Skip to main content
Log in

A Novel Combination of Tree-Based Modeling and Monte Carlo Simulation for Assessing Risk Levels of Flyrock Induced by Mine Blasting

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The purpose of this study was to develop and introduce novel techniques for predicting and simulating the flyrock phenomenon that happens in mines due to blasting. Two tree-based techniques, genetic programming (GP) and random forest (RF), were developed and applied to predict flyrock distance. Identification and measurements of important parameters affecting flyrock were done in six different quarry sites in Malaysia. An extensive database was established and used to conduct various parametric studies for both GP and RF models to obtain the best models. The performance prediction of the best GP and RF models were evaluated using several performance indices and the GP model could provide higher capacity in predicting flyrock distance. Afterward, Monte Carlo simulation (MCS) was used with the developed GP equation to analyze the flyrock risk in the studied sites. The MCS results showed that only 10% of the flyrock events will exceed 290 m. This proved that the blast safety area can be identified clearly for the blasting operations in the studied sites using MCS. It is important to note that the developed GP, RF and MCS models can be implemented in other relevant blasting environmental issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ahmad, A. (2014). Decision tree ensembles based on kernel features. Applied Intelligence, 41(3), 855–869.

    Google Scholar 

  • Amini, S. M., Abdollahi, M., & Haeri, M. A. (2020). Rule-centred genetic programming (RCGP): An imperialist competitive approach. Applied Intelligence, 50, 2589–2609.

  • Armaghani, D. J., Asteris, P. G., Fatemi, S. A., Hasanipanah, M., Tarinejad, R., Rashid, A. S. A., et al. (2020a). On the use of neuro-swarm system to forecast the pile settlement. Applied Sciences, 10(6), 1904.

    Google Scholar 

  • Armaghani, D. J., Koopialipoor, M., Bahri, M., Hasanipanah, M., & Tahir, M. M. (2020b). A SVR-GWO technique to minimize flyrock distance resulting from blasting. Bulletin of Engineering Geology and the Environment. https://doi.org/10.1007/s10064-020-01834-7.

    Article  Google Scholar 

  • Armaghani, D. J., Kumar, D., Samui, P., Hasanipanah, M., & Roy, B. (2020c). A novel approach for forecasting of ground vibrations resulting from blasting: Modified particle swarm optimization coupled extreme learning machine. Engineering with Computers. https://doi.org/10.1007/s00366-020-00997-x.

    Article  Google Scholar 

  • Armaghani, D. J., Mahdiyar, A., Hasanipanah, M., Faradonbeh, R. S., Khandelwal, M., & Amnieh, H. B. (2016a). Risk assessment and prediction of flyrock distance by combined multiple regression analysis and Monte Carlo simulation of quarry blasting. Rock Mechanics and Rock Engineering, 49(9), 1–11.

    Google Scholar 

  • Armaghani, D., Mohamad, E., & Hajihassani, M. (2016b). Evaluation and prediction of flyrock resulting from blasting operations using empirical and computational methods. Engineering with Computers, 32, 109–121.

    Google Scholar 

  • Bajpayee, T. S., Rehak, T. R., Mowrey, G. L., & Ingram, D. K. (2004). Blasting injuries in surface mining with emphasis on flyrock and blast area security. Journal of Safety Research, 35(1), 47–57.

    Google Scholar 

  • Biecek, P. (2018). DALEX: Explainers for complex predictive models in R. The Journal of Machine Learning Research, 19(1), 3245–3249.

    Google Scholar 

  • Breiman, L. (1996). Some properties of splitting criteria. Machine Learning, 24(1), 41–47.

    Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

    Google Scholar 

  • Bui, X.-N., Nguyen, H., Le, H.-A., Bui, H.-B., & Do, N.-H. (2019). Prediction of blast-induced air over-pressure in open-pit mine: Assessment of different artificial intelligence techniques. Natural Resources Research. https://doi.org/10.1007/s11053-019-09461-0.

    Article  Google Scholar 

  • Cai, M., Koopialipoor, M., Armaghani, D. J., & Thai Pham, B. (2020). Evaluating slope deformation of earth dams due to earthquake shaking using MARS and GMDH techniques. Applied Sciences, 10(4), 1486.

    Google Scholar 

  • EPA, U. S. (1997). Environmental Protection Agency. Guiding principles for Monte Carlo analysis. EPA/630/R-97/001.

  • Faradonbeh, R. S., Armaghani, D. J., Monjezi, M., & Mohamad, E. T. (2016). Genetic programming and gene expression programming for flyrock assessment due to mine blasting. International Journal of Rock Mechanics and Mining Sciences, 88, 254–264.

    Google Scholar 

  • Fayyad, U. M. (1992). On the induction of decision trees for multiple concept learning. USA: PhD thesis, University of Michigan, EECS Department.

  • Fayyad, Usama. M., & Irani, K. B. (1990). What should be minimized in a decision tree? AAAI, 90, 749–754.

    Google Scholar 

  • Fayyad, U., & Irani, K. (1993). Multi-interval discretization of continuous-valued attributes for classification learning. Proc. 13th Internat. Joint Conf. on Articial Intelligence, pp 1022–1027.

  • Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232.

  • Greenwell, B. M. (2017). pdp: An R package for constructing partial dependence plots. The R Journal, 9(1), 421–436.

    Google Scholar 

  • Guo, H., Zhou, J., Koopialipoor, M., Armaghani, D. J., & Tahir, M. M. (2019). Deep neural network and whale optimization algorithm to assess flyrock induced by blasting. Engineering with Computers. https://doi.org/10.1007/s00366-019-00816-y.

    Article  Google Scholar 

  • Han, H., Armaghani, D. J., Tarinejad, R., Zhou, J., & Tahir, M. M. (2020). Random forest and Bayesian network techniques for probabilistic prediction of flyrock induced by blasting in quarry sites. Natural Resources Research. https://doi.org/10.1007/s11053-019-09611-4.

    Article  Google Scholar 

  • Hasanipanah, M., & Amnieh, H. B. (2020). A fuzzy rule-based approach to address uncertainty in risk assessment and prediction of blast-induced Flyrock in a quarry. Natural Resources Research. https://doi.org/10.1007/s11053-020-09616-4.

    Article  Google Scholar 

  • Jiang, W., Arslan, C. A., Tehrani, M. S., Khorami, M., & Hasanipanah, M. (2019). Simulating the peak particle velocity in rock blasting projects using a neuro-fuzzy inference system. Engineering with Computers, 35(4), 1203–1211.

  • Khandelwal, M., Armaghani, D. J., Faradonbeh, R. S., Ranjith, P. G., & Ghoraba, S. (2016). A new model based on gene expression programming to estimate air flow in a single rock joint. Environmental Earth Sciences, 75(9), 739.

    Google Scholar 

  • Khandelwal, M., & Kankar, P. K. (2011). Prediction of blast-induced air overpressure using support vector machine. Arabian Journal of Geosciences, 4(3–4), 427–433.

    Google Scholar 

  • Khandelwal, M., & Singh, T. N. (2009). Prediction of blast-induced ground vibration using artificial neural network. International Journal of Rock Mechanics and Mining Sciences, 46(7), 1214–1222.

    Google Scholar 

  • Koopialipoor, M., Armaghani, D. J., Hedayat, A., Marto, A., & Gordan, B. (2018a). Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions. Soft Computing. https://doi.org/10.1007/s00500-018-3253-3.

    Article  Google Scholar 

  • Koopialipoor, M., Fallah, A., Armaghani, D. J., Azizi, A., & Mohamad, E. T. (2018b). Three hybrid intelligent models in estimating flyrock distance resulting from blasting. Engineering with Computers. https://doi.org/10.1007/s00366-018-0596-4.

    Article  Google Scholar 

  • Koopialipoor, M., Ghaleini, E. N., Haghighi, M., Kanagarajan, S., Maarefvand, P., & Mohamad, E. T. (2018c). Overbreak prediction and optimization in tunnel using neural network and bee colony techniques. Engineering with Computers. https://doi.org/10.1007/s00366-018-0658-7.

    Article  Google Scholar 

  • Koopialipoor, M., Ghaleini, E. N., Tootoonchi, H., Jahed Armaghani, D., Haghighi, M., & Hedayat, A. (2019a). Developing a new intelligent technique to predict overbreak in tunnels using an artificial bee colony-based ANN. Environmental Earth Sciences, 78(5), 165.

    Google Scholar 

  • Koopialipoor, M., Jahed Armaghani, D., Haghighi, M., & Ghaleini, E. N. (2019b). A neuro-genetic predictive model to approximate overbreak induced by drilling and blasting operation in tunnels. Bulletin of Engineering Geology and the Environment, 78(2), 981–990.

    Google Scholar 

  • Koopialipoor, M., Murlidhar, B. R., Hedayat, A., Armaghani, D. J., Gordan, B., & Mohamad, E. T. (2019c). The use of new intelligent techniques in designing retaining walls. Engineering with Computers. https://doi.org/10.1007/s00366-018-00700-1.

    Article  Google Scholar 

  • Koopialipoor, M., Nikouei, S. S., Marto, A., Fahimifar, A., Armaghani, D. J., & Mohamad, E. T. (2018d). Predicting tunnel boring machine performance through a new model based on the group method of data handling. Bulletin of Engineering Geology and the Environment, 78(5), 3799–3813.

    Google Scholar 

  • Koza, J. R., & Koza, J. R. (1992). Genetic programming: On the programming of computers by means of natural selection (Vol. 1). Cambridge: MIT Press.

    Google Scholar 

  • Liao, X., Khandelwal, M., Yang, H., Koopialipoor, M., & Murlidhar, B. R. (2019). Effects of a proper feature selection on prediction and optimization of drilling rate using intelligent techniques. Engineering with Computers. https://doi.org/10.1007/s00366-019-00711-6.

    Article  Google Scholar 

  • Little, T. N., & Blair, D. P. (2010). Mechanistic Monte Carlo models for analysis of flyrock risk. Rock Fragmentation by Blasting, 9, 641–647.

    Google Scholar 

  • Liu, B., Yang, H., & Karekal, S. (2019). Effect of water content on argillization of mudstone during the tunnelling process. Rock Mechanics and Rock Engineering. https://doi.org/10.1007/s00603-019-01947-w.

    Article  Google Scholar 

  • Lu, X., Hasanipanah, M., Brindhadevi, K., Amnieh, H. B., & Khalafi, S. (2019). ORELM: A novel machine learning approach for prediction of flyrock in mine blasting. Natural Resources Research. https://doi.org/10.1007/s11053-019-09532-2.

    Article  Google Scholar 

  • Lundborg, N., Persson, A., Ladegaard-Pedersen, A., & Holmberg, R. (1975). Keeping the lid on flyrock in open-pit blasting. Engineering and Mining Journal, 176, 95–100.

    Google Scholar 

  • Luo, Z., Hasanipanah, M., Amnieh, H. B., Brindhadevi, K., & Tahir, M. M. (2019). GA-SVR: A novel hybrid data-driven model to simulate vertical load capacity of driven piles. Engineering with Computers. https://doi.org/10.1007/s00366-019-00858-2.

    Article  Google Scholar 

  • Mahdiyar, A., Hasanipanah, M., Armaghani, D. J., Gordan, B., Abdullah, A., Arab, H., et al. (2017). A Monte Carlo technique in safety assessment of slope under seismic condition. Engineering with Computers, 33(4), 807–817.

    Google Scholar 

  • Mahdiyar, A., Jahed Armaghani, D., Koopialipoor, M., Hedayat, A., Abdullah, A., & Yahya, K. (2020). Practical risk assessment of ground vibrations resulting from blasting, using gene expression programming and Monte Carlo simulation techniques. Applied Sciences, 10(2), 472.

    Google Scholar 

  • Mahdiyar, A., Tabatabaee, S., Sadeghifam, A. N., Mohandes, S. R., Abdullah, A., & Meynagh, M. M. (2016). Probabilistic private cost-benefit analysis for green roof installation: A Monte Carlo simulation approach. Urban Forestry & Urban Greening, 20, 317–327.

    Google Scholar 

  • Manoj, K., & Monjezi, M. (2013). Prediction of flyrock in open pit blasting operation using machine learning method. International Journal of Mining Science and Technology, 23(3), 313–316.

    Google Scholar 

  • Marto, A., Hajihassani, M., Jahed Armaghani, D., Tonnizam Mohamad, E., & Makhtar, A. M. (2014). A novel approach for blast-induced flyrock prediction based on imperialist competitive algorithm and artificial neural network. Scientific World Journal. https://doi.org/10.1155/2014/643715.

    Article  Google Scholar 

  • McKenzie, C. K. (2009). Flyrock range and fragment size prediction. In Proceedings of the 35th annual conference on explosives and blasting technique, 2. International Society of Explosives Engineers.

  • Mohamad, E. T., Koopialipoor, M., Murlidhar, B. R., Rashiddel, A., Hedayat, A., & Armaghani, D. J. (2019). A new hybrid method for predicting ripping production in different weathering zones through in situ tests. Measurement. https://doi.org/10.1016/j.measurement.2019.07.054.

    Article  Google Scholar 

  • Monjezi, M., Ahmadi, Z., Varjani, A. Y., & Khandelwal, M. (2013a). Backbreak prediction in the Chadormalu iron mine using artificial neural network. Neural Computing and Applications, 23(3–4), 1101–1107.

    Google Scholar 

  • Monjezi, M., Mehrdanesh, A., Malek, A., & Khandelwal, M. (2013b). Evaluation of effect of blast design parameters on flyrock using artificial neural networks. Neural Computing and Applications, 23(2), 349–356.

    Google Scholar 

  • Morin, M. A., & Ficarazzo, F. (2006). Monte Carlo simulation as a tool to predict blasting fragmentation based on the Kuz–Ram model. Computers & Geosciences, 32(3), 352–359.

    Google Scholar 

  • Murlidhar, B. R., Kumar, D., Jahed Armaghani, D., Mohamad, E. T., Roy, B., & Pham, B. T. (2020). A novel intelligent ELM-BBO technique for predicting distance of mine blasting-induced flyrock. Natural Resources Research. https://doi.org/10.1007/s11053-020-09676-6.

    Article  Google Scholar 

  • Nguyen, H., & Bui, X.-N. (2020). Soft computing models for predicting blast-induced air over-pressure: A novel artificial intelligence approach. Applied Soft Computing, 92, 106292.

  • Nguyen, H., Bui, X.-N., Bui, H.-B., & Cuong, D. T. (2019). Developing an XGBoost model to predict blast-induced peak particle velocity in an open-pit mine: A case study. Acta Geophysica, 67(2), 477–490.

    Google Scholar 

  • Nguyen, H., Choi, Y., Bui, X.-N., & Nguyen-Thoi, T. (2020). Predicting blast-induced ground vibration in open-pit mines using vibration sensors and support vector regression-based optimization algorithms. Sensors, 20(1), 132.

    Google Scholar 

  • Peng, K., Wang, Y., Zou, Q., Liu, Z., & Mou, J. (2019a). Effect of crack angles on energy characteristics of sandstones under a complex stress path. Engineering Fracture Mechanics, 218, 106577.

    Google Scholar 

  • Peng, K., Zhou, J., Zou, Q., & Song, X. (2020). Effect of loading frequency on the deformation behaviours of sandstones subjected to cyclic loads and its underlying mechanism. International Journal of Fatigue, 131, 105349.

    Google Scholar 

  • Peng, K., Zhou, J., Zou, Q., & Yan, F. (2019b). Deformation characteristics of sandstones during cyclic loading and unloading with varying lower limits of stress under different confining pressures. International Journal of Fatigue, 127, 82–100.

    Google Scholar 

  • Qi, Chong.-chong. (2020). Big data management in the mining industry. International Journal of Minerals, Metallurgy and Materials, 27(2), 131–139.

    Google Scholar 

  • Qi, Chongchong., & Fourie, A. (2019). Cemented paste backfill for mineral tailings management: Review and future perspectives. Minerals Engineering, 144, 106025.

    Google Scholar 

  • Qi, Chongchong., Fourie, A., & Chen, Q. (2018). Neural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfill. Construction and Building Materials, 159, 473–478.

    Google Scholar 

  • Raina, A. K., Chakraborty, A. K., More, R., & Choudhury, P. B. (2007). Design of factor of safety based criterion for control of flyrock/throw and optimum fragmentation. J Inst Eng India, 87, 13–17.

    Google Scholar 

  • Rajan, A., & Malakar, T. (2015). Optimal reactive power dispatch using hybrid Nelder–Mead simplex based firefly algorithm. International Journal of Electrical Power & Energy Systems, 66, 9–24.

    Google Scholar 

  • Richards, A., & Moore, A. (2004). Flyrock control-by chance or design. In Proceedings of the annual conference on explosives and blasting technique (Vol. 1, pp. 335–348). ISEE; 1999.

  • Roy, P. P. (2005). Rock blasting: Effects and operations. Boca Raton: CRC Press.

    Google Scholar 

  • Shirani Faradonbeh, R., Monjezi, M., & Jahed Armaghani, D. (2016). Genetic programing and non-linear multiple regression techniques to predict backbreak in blasting operation. Engineering with Computers. https://doi.org/10.1007/s00366-015-0404-35.

    Article  Google Scholar 

  • Sun, L., Koopialipoor, M., Armaghani, D. J., Tarinejad, R., & Tahir, M. M. (2019). Applying a meta-heuristic algorithm to predict and optimize compressive strength of concrete samples. Engineering with Computers. https://doi.org/10.1007/s00366-019-00875-1.

  • Sun, D., Lonbani, M., Askarian, B., Armaghani, D. J., Tarinejad, R., Pham, B. T., et al. (2020). Investigating the applications of machine learning techniques to predict the rock brittleness index. Applied Sciences, 10(5), 1691.

    Google Scholar 

  • Tang, D., Gordan, B., Koopialipoor, M., Jahed Armaghani, D., Tarinejad, R., Thai Pham, B., et al. (2020). Seepage analysis in short embankments using developing a metaheuristic method based on governing equations. Applied Sciences, 10(5), 1761.

    Google Scholar 

  • Taylor, P. C., & Silverman, B. W. (1993). Block diagrams and splitting criteria for classification trees. Statistics and Computing, 3(4), 147–161.

    Google Scholar 

  • Torres-Barrán, A., Alonso, Á., & Dorronsoro, J. R. (2019). Regression tree ensembles for wind energy and solar radiation prediction. Neurocomputing, 326, 151–160.

    Google Scholar 

  • Trivedi, R., Singh, T. N., & Raina, A. K. (2014). Prediction of blast-induced flyrock in Indian limestone mines using neural networks. Journal of Rock Mechanics and Geotechnical Engineering, 6(5), 447–454.

    Google Scholar 

  • Ulusay, R., & Hudson, J. A. (2007). ISRM (2007) The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. In Commission on testing methods. International society of rock mechanics. Compilation arranged by the ISRM Turkish National Group, Ankara, Turkey, 628.

  • Xu, C., Gordan, B., Koopialipoor, M., Armaghani, D. J., Tahir, M. M., & Zhang, X. (2019). Improving performance of retaining walls under dynamic conditions developing an optimized ANN based on ant colony optimization technique. IEEE Access, 7, 94692–94700.

    Google Scholar 

  • Yang, H., Koopialipoor, M., Armaghani, D. J., Gordan, B., Khorami, M., & Tahir, M. M. (2019). Intelligent design of retaining wall structures under dynamic conditions. Steel and Composite Structures, 31(6), 629–640.

    Google Scholar 

  • Yang, H. Q., Li, Z., Jie, T. Q., & Zhang, Z. Q. (2018a). Effects of joints on the cutting behavior of disc cutter running on the jointed rock mass. Tunnelling and Underground Space Technology, 81, 112–120.

    Google Scholar 

  • Yang, H., Liu, J., & Liu, B. (2018b). Investigation on the cracking character of jointed rock mass beneath TBM disc cutter. Rock Mechanics and Rock Engineering, 51(4), 1263–1277.

    Google Scholar 

  • Yang, H. Q., Zeng, Y. Y., Lan, Y. F., & Zhou, X. P. (2014). Analysis of the excavation damaged zone around a tunnel accounting for geostress and unloading. International Journal of Rock Mechanics and Mining Sciences, 69, 59–66.

    Google Scholar 

  • Zhao, Y., Noorbakhsh, A., Koopialipoor, M., Azizi, A., & Tahir, M. M. (2019). A new methodology for optimization and prediction of rate of penetration during drilling operations. Engineering with Computers. https://doi.org/10.1007/s00366-019-00715-2.

    Article  Google Scholar 

  • Zhou, J., Aghili, N., Ghaleini, E. N., Bui, D. T., Tahir, M. M., & Koopialipoor, M. (2019a). A Monte Carlo simulation approach for effective assessment of flyrock based on intelligent system of neural network. Engineering with Computers. https://doi.org/10.1007/s00366-019-00726-z.

    Article  Google Scholar 

  • Zhou, J., Guo, H., Koopialipoor, M., Armaghani, D. J., & Tahir, M. M. (2020a). Investigating the effective parameters on the risk levels of rockburst phenomena by developing a hybrid heuristic algorithm. Engineering with Computers. https://doi.org/10.1007/s00366-019-00908-9.

    Article  Google Scholar 

  • Zhou, J., Koopialipoor, M., Li, E., & Armaghani, D. J. (2020b). Prediction of rockburst risk in underground projects developing a neuro-bee intelligent system. Bulletin of Engineering Geology and the Environment. https://doi.org/10.1007/s10064-020-01788-w.

    Article  Google Scholar 

  • Zhou, J., Koopialipoor, M., Murlidhar, B. R., Fatemi, S. A., Tahir, M. M., Armaghani, D. J., et al. (2019b). Use of intelligent methods to design effective pattern parameters of mine blasting to minimize flyrock distance. Natural Resources Research. https://doi.org/10.1007/s11053-019-09519-z.

    Article  Google Scholar 

  • Zhou, J., Li, C., Koopialipoor, M., Jahed Armaghani, D., & Thai Pham, B. (2020c). Development of a new methodology for estimating the amount of PPV in surface mines based on prediction and probabilistic models (GEP-MC). International Journal of Mining, Reclamation and Environment. https://doi.org/10.1080/17480930.2020.1734151.

    Article  Google Scholar 

  • Zhou, J., Li, E., Wei, H., Li, C., Qiao, Q., & Armaghani, D. J. (2019c). Random forests and cubist algorithms for predicting shear strengths of rockfill materials. Applied Sciences, 9(8), 1621.

    Google Scholar 

  • Zhou, J., Shi, X., Du, K., Qiu, X., Li, X., & Mitri, H. S. (2016). Feasibility of random-forest approach for prediction of ground settlements induced by the construction of a shield-driven tunnel. International Journal of Geomechanics, 17(6), 4016129.

    Google Scholar 

  • Zhou, W., Shi, X., Lu, X., Qi, C., Luan, B., & Liu, F. (2020d). The mechanical and microstructural properties of refuse mudstone-GGBS-red mud based geopolymer composites made with sand. Construction and Building Materials, 253, 119193.

    Google Scholar 

  • Zojaji, Z., Ladani, B. T., & Khalilian, A. (2016). Automated program repair using genetic programming and model checking. Applied Intelligence, 45(4), 1066–1088.

    Google Scholar 

  • Zorlu, K., Gokceoglu, C., Ocakoglu, F., Nefeslioglu, H. A., & Acikalin, S. (2008). Prediction of uniaxial compressive strength of sandstones using petrography-based models. Engineering Geology, 96(3), 141–158.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinbi Ye or Danial Jahed Armaghani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, J., Koopialipoor, M., Zhou, J. et al. A Novel Combination of Tree-Based Modeling and Monte Carlo Simulation for Assessing Risk Levels of Flyrock Induced by Mine Blasting. Nat Resour Res 30, 225–243 (2021). https://doi.org/10.1007/s11053-020-09730-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-020-09730-3

Keywords

Navigation