over pressured play fairways of marine shales in south China. Natural Gas Industry, 33(7), 140–144.

    Google Scholar 

  • Liu, N., & Wang, G. (2016). Shale gas sweet spot identification and precise geo-steering drilling in Weiyuan Block of Sichuan Basin, SW China. Petroleum Exploration and Development, 43(6), 978–985.

    Article  Google Scholar 

  • Liu, R. (2015). Typical features of the first giant shale gas field in China. Natural Gas Geoscience, 26(8), 1488–1498.

    Google Scholar 

  • Long, S., Feng, D., Li, F., & Du, W. (2018). Prospect of the deep marine shale gas exploration and development in the Sichuan Basin. Natural Gas Geoscience, 29(4), 443–451.

    Google Scholar 

  • Maex, K., Baklanov, M. R., Shamiryan, D., Lacopi, F., Brongersma, S. H., & Yanovitskaya, Z. S. (2003). Low dielectric constant materials for microelectronics. Journal of Applied Physics, 93(11), 8793–8841.

    Article  Google Scholar 

  • Merkel, A., Fink, R., & Littke, R. (2015). The role of pre-adsorbed water on methane sorption capacity of Bossier and Haynesville shales. International Journal of Coal Geology, 147–148(1), 1–8.

    Article  Google Scholar 

  • Merkel, A., Fink, R., & Littke, R. (2016). High pressure methane sorption characteristics of lacustrine shales from the Midland Valley Basin, Scotland. Fuel, 182, 361–372.

    Article  Google Scholar 

  • Nelson, P. H. (2009). Pore throat sizes in sandstones, tight sandstones, and shales. AAPG Bulletin, 93(3), 329–340.

    Article  Google Scholar 

  • Nie, H., He, Z., Liu, G., Zhang, G., Lu, Z., Li, D., & Sun, C. (2020). Status and direction of shale gas exploration and development in China. Journal of China University of Mining & Technology, 49(1), 13–35.

    Google Scholar 

  • Ouyang, Z., Liu, D., Cai, Y., & Yao, Y. (2016). Fractal analysis on heterogeneity of pore-fractures in middle-high rank coals with NMR. Energy & Fuels, 30(7), 5449–5458.

    Article  Google Scholar 

  • Pan, L., Xiao, X., Tian, H., Zhou, Q., & Cheng, P. (2016b). Geological models of gas in place of the Longmaxi shale in Southeast Chongqing, South China. Marine and Petroleum Geology, 73, 433–444.

    Article  Google Scholar 

  • Pan, R., Gong, Q., Yan, J., & Jin, J. (2016a). Elements and gas enrichment laws of sweet spots in shale gas reservoir: A case study of the Longmaxi Fm in Changning Block, Sichuan Basin. Natural Gas Industry, 36(3), 7–13.

    Google Scholar 

  • Pan, Z., Liu, D., Huang, Z., Jiang, Z., Song, Y., Guo, J., & Li, C. (2019). Paleotemperature and paleopressure of methane inclusions in fracturecements from the Wufeng-Longmaxi shales in the Luzhou area, southern Sichuan Basin. Petroleum Science Bulletin, 4(3), 242–253.

    Google Scholar 

  • Pang, H., Xiong, L., Wei, L., Shi, H., Dong, X., Zhang, T., & Cai, Z. (2019). Analysis on the main geological factors of deep shale gas enrichment and high production in Southern Sichuan: A case study of Weirong shale gas field. Natural Gas Industry, 39(S1), 78–84.

    Google Scholar 

  • Paul, N., Mohammad, A., & Keka, O. (2018). Integrated fractal description of nanopore structure and its effect on CH4 adsorption on Jharia coals, India. Fuel, 232, 190–204.

    Article  Google Scholar 

  • Ross, D., & Bustin, R. M. (2007). Shale gas potential of the lower Jurassic Gordondale Member, northeastern British Columbia, Canada. Bulletin of Canadian Petroleum Geology, 55(1), 51–75.

    Article  Google Scholar 

  • Ross, D. J. K., & Bustin, R. M. (2009). The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Marine and Petroleum Geology, 26(6), 916–927.

    Article  Google Scholar 

  • Shabani, M., Moallemi, S. A., Krooss, B. M., Amann-Hildenbrand, A., Zamani-Pozveh, Z., Ghalavand, H., & Littke, R. (2018). Methane sorption and storage characteristics of organic-rich carbonaceous rocks, Lurestan province, southwest Iran. International Journal of Coal Geology, 186, 51–64.

    Article  Google Scholar 

  • Sharma, V., & Sircar, A. (2020). Multi-technique characterization of shale reservoir quality parameters. Journal of Natural Gas Science and Engineering, 75, 103125.

    Article  Google Scholar 

  • Shen, J., Zhao, J., Qin, Y., Shen, Y., & Wang, G. (2018). Water imbibition and drainage of high rank coals in Qinshui Basin, China. Fuel, 211, 48–59.

    Article  Google Scholar 

  • Tan, M., Mao, K., Song, X., Yang, X., & Xu, J. (2015). NMR petrophysical interpretation method of gas shale based on core NMR experiment. Journal of Petroleum Science and Engineering, 136, 100–111.

    Article  Google Scholar 

  • Tang, X., Ripepi, N., Valentine, K. A., Keles, C., Long, T., & Gonciaruk, A. (2017). Water vapor sorption on Marcellus shale: Measurement, modeling and thermodynamic analysis. Fuel, 209(1), 606–614.

    Article  Google Scholar 

  • Testamanti, M. N., & Rezaee, R. (2017). Determination of NMR T2 cut-off for clay bound water in shales: A case study of Carynginia Formation, Perth Basin, Western Australia. Journal of Petroleum Science and Engineering, 149, 497–503.

    Article  Google Scholar 

  • Tian, H., Wang, M., Liu, S., Zhang, S., & Zou, C. (2020). Influence of pore water on the gas storage of organic-rich shale. Energy & Fuels, 34(5), 5293–5306.

    Article  Google Scholar 

  • Wang, F., Guan, J., Feng, W., & Bao, L. (2013). Evolution of overmature marine shale porosity and implication to the free gas volume. Petroleum Exploration & Development, 40(6), 819–824.

    Article  Google Scholar 

  • Wang, Y., Liu, L., & Cheng, H. (2021). Gas adsorption characterization of pore structure of organic-rich shale: Insights into contribution of organic matter to shale pore network. Natural Resources Research, 30(3), 2377–2395.

    Article  Google Scholar 

  • Wang, Y., Qin, Y., Zhang, R., He, L., Anovitz, L. M., Bleuel, M., Mildner, D. F. R., Liu, S., & Zhu, Y. (2018). Evaluation of nanoscale accessible pore structures for improved prediction of gas production potential in Chinese marine shales. Energy and Fuels, 32(12), 12447–12461.

    Article  Google Scholar 

  • Wang, Y., Zhu, Y., Chen, S., & Li, W. (2014). Characteristics of the nanoscale pore structure in Northwestern Hunan shale gas reservoirs using field emission scanning electron microscopy, high-pressure mercury intrusion, and gas adsorption. Energy & Fuels, 28(2), 945–955.

    Article  Google Scholar 

  • Wang, Y., Zhu, Y., Zhang, R., Anovitz, L.M., Bleuel, M., Liu, S., & Chen, S. (2020). SANS coupled with fluid invasion approaches for characterization of overall nanopore structure and mesopore connectivity of organic-rich marine shales in China. International Journal of Coal Geology, 217, 103343.

    Article  Google Scholar 

  • Wu, J., Yu, B., Zhang, J., & Li, S. (2013). Pore characteristics and controlling factors in the organic-rich shale of the Lower Silurian Longmaxi Formation revealed by samples from a well in southeastern Chongqing. Earth Science Frontiers, 20(3), 260–269.

    Google Scholar 

  • Xiao, X., Wei, Q., Gai, H., Li, T., Wang, M., Pan, L., Chen, J., & Tian, H. (2015). Main controlling factors and enrichment area evaluation of shale gas of the Lower Paleozoic marine strata in south China. Petroleum Science, 12(4), 573–586.

    Article  Google Scholar 

  • Xue, D., Lu, L., Zhou, J., Lu, L., & Liu, Y. (2021). Cluster modeling of the short-range correlation of acoustically emitted scattering signals. International Journal of Coal Science & Technology, 8(4), 575–589.

    Article  Google Scholar 

  • Xue, D., Zhou, J., Liu, Y., & Gao, L. (2020). On the excavation-induced stress drop in damaged coal considering a coupled yield and failure criterion. International Journal of Coal Science & Technology, 7(1), 58–67.

    Article  Google Scholar 

  • Yang, H., Zhao, S., Liu, Y., Wu, W., Xia, Z., Wu, T., Luo, C., Fan, T., & Yu, L. (2019a). Main controlling factors of enrichment and high-yield of deep shale gas in the Luzhou Block, southern Sichuan Basin. Natural Gas Industry, 39(11), 55–63.

    Google Scholar 

  • Yang, Y., Chen, Y., Liu, S., Deng, B., Xu, H., Chen, L., Li, D., Yin, Y., & Li, Y. (2021). Status, potential and prospect of shale gas exploration and development in the Sichuan Basin and its periphery. Natural Gas Industry, 41(1), 42–58.

    Google Scholar 

  • Yang, Z., Peng, H., Zhang, Z., Ju, W., Li, G., & Li, C. (2019b). Atmospheric-variational pressure-saturated water characteristics of medium-high rank coal reservoir based on NMR technology. Fuel, 256, 115976.

    Article  Google Scholar 

  • Yao, Y., & Liu, D. (2012). Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals. Fuel, 95(1), 152–158.

    Article  Google Scholar 

  • Yao, Y., Liu, D., Che, Y., Tang, D., Tang, S., & Huang, W. (2010). Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR). Fuel, 89(7), 1371–1380.

    Article  Google Scholar 

  • Yao, Y., Liu, D., Tang, D., Tang, S., & Huang, W. (2008). Fractal characterization of adsorption-pores of coals from North China: An investigation on CH4 adsorption capacity of coals. International Journal of Coal Geology, 73(1), 27–42.

    Article  Google Scholar 

  • Yao, Y., Liu, D., & Xie, S. (2014). Quantitative characterization of methane adsorption on coal using a low-field NMR relaxation method. International Journal of Coal Geology, 131, 32–40.

    Article  Google Scholar 

  • Yao, Y., Liu, J., Liu, D., Chen, J., & Pan, Z. (2019). A new application of NMR in characterization of multiphase methane and adsorption capacity of shale. International Journal of Coal Geology, 201, 76–85.

    Article  Google Scholar 

  • Zeng, Y., Chen, Z., & Bian, X. (2016). Breakthrough in staged fracturing technology for deep shale gas reservoirs in SE Sichuan Basin and its implications. Natural Gas Industry, 36(1), 61–67.

    Google Scholar 

  • Zhang, J., Wei, C., Ju, W., Qin, Z., Ji, Y., Quan, F., & Hu, Y. (2020). Microscopic distribution and dynamic variation of water under stress in middle and high rank coal samples. Journal of Natural Gas Science and Engineering, 79, 103369.

    Article  Google Scholar 

  • Zhang, J., Wei, C., Ju, W., Yan, G., Lu, G., Hou, X., & Kai, Z. (2019a). Stress sensitivity characterization and heterogeneous variation of the pore-fracture system in middle-high rank coals reservoir based on NMR experiments. Fuel, 238, 331–344.

    Article  Google Scholar 

  • Zhang, J., Wei, C., Vandeginste, V., Ju, W., Qin, Z., Quan, F., & Soh Tamehe, L. (2019c). Experimental simulation study on water migration and methane depressurizing desorption based on nuclear magnetic resonance technology: A case study of middle-rank coals from the panguan syncline in the western Guizhou region. Energy & Fuels, 33(9), 7993–8006.

    Article  Google Scholar 

  • Zhang, J., Wei, C., Zhao, J., Ju, W., Chen, Y., & Tamehe, L. S. (2019b). Comparative evaluation of the compressibility of middle and high rank coals by different experimental methods. Fuel, 245, 39–51.

    Article  Google Scholar 

  • Zhang, P., Lu, S., Li, J., Chen, C., Xue, H., & Zhang, J. (2018). Petrophysical characterization of oil-bearing shales by low-field nuclear magnetic resonance (NMR). Marine & Petroleum Geology, 89(3), 775–778.

    Article  Google Scholar 

  • Zhang, X., Shi, W., Shu, Z., Zhuang, X., Chao, W., Qi, Y., Xu, Q., & Ren, W. (2017). Calculation Model of Shale Gas Content and Its Application in Fuling Area. Earth Science, 42(7), 1157–1168.

    Google Scholar 

  • Zhao, P., Wang, Z., Sun, Z., Cai, J., & Wang, L. (2017). Investigation on the pore structure and multifractal characteristics of tight oil reservoirs using NMR measurements: Permian Lucaogou Formation in Jimusaer Sag, Junggar Basin. Marine and Petroleum Geology, 86, 1067–1081.

    Article  Google Scholar 

  • Zhao, S., Yang, Y., Zhang, J., Wang, L., Wang, X., Luo, C., & Tian, C. (2016). Micro-layers division and fine reservoirs contrast of Lower Silurian Longmaxi Formation shale, Sichuan Basin, SW China. Natural Gas Geoscience, 27(3), 470–487.

    Google Scholar 

  • Zhu, G., Yang, H., Su, J., Han, J., Zhu, Y., Wang, Y., Gu, L., & Liu, X. (2012). New progress of marine hydrocarbon geological theory in China. Acta Petrologica Sinica, 28(3), 722–738.

    Google Scholar 

  • Zhu, W., Zhang, X., Zhou, D., Fang, C., Li, J., & Huang, Z. (2021). New cognition on pore structure characteristics of Permian marine shale in the Lower Yangtze region and its implications for shale gas exploration. Natural Gas Industry B, 8(6), 562–575.

    Article  Google Scholar 

  • Zou, C., Pan, S., Jing, Z., Gao, J., Yang, Z., Wu, S., & Zhao, Q. (2020). Shale oil and gas revolution and its impact. Acta Petrolei Sinica, 41(1), 1–12.

    Google Scholar 

  • Zou, C., Zhao, Q., Cong, L., Wang, H., Shi, Z., Wu, J., & Pan, S. (2021). Development progress, potential and prospect of shale gas in China. Natural Gas Industry, 41(1), 1–14.

    Google Scholar 

  • Zou, M., Wei, C., Miao, Z., Jian, S., Chen, Y., & Qi, Y. (2013). Classifying coal pores and estimating reservoir parameters by nuclear magnetic resonance and mercury intrusion porosimetry. Energy & Fuels, 27(7), 3699–3708.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to give sincere thanks to the funding agencies that supported this research. This work was supported by the National Natural Science Foundation of China (No. 41772141; 41972171), the Fundamental Research Funds for the Central Universities (No. 2020CXNL11), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangbin Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Chen, S., Wang, Y. et al. Influence of Pore Structure Particularity and Pore Water on the Occurrence of Deep Shale Gas: Wufeng–Longmaxi Formation, Luzhou Block, Sichuan Basin. Nat Resour Res 31, 1403–1423 (2022). https://doi.org/10.1007/s11053-022-10041-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-022-10041-y

Keywords

Navigation