Skip to main content

Advertisement

Log in

Uncertainties in GIS-Based Mineral Prospectivity Mapping: Key Types, Potential Impacts and Possible Solutions

  • Review Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

GIS-based mineral prospectivity mapping (MPM) is a computer-aided methodology for delineating and better constraining target areas deemed prospective for mineral deposits of a particular type. The underlying algorithms are well-established and well-understood, but on the whole, MPM that is a multi-faceted and multi-criteria approach, is faced with a high degree of uncertainty. We distinguish three principal types of uncertainties: (1) data-related (e.g., the sometimes erroneous, inadequate, incomplete, unevenly distributed or poorly resolved nature of the input data); (2) model-related (e.g., the diversity and inherent natural variability of mineral deposits, our lack of complete knowledge of the targeted mineral deposit type, and our imperfect ability to interpret geoscience datasets); and (3) judgment-related (e.g., the influence of cognitive heuristics and biases). In this contribution, we review and characterize the key uncertainties listed above and provide possible solutions as to how they may be recognized and mitigated in the context of MPM. This review also clearly illustrates the need for future studies designed to carefully monitor each step of the MPM process and aims at reducing uncertainty by, for example, (1) using carefully vetted, high-quality input data, (2) developing targeting models based on the best possible understanding of the underlying mineral deposit models and backed by machine learning-based simulations of likely ore-forming processes, and (3) adopting advanced methods such as deep learning algorithms for effective integrating of predictor maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Agterberg, F. P. (1989). Computer programs for mineral exploration. Science, 245, 76–81

    Article  Google Scholar 

  • Agterberg, F. P., & Cheng, Q. (2002). Conditional independence test for weights-of-evidence modeling. Natural Resources Research, 11, 249–255

    Article  Google Scholar 

  • Agterberg, F.P., & Bonham-Carter, G. F. (1999). Logistic regression and weights of evidence modeling in mineral exploration. Proceedings of 28th International Symposium on Computer Applications in the Mineral Industries (pp. 483–490), Golden, Colorado.

  • An, P., Moon, W. M., & Bonham-Carter, G. F. (1994). Uncertainty management in integration of exploration data using the belief function. Nonrenewable Resources, 3(1), 60–71

    Article  Google Scholar 

  • An, P., Moon, W. M., & Rencz, A. (1991). Application of fuzzy set theory to integrated mineral exploration. Canadian Journal of Exploration Geophysics, 27, 1–11

    Google Scholar 

  • Berman, M. (1977). Distance distributions associated with Poisson processes of geometric figures. Journal of Applied Probability, 14, 195–199

    Article  Google Scholar 

  • Bonham-Carter, G. F. (1985). Statistical association of gold occurrences with Landsat-derived lineaments, Timmins-Kirkland Lake area, Ontario. Canadian Journal of Remote Sensing, 11, 195–210

    Article  Google Scholar 

  • Bonham-Carter, G. F. (1994). Geographic Information Systems for Geoscientists. Modelling with GIS (pp. 398). Oxford: Pergamon Press.

  • Bonham-Carter, G. F., Agterberg, F. P., & Wright, D. F. (1989) Weights of evidence modeling. A new approach to mapping mineral potential. In Agterberg, F. P., Bonham-Carter, G. F., eds., Statistical applications in the Earth Sciences: Geology Survey Canada Paper, 89-9, pp. 171–183.

  • Brown, W. M., Gedeon, T. D., Groves, D. I., & Barnes, R. G. (2000). Artificial neural networks: A new method for mineral prospectivity mapping. Australian Journal of Earth Sciences, 47(4), 757–770

    Article  Google Scholar 

  • Buccianti, A., & Rosso, F. (1999). A new approach to the statistical analysis of compositional (closed) data with observations below the “detection limit.” GeoInformatica, 3, 17–31

    Google Scholar 

  • Burkin, J. N., Lindsay, M. D., Occhipinti, S. A., & Holden, E. J. (2019). Incorporating conceptual and interpretation uncertainty to mineral prospectivity modelling. Geoscience Frontiers, 10(4), 1383–1396

    Article  Google Scholar 

  • Bárdossy, G., & Fodor, J. (2004). Evaluation of uncertainties and risks in Geology. (p. 221). Berlin: Springer.

    Book  Google Scholar 

  • Cai, L., & Zhu, Y. (2015). The challenges of data quality and data quality assessment in the big data era. Data Science Journal, 14, 1–10

    Article  Google Scholar 

  • Carranza, E. J. M. (2011). Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored values. Journal of Geochemical Exploration, 110, 167–185

    Article  Google Scholar 

  • Carranza, E. J. M. (2017). Natural resources research publications on geochemical anomaly and mineral potential mapping, and introduction to the special issue of papers in these fields. Natural Resources Research, 26, 379–410

    Article  Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2001). Geologically constrained fuzzy mapping of gold mineralization potential, Baguio district, Philippines. Natural Resources Research, 10, 125–136

    Article  Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2003). Evidential belief functions for geologically constrained mapping of gold potential, Baguio district, Philippines. Ore Geology Reviews, 22, 117–132

    Article  Google Scholar 

  • Carranza, E. J. M., Hale, M., & Faassen, C. (2008). Selection of coherent deposit-type locations and their application in data-driven mineral prospectivity mapping. Ore Geology Reviews, 33, 536–558

    Article  Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2015). Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Computers & Geosciences, 74, 60–70

    Article  Google Scholar 

  • Carranza, E. J. M., Woldai, T., & Chikambwe, E. M. (2005). Application of data-driven evidential belief functions to prospectivity mapping for aquamarine-bearing pegmatites, Lundazi district, Zambia. Natural Resources Research, 14, 47–63

    Article  Google Scholar 

  • Carranza, E. J. M. (2008). Geochemical anomaly and mineral prospectivity mapping in GIS. Handbook of Exploration and Environmental Geochemistry (Vol. 11, p. 351). Elsevier: Amsterdam.

  • Chapman, A. D. (2005). Principles of Data Quality, Version 1.0. Global Biodiversity Information Facility, Copenhagen (2005).

  • Chen, Y. (2015). Mineral potential mapping with a restricted Boltzmann machine. Ore Geology Reviews, 71, 749–760

    Article  Google Scholar 

  • Chen, G., & Cheng, Q. (2016). Singularity analysis based on wavelet transform of fractal measures for identifying geochemical anomaly in mineral exploration. Computers & Geosciences, 87, 56–66

    Article  Google Scholar 

  • Chen, Y., & Wu, W. (2017a). Mapping mineral prospectivity using an extreme learning machine regression. Ore Geology Reviews, 80, 200–213

    Article  Google Scholar 

  • Chen, Y., & Wu, W. (2017b). Mapping mineral prospectivity by using one-class support vector machine to identify multivariate geological anomalies from digital geological survey data. Australian Journal of Earth Sciences, 64, 639–651

    Article  Google Scholar 

  • Chen, Y., & Wu, W. (2019). Isolation forest as an alternative data-driven mineral prospectivity mapping method with a higher data-processing efficiency. Natural Resources Research, 28, 31–46

    Article  Google Scholar 

  • Chen, Y., Wu, W., & Zhao, Q. (2019). A bat-optimized one-class support vector machine for mineral prospectivity mapping. Minerals, 9, 317

    Article  Google Scholar 

  • Chen, S., Xie, J., Xu, C., & Guo, W. (1985). The origin of Makeng iron deposit, Fujian. Geochimica (Beijing), 4, 350–357 (in Chinese with English abstract).

    Google Scholar 

  • Cheng, Q. (2007). Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32, 314–324

    Article  Google Scholar 

  • Cheng, Q. (2008). Modeling local scaling properties for multiscale mapping. Vadose Zone Journal, 7, 525–532

    Article  Google Scholar 

  • Cheng, Q., & Agterberg, F. P. (1999). Fuzzy weights of evidence method and its application in mineral potential. Natural Resources Research, 8, 7–35

    Article  Google Scholar 

  • Cox, D. P., & Singer, D. A. (1986). Mineral deposit models (Vol. 1693). Bulletin: US Government Printing Office.

  • Dietterich, T. (1995). Overfitting and undercomputing in machine learning. ACM Computing Surveys (CSUR), 27(3), 326–327

    Article  Google Scholar 

  • Ford, A., Peters, K. J., Partington, G. A., Blevin, P. L., Downes, P. M., Fitzherbert, J. A., & Greenfield, J. E. (2019). Translating expressions of intrusion-related mineral systems into mappable spatial proxies for mineral potential mapping: case studies from the Southern New England Orogen, Australia. Ore Geology Reviews, 111, 102943

    Article  Google Scholar 

  • Gao, X., Zhang, D., Absai, V., Feng, H., & Yi, J. (2016). Computational simulation of coupled geodynamics for forming the Makeng deposit in Fujian Province, China: Constraints of mechanics, thermotics and hydrology. Journal of Geochemical Exploration, 160, 31–43

    Article  Google Scholar 

  • Garven, G. (1985). The role of regional fluid flow in the genesis of the Pine Point deposit, Western Canada sedimentary basin. Economic Geology, 80, 307–324

    Article  Google Scholar 

  • Ge, C., Han, F., Zhou, T., & Chen, D. (1981). Geological characteristics of the Makeng iron deposit of marine volcano-sedimentary origin. Acta Geologica Sinica, 3, 47–69

    Google Scholar 

  • Gilovich, T., Griffin, D., & Kahneman, D. (2002). Heuristics and biases: The psychology of intuitive judgment. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Gonzalez-Alvarez, I., Porwal, A., Beresford, S. W., McCuaig, T. C., & Maier, W. D. (2010). Hydrothermal Ni prospectivity analysis of Tasmania, Australia. Ore Geology Reviews, 38, 168–183

    Article  Google Scholar 

  • Goovaerts, P. (1997). Geostatistics for natural resources evaluation. Oxford University Press on Demand.

  • Gow, P. A., Upton, P., Zhao, C., & Hill, K. C. (2002). Copper-gold mineralisation in New Guinea: Numerical modelling of collision, fluid flow and intrusion-related hydrothermal systems. Australian Journal of Earth Sciences, 49, 753–771

    Article  Google Scholar 

  • Groves, D. I., Goldfarb, R. J., Gebre-Mariam, M., Hagemann, S. G., & Robert, F. (1998). Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13(1–5), 7–27

    Article  Google Scholar 

  • Gueta, T., & Carmel, Y. (2016). Quantifying the value of user-level data cleaning for big data: A case study using mammal distribution models. Ecological Informatics, 34, 139–145

    Article  Google Scholar 

  • Guo, H., Wang, L., & Liang, D. (2016). Big earth data from space: a new engine for earth science. Science Bulletin, 61, 505–513

    Article  Google Scholar 

  • Hagemann, S. G., Lisitsin, V. A., & Huston, D. L. (2016). Mineral system analysis: quo vadis. Ore Geology Reviews, 76, 504–522

    Article  Google Scholar 

  • Han, F., & Ge, C. (1983). Geological and geochemical features of submarine volcanic hydrothermal-sedimentary mineralization of Makeng iron deposit, Fujian province. Institute of Mineral Resources, Chinese Academy of Geological Sciences, 7, 1–118 (in Chinese with English abstract).

    Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction. Berlin: Springer.

    Book  Google Scholar 

  • Henley, R. W., & Berger, B. R. (1996). What is an exploration model anyway? An analysis of the cognitive development and use of models in mineral exploration. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 6(33), 267A

    Google Scholar 

  • Hobbs, B. E., Zhang, Y., Ord, A., & Zhao, C. (2000). Application of coupled deformation, fluid flow, thermal and chemical modelling to predictive mineral exploration. Journal of Geochemical Exploration, 69, 505–509

    Article  Google Scholar 

  • Hron, K., Templ, M., & Filzmoser, P. (2010). Imputation of missing values for compositional data using classical and robust methods. Computational Statistics and Data Analysis, 54, 3095–3107

    Article  Google Scholar 

  • Hronsky, J. M., & Groves, D. I. (2008). Science of targeting: definition, strategies, targeting and performance measurement. Australian Journal of Earth Sciences, 55(1), 3–12

    Article  Google Scholar 

  • Hronsky, J. M., & Kreuzer, O. P. (2019). Applying spatial prospectivity mapping to exploration targeting: Fundamental practical issues and suggested solutions for the future. Ore Geology Reviews, 107, 647–653

    Article  Google Scholar 

  • Japkowicz, N., & Stephen, S. (2002). The class imbalance problem: A systematic study. Intelligent Data Analysis, 6, 429–449

    Article  Google Scholar 

  • Jiang, Y. (2009). Analysis of metallogenic geological features in Makeng iron deposit. Modern Mining, 8, 89–91 (in Chinese with English abstract).

    Google Scholar 

  • Kahneman, D. (2003). A perspective on judgment and choice: Mapping bounded rationality. American Psychologist, 58(9), 697

    Article  Google Scholar 

  • Kirkwood, C., Cave, M., Beamish, D., Grebby, S., & Ferreira, A. (2016). A machine learning approach to geochemical mapping. Journal of Geochemical Exploration, 167, 49–61

    Article  Google Scholar 

  • Knox-Robinson, C. M. (2000). Vectorial fuzzy logic: a novel technique for enhanced mineral prospectivity mapping, with reference to the orogenic gold mineralisation potential of the Kalgoorlie Terrane, Western Australia. Australian Journal of Earth Sciences, 47, 929–941

    Article  Google Scholar 

  • Kreuzer, O. P., & Etheridge, M. A. (2010). Risk and uncertainty in mineral exploration: implications for valuing mineral exploration properties. AIG News, 100, 20–28

    Google Scholar 

  • Kreuzer, O. P., Etheridge, M. A., Guj, P., McMahon, M. E., & Holden, D. J. (2008). Linking mineral deposit models to quantitative risk analysis and decision-making in exploration. Economic Geology, 103, 829–850

    Article  Google Scholar 

  • Kreuzer, O. P., Yousefi, M., & Nykänen, V. (2020). Introduction to the special issue on spatial modelling and analysis of ore-forming processes in mineral exploration targeting. Ore Geology Reviews, 119, 103391

    Article  Google Scholar 

  • Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. (Vol. 26)New York: Springer.

    Book  Google Scholar 

  • Lark, R., Patton, M., Ander, E., & Reay, D. (2018). The singularity index for soil geochemical variables, and a mixture model for its interpretation. Geoderma, 323, 83–106

    Article  Google Scholar 

  • Leach, D.L., Taylor, R.D., Fey, D.L., Diehl, S.F., & Saltus, R.W. (2010). A deposit model for Mississippi Valley-type lead-zinc ores. Chapter A of mineral deposit models for resource assessment: USGS, Scientific Investigations Report.

  • Li, S., Chen, J., & Xiang, J. (2020a). Applications of deep convolutional neural networks in prospecting prediction based on two-dimensional geological big data. Neural Computing and Applications, 32, 2037–2053

    Article  Google Scholar 

  • Li, T., Xia, Q., Zhao, M., Gui, Z., & Leng, S. (2020b). Prospectivity mapping for tungsten polymetallic mineral resources, nanling metallogenic belt, South China: Use of random forest algorithm from a perspective of data imbalance. Natural Resources Research, 29, 203–227

    Article  Google Scholar 

  • Li, T., Zuo, R., Xiong, Y., & Peng, Y. (2021). Random-drop data augmentation of deep convolutional neural network for mineral prospectivity mapping. Natural Resources Research, 30, 27–38

    Article  Google Scholar 

  • Lindsay, M., Aitken, A., Ford, A., Dentith, M., Hollis, J., & Tyler, I. (2016). Reducing subjectivity in multi-commodity mineral prospectivity analyses: Modelling the west Kimberley, Australia. Ore Geology Reviews, 76, 395–413

    Article  Google Scholar 

  • Lisitsin, V. A., Porwal, A., & McCuaig, T. C. (2014). Probabilistic fuzzy logic modeling: Quantifying uncertainty of mineral prospectivity models using Monte Carlo simulations. Mathematical Geosciences, 46, 747–769

    Article  Google Scholar 

  • Liu, B. (2007). Uncertainty theory. Springer, Berlin, Heidelberg: Uncertainty theory.

    Book  Google Scholar 

  • Liu, Y., Cheng, Q., Carranza, E. J. M., & Zhou, K. (2019). Assessment of geochemical anomaly uncertainty through geostatistical simulation and singularity analysis. Natural Resources Research, 28, 199–212

    Article  Google Scholar 

  • Liu, L., Wan, C., Zhao, C., & Zhao, Y. (2011). Geodynamic constraints on orebody localization in the Anqing orefield, China: Computational modeling and facilitating predictive exploration of deep deposits. Ore Geology Reviews, 43, 249–263

    Article  Google Scholar 

  • Liu, L., Zhao, Y., & Zhao, C. (2010). Coupled geodynamics in the formation of Cu skarn deposits in the Tongling-Anqing district, China: Computational modeling and implications for exploration. Journal of Geochemical Exploration, 106, 146–155

    Article  Google Scholar 

  • Liu, Y., Zhou, K., & Cheng, Q. (2017). A new method for geochemical anomaly separation based on the distribution patterns of singularity indices. Computers & Geosciences, 105, 139–147

    Article  Google Scholar 

  • Mann, C.J. (1993). Uncertainty in geology. Computers in geology-25 years of progress. Oxford University Press, Inc. New York, USA, pp.241–254.

  • Mao, J., Shao, Y., Xie, G., Zhang, J., & Chen, Y. (2009). Mineral deposit model for porphyry-skarn polymetallic copper deposits in Tongling ore dense district of Middle-Lower Yangtze Valley metallogenic belt. Mineral Deposits, 28(2), 109–119 (In Chinese with English abstract).

    Google Scholar 

  • Martín-Fernández, J. A., Barceló-Vidal, C., & Pawlowsky-Glahn, V. (2003). Dealing with zeros and missing values in compositional data sets. Mathematical Geology, 35, 253–278

    Article  Google Scholar 

  • Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58, 1246–1266

    Article  Google Scholar 

  • McCuaig, T. C., Beresford, S., & Hronsky, J. (2010). Translating the mineral systems approach into an effective exploration targeting system. Ore Geology Reviews, 38, 128–138

    Article  Google Scholar 

  • McCuaig, T.C., Kreuzer, O.P., & Brown, W.M. (2007). Fooling ourselves—Dealing with model uncertainty in a mineral systems approach to exploration. In: Mineral Exploration and Research: Digging Deeper. Proceedings of the 9th Biennial SGA Meeting, Dublin, 1435–1438.

  • McCuaig, T. C., Porwal, A., & Gessner, K. (2009). Fooling ourselves: recognizing uncertainty and bias in exploration targeting. Centre for Exploration Targeting Quarterly News, The University of Western Australia, 2(7), 1

    Google Scholar 

  • McLellan, J. G., Oliver, N. H. S., & Schaubs, P. M. (2004). Fluid flow in extensional environments; numerical modelling with an application to Hamersley iron ores. Journal of Structural Geology, 26, 1157–1171

    Article  Google Scholar 

  • Murphy, F. C., Ord, A., Hobbs, B. E., Willetts, G., & Barnicoat, A. C. (2008). Targeting stratiform Zn-Pb-Ag massive sulfide deposits in Ireland through numerical modeling of coupled deformation, thermal transport, and fluid flow. Economic Geology, 103, 1437–1458

    Article  Google Scholar 

  • Nykänen, V., Lahti, I., Niiranen, T., & Korhonen, K. (2015). Receiver operating characteristics (ROC) as validation tool for prospectivity models—A magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, northern Finland. Ore Geology Reviews, 71, 853–860

    Article  Google Scholar 

  • Ord, A., Hobbs, B. E., Zhang, Y., Broadbent, G. C., Brown, M., Willetts, G., Sorjonen-Ward, P., Walshe, J. L., & Zhao, C. (2002). Geodynamic modelling of the century deposit, Mt Isa Province, Queensland. Australian Journal of Earth Sciences, 49, 1011–1039

    Article  Google Scholar 

  • Palarea-Albaladejo, J., Martín-Fernández, J. A., & Gómez-García, J. (2007). A parametric approach for dealing with compositional rounded zeros. Mathematical Geology, 39, 625–645

    Article  Google Scholar 

  • Palin, R. M., Weller, O. M., Waters, D. J., & Dyck, B. (2016). Quantifying geological uncertainty in metamorphic phase equilibria modelling; A Monte Carlo assessment and implications for tectonic interpretations. Geoscience Frontiers, 7, 591–607

    Article  Google Scholar 

  • Park, N. W., Chi, K. H., & Kwon, B. D. (2007). Accounting for spatial patterns of multiple geological data sets in geological thematic mapping using GIS-based spatial analysis. Environmental Geology, 51, 1147–1155

    Article  Google Scholar 

  • Parsa, M., Maghsoudi, A., & Yousefi, M. (2017a). An improved data-driven fuzzy mineral prospectivity mapping procedure; Cosine amplitude-based similarity approach to delineate exploration targets. International Journal of Applied Earth Observation and Geoinformation, 58, 157–167

    Article  Google Scholar 

  • Parsa, M., Maghsoudi, A., & Yousefi, M. (2018a). Spatial analyses of exploration evidence data to model skarn-type copper prospectivity in the Varzaghan district, NW Iran. Ore Geology Reviews, 92, 97–112

    Article  Google Scholar 

  • Parsa, M., Maghsoudi, A., & Yousefi, M. (2018b). A receiver operating characteristics-based geochemical data fusion technique for targeting undiscovered mineral deposits. Natural Resources Research, 27(1), 15–28

    Article  Google Scholar 

  • Parsa, M., Maghsoudi, A., Yousefi, M., & Carranza, E. J. M. (2017b). Multifractal interpolation and spectrum–area fractal modeling of stream sediment geochemical data: Implications for mapping exploration targets. Journal of African Earth Sciences, 128, 5–15

    Article  Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2003a). Knowledge-driven and data-driven fuzzy models for predictive mineral potential mapping. Natural Resources Research, 12(1), 1–25

    Article  Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2003b). Artificial neural networks for mineral potential mapping: a case study from Aravalli province, western India. Natural Resources Research, 12, 155–177

    Article  Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2004). A hybrid neuro-fuzzy model for mineral potential mapping. Mathematical Geology, 36, 803–826

    Article  Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2006). A hybrid fuzzy weights-of-evidence model for mineral potential mapping. Natural Resources Research, 15, 1–14

    Article  Google Scholar 

  • Porwal, A., Das, R. D., Chaudhary, B., Gonzalez-Alvarez, I., & Kreuzer, O. (2015). Fuzzy inference systems for prospectivity modeling of mineral systems and a case-study for prospectivity mapping of surficial Uranium in Yeelirrie Area, Western Australia. Ore Geology Reviews, 71, 839–852

    Article  Google Scholar 

  • Porwal, A., & Carranza, E.M.J. (2015). Introduction to the Special Issue: GIS-based mineral potential modelling and geological data analyses for mineral exploration. Ore Geology Reviews, 71, 477–483

    Article  Google Scholar 

  • Prado, E. M. G., de Souza Filho, C. R., Carranza, E. J. M., & Motta, J. G. (2020). Modeling of Cu-Au prospectivity in the Carajás mineral province (Brazil) through Machine Learning: Dealing with imbalanced training data. Ore Geology Reviews, 124, 103611

    Article  Google Scholar 

  • Rahm, E., & Hong, H.D. (2000). Data cleaning: Problems and current approaches. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering.

  • Ramezanali, A. K., Feizi, F., Jafarirad, A., & Lotfi, M. (2020). Geochemical anomaly and mineral prospectivity mapping for vein-type copper mineralization, kuhsiah-e-urmak area, Iran: Application of sequential gaussian simulation and multivariate regression analysis. Natural Resources Research, 29, 41–70

    Article  Google Scholar 

  • Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., & Prabhat. (2019). Deep learning and process understanding for data-driven Earth system science. Nature, 566, 195–204

    Article  Google Scholar 

  • Reimann, C., Dutter, R., Filzmoser, P., & Garrett, R. (2008). Statistical data analysis explained. Wiley.

    Book  Google Scholar 

  • Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., & Chica-Rivas, M. (2015). Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews, 71, 804–818

    Article  Google Scholar 

  • Roshanravan, B., Kreuzer, O. P., Bruce, M., Davis, J., & Briggs, M. (2020). Modelling gold potential in the Granites-Tanami Orogen, NT, Australia: A comparative study using continuous and data-driven techniques. Ore Geology Reviews, 125, 103661

    Article  Google Scholar 

  • Sheldon, H. A. (2009). Simulation of magmatic and metamorphic fluid production coupled with deformation, fluid flow and heat transport. Computers & Geosciences, 35, 2275–2281

    Article  Google Scholar 

  • Sheldon, H. A., & Ord, A. (2005). Evolution of porosity, permeability and fluid pressure in dilatant faults post-failure: Implications for fluid flow and mineralization. Geofluids, 5, 272–288

    Article  Google Scholar 

  • Shepard, D. (1968). A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 23rd ACM national conference, pp. 517–524.

  • Singer, D. A. (1993). Basic concepts in three-part quantitative assessments of undiscovered mineral resources. Nonrenewable Resources, 2, 69–81

    Article  Google Scholar 

  • Singer, D. A. (2010). Progress in integrated quantitative mineral resource assessments. Ore Geology Reviews, 38, 242–250

    Article  Google Scholar 

  • Singer, D. A., & Kouda, R. (1996). Application of a feedforward neural network in the search for Kuroko deposits in the Hokuroku district, Japan. Mathematical Geology, 28, 1017–1023

    Article  Google Scholar 

  • Singer, D.A., & Berger, V.I. (2007). Mineral Resource Assessment Methodologies, Deposit Models and Their Application in Mineral Resource Assessments. In: Briskey, J.A., & Schulz, K.J. (eds.), 2007, Proceedings for a Workshop on Deposit Modeling, Mineral Resource Assessment, and Their Role in Sustainable Development. U.S. Geological Survey Circular 1294, 143 p.

  • Singer, D.A., & Menzie, W.D. (2010). Quantitative mineral resource assessments—An integrated approach (p. 232). Oxford University Press.

  • Skabar, A. (2007). Mineral potential mapping using Bayesian learning for multilayer perceptrons. Mathematical Geology, 39, 439–451

    Article  Google Scholar 

  • Skirrow, R. G., Murr, J., Schofield, A., Huston, D. L., van der Wielen, S., Czarnota, K., Coghlan, R., Highet, L. M., Connolly, D., Doublier, M., & Duan, J. (2019). Mapping iron oxide Cu-Au (IOCG) mineral potential in Australia using a knowledge-driven mineral systems-based approach. Ore Geology Reviews, 113, 103011

    Article  Google Scholar 

  • Sorjonen-Ward, P., Zhang, Y., & Zhao, C. (2002). Numerical modelling of orogenic processes and gold mineralisation in the southeastern part of the Yilgarn Craton, Western Australia. Australian Journal of Earth Sciences, 49, 935–964

    Article  Google Scholar 

  • Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15, 1929–1958

    Google Scholar 

  • Sternberg, R. J. (1999). Thinking styles. Cambridge University Press.

    Google Scholar 

  • Sun, T., Li, H., Wu, K., Chen, F., Zhu, Z., & Hu, Z. (2020). Data-driven predictive modelling of mineral prospectivity using machine learning and deep learning methods: A case study from Southern Jiangxi Province. China. Minerals, 10, 102

    Google Scholar 

  • Tamraparni, D., & Theodore, J. (2003). Exploratory data mining and data cleaning. Wiley-Interscience.

    Google Scholar 

  • Thompson, M., & Howarth, R. J. (1976). Duplicate analysis in geochemical practice. Part I. Theoretical approach and estimation of analytical reproducibility. Analyst, 101(1206), 690–698.

  • Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185(4157), 1124–1131

    Article  Google Scholar 

  • Wang, Z., Yin, Z., Cares, J., & Zuo, R. (2020). A Monte Carlo-based framework for risk-return analysis in mineral prospectivity mapping. Geoscience Frontiers, 13, 1925–1936

    Google Scholar 

  • Wang, J., & Zuo, R. (2018). Identification of geochemical anomalies through combined sequential Gaussian simulation and grid-based local singularity analysis. Computers & Geosciences, 118, 52–64

    Article  Google Scholar 

  • Wang, J., & Zuo, R. (2019). Recognizing geochemical anomalies via stochastic simulation-based local singularity analysis. Journal of Geochemical Exploration, 198, 29–40

    Article  Google Scholar 

  • Wastell, C. A. (2007). Risk-informed decision making? Risk Frontiers Quarterly Newsletter, 6(4), 1–2

    Google Scholar 

  • Wastell, C. A., Etheridge, M., McMahon, M., Lucas, G., & Hartley, L. (2011). The impact of cognitive predispositions on exploration decisions in the minerals industry. Applied Cognitive Psychology, 25(3), 469–479

    Article  Google Scholar 

  • Wyborn, L. A. I., Heinrich, C. A., & Jaques, A. L. (1994). Australian Proterozoic mineral systems: Essential ingredients and mappable criteria. Australasian Institute of Mining and Metallurgy Publication Series, 5, 109–115

    Google Scholar 

  • Xiong, Y., & Zuo, R. (2021). Robust feature extraction for geochemical anomaly recognition using stacked convolutional denoising autoencoders. Mathematical Geosciences. https://doi.org/10.1007/s11004-021-09935-z

    Article  Google Scholar 

  • Yang, J., Bull, S., & Large, R. (2004). Numerical investigation of salinity in controlling ore-forming fluid transport in sedimentary basins: Example of the HYC deposit. Northern Australia. Mineralium Deposita, 39(5–6), 622–631

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2015). Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping. Computers & Geosciences, 74, 97–109

    Article  Google Scholar 

  • Yousefi, M., Kamkar-Rouhani, A., & Carranza, E. J. M. (2012). Geochemical mineralization probability index (GMPI): A new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. Journal of Geochemical Exploration, 115, 24–35

    Article  Google Scholar 

  • Yousefi, M., Kreuzer, O. P., Nykänen, V., & Hronsky, J. M. (2019). Exploration information systems—A proposal for the future use of GIS in mineral exploration targeting. Ore Geology Reviews, 111, 103005

    Article  Google Scholar 

  • Zhang, D., Cheng, Q., Agterberg, F. P., & Chen, Z. (2016a). An improved solution of local window parameters setting for local singularity analysis based on Excel VBA batch processing technology. Computers & Geosciences, 88, 54–66

    Article  Google Scholar 

  • Zhang, Z., Cheng, Q., Yang, J., & Hu, X. (2018). Characterization and origin of granites from the Luoyang Fe deposit, southwestern Fujian Province, South China. Journal of Geochemical Exploration, 184, 119–135

    Article  Google Scholar 

  • Zhang, C., Mao, J., Xie, G., Zhao, C., Yu, M., Wang, J., & Liu, W. (2012). Geology and molybdenite Re-Os ages of Makeng skarn-type Fe-Mo deposit in Fujian province. Journal of Jilin University (Earth Science Edition), 42, 224–236 (in Chinese with English abstract).

    Google Scholar 

  • Zhang, Z., & Zuo, R. (2014). Sr-Nd-Pb isotope systematics of magnetite: Implications for the genesis of Makeng Fe deposit, southern China. Ore Geology Reviews, 57, 53–60

    Article  Google Scholar 

  • Zhang, Z., Zuo, R., & Cheng, Q. (2015). The mineralization age of the Makeng Fe deposit, South China: Implications from U-Pb and Sm-Nd geochronology. International Journal of Earth Sciences, 104, 663–682

    Article  Google Scholar 

  • Zhang, Z., Zuo, R., & Xiong, Y. (2016b). A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn–type Fe deposits in the southwestern Fujian metallogenic belt, China. Science China Earth Sciences, 59(3), 556–572

    Article  Google Scholar 

  • Zhao, P. (2007). Quantitative mineral prediction and deep mineral exploration. Earth Science Frontiers, 14, 1–10 (In Chinese with English Abstract).

    Google Scholar 

  • Zhao, C., Hobbs, B., & Alt-Epping, P. (2014). Modeling of ore-forming and geoenvironmental systems: Roles of fluid flow and chemical reaction processes. Journal of Geochemical Exploration, 144, 3–11

    Article  Google Scholar 

  • Zhao, C., Hobbs, B. E., Hornby, P., Ord, A., & Peng, S. (2006). Numerical modelling of fluids mixing, heat transfer and non-equilibrium redox chemical reactions in fluid-saturated porous rocks. International Journal for Numerical Methods in Engineering, 66, 1061–1078

    Article  Google Scholar 

  • Zhao, C., Hobbs, B. E., Ord, A., Hornby, P., & Peng, S. (2008). Effect of reactive surface areas associated with different particle shapes on chemical-dissolution front instability in fluid-saturated porous rocks. Transport in Porous Media, 73, 75–94

    Article  Google Scholar 

  • Zhao, C., Hobbs, B. E., Ord, A., Hornby, P., Peng, S., & Liu, L. (2007). Mineral precipitation associated with vertical fault zones: The interaction of solute advection, diffusion and chemical kinetics. Geofluids, 7, 3–18

    Article  Google Scholar 

  • Zhao, C., Hobbs, B. E., Ord, A., Peng, S., Mühlhaus, H. B., & Liu, L. (2004). Theoretical investigation of convective instability in inclined and fluid-saturated three-dimensional fault zones. Tectonophysics, 387, 47–64

    Article  Google Scholar 

  • Zhou, Z., & Liu, X. (2006). Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Transactions on Knowledge and Data Engineering, 18, 63–77

    Article  Google Scholar 

  • Zhu, L., Zhu, J., Xue, J., Xu, Q., & Liu, J. (1982). Discussion on the mineralization of Makeng iron deposit, Fujian. Shanghai Geology, 2, 21 (in Chinese with English abstract).

    Google Scholar 

  • Zuo, R. (2020). Geodata science-based mineral prospectivity mapping: A review. Natural Resources Research, 29, 3415–3424

    Article  Google Scholar 

  • Zuo, R., & Carranza, E. J. M. (2011). Support vector machine: a tool for mapping mineral prospectivity. Computers & Geosciences, 37, 1967–1975

    Article  Google Scholar 

  • Zuo, R., Peng, Y., Li, T., & Xiong, Y. (2021). Challenges of geological prospecting big data mining and integration using deep learning algorithms. Earth Science, 46(1), 350–358 (in Chinese with English abstract).

    Google Scholar 

  • Zuo, R., & Wang, Z. (2020). Effects of random negative training samples on mineral prospectivity mapping. Natural Resources Research, 29, 3443–3455

    Article  Google Scholar 

  • Zuo, R., & Xiong, Y. (2018). Big data analytics of identifying geochemical anomalies supported by machine learning methods. Natural Resources Research, 27, 5–13

    Article  Google Scholar 

  • Zuo, R., & Xiong, Y. (2020). Geodata science and geochemical mapping. Journal of Geochemical Exploration, 209, 106431

    Article  Google Scholar 

  • Zuo, R., Xiong, Y., Wang, J., & Carranza, E. J. M. (2019). Deep learning and its application in geochemical mapping. Earth Science Reviews, 192, 1–14

    Article  Google Scholar 

  • Zuo, R., Zhang, Z., Zhang, D., Carranza, E. J. M., & Wang, H. (2015). Evaluation of uncertainty in mineral prospectivity mapping due to missing evidence: A case study with skarn-type Fe deposits in Southwestern Fujian Province, China. Ore Geology Reviews, 71, 502–515

    Article  Google Scholar 

Download references

Acknowledgements

Thanks are due to two reviewers’ and Dr. M. Parsa’s comments and suggestions, which helped us improve this study. This study was supported by the National Natural Science Foundation of China (41972303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renguang Zuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, R., Kreuzer, O.P., Wang, J. et al. Uncertainties in GIS-Based Mineral Prospectivity Mapping: Key Types, Potential Impacts and Possible Solutions. Nat Resour Res 30, 3059–3079 (2021). https://doi.org/10.1007/s11053-021-09871-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-021-09871-z

Keywords

Navigation