Aasly, K., & Ellefmo, S. (2014). Geometallurgy applied to industrial minerals operations. Mineralproduksjon, 5, 21–34.
Google Scholar
Ahonen, T., Hadid, A., & Pietikainen, M. (2006). Face description with local binary patterns: Application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 2037–2041.
Google Scholar
Aligholi, S., Khajavi, R., & Razmara, M. (2015). Automated mineral identification algorithm using optical properties of crystals. Computers & Geosciences, 85, 175–183.
Google Scholar
Andersson, S. (2017). Influence of file systems on performance when working with an abundance of small files. UMNAD NV—1120. Department of Computing Science, Faculty of Science and Technology, Umeå University. Retrieved from http://umu.diva-portal.org/smash/get/diva2:1161756/FULLTEXT01.pdf.
Bahrami, A., Mirmohammadi, M., Ghorbani, Y., Kazemi, F., Abdollahi, M., & Danesh, A. (2019). Process mineralogy as a key factor affecting the flotation kinetics of copper sulfide minerals. International Journal of Minerals, Metallurgy, and Materials, 26(4), 430–439.
Google Scholar
Becker, M., Jardine, M. A., Miller, J. A., & Harris, M. (2016). X-ray computed tomography—A geometallurgical tool for 3D textural analysis of drill core? In Proceedings of the 3rd AusIMM international geometallurgy conference (pp. 15–16).
Bergqvist, M., Landström, E., Hansson, A., & Luth, S. (2019). Access to geological structures, density, minerals and textures through novel combination of 3D tomography, XRF and sample weight. In Australasian exploration geoscience conference (pp. 3–5). Perth, Western Australia.
Bindler, R., Karlsson, J., Rydberg, J., Karlsson, B., Berg Nilsson, L., Biester, H., et al. (2017). Copper-ore mining in Sweden since the pre-Roman iron age: Lake-sediment evidence of human activities at the Garpenberg ore field since 375 BCE. Journal of Archaeological Science: Reports, 12, 99–108.
Google Scholar
Bonnici, N., Hunt, J. A., Walters, S. G., Berry, R., & Collett, D. (2008). Relating textural attributes to mineral processing: Developing a more effective approach for the Cadia East Cu–Au porphyry deposit. In Proceedings of the ninth international congress for applied mineralogy conference (ICAM) (pp. 4–5).
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Google Scholar
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.
Google Scholar
Dominy, S., O’Connor, L., Parbhakar-Fox, A., Glass, H., & Purevgerel, S. (2018). Geometallurgy—A route to more resilient mine operations. Minerals, 8(12), 560.
Google Scholar
Donskoi, E., Poliakov, A., Holmes, R., Suthers, S., Ware, N., Manuel, J., et al. (2016). Iron ore textural information is the key for prediction of downstream process performance. Minerals Engineering, 86, 10–23.
Google Scholar
Donskoi, E., Suthers, S. P., Fradd, S. B., Young, J. M., Campbell, J. J., Raynlyn, T. D., et al. (2007). Utilization of optical image analysis and automatic texture classification for iron ore particle characterisation. Minerals Engineering. https://doi.org/10.1016/j.mineng.2006.12.005.
Article
Google Scholar
Evans, C. L., Wightman, E. M., & Yuan, X. (2015). Quantifying mineral grain size distributions for process modelling using X-ray micro-tomography. Minerals Engineering, 82, 78–83.
Google Scholar
Fagan-Endres, M. A., Cilliers, J. J., Sederman, A. J., & Harrison, S. T. L. (2017). Spatial variations in leaching of a low-grade, low-porosity chalcopyrite ore identified using X-ray μCT. Minerals Engineering, 105, 63–68.
Google Scholar
Fehr, J., & Burkhardt, H. (2008). 3D rotation invariant local binary patterns. In 2008 19th International conference on pattern recognition (pp. 1–4). https://doi.org/10.1109/ICPR.2008.4761098.
Ghorbani, Y., Becker, M., Petersen, J., Morar, S. H., Mainza, A., & Franzidis, J.-P. (2011). Use of X-ray computed tomography to investigate crack distribution and mineral dissemination in sphalerite ore particles. Minerals Engineering, 24(12), 1249–1257.
Google Scholar
Guntoro, P. I., Ghorbani, Y., Koch, P.-H., & Rosenkranz, J. (2019a). X-ray microcomputed tomography (µCT) for mineral characterization: A review of data analysis methods. Minerals, 9(3), 183.
Google Scholar
Guntoro, P. I., Tiu, G., Ghorbani, Y., Lund, C., & Rosenkranz, J. (2019b). Application of machine learning techniques in mineral phase segmentation for X-ray microcomputed tomography (µCT) data. Minerals Engineering, 142, 105882.
Google Scholar
Gustafson, J. L. (1988). Reevaluating Amdahl’s law. Communications of the ACM, 31(5), 532–533.
Google Scholar
Guyon, I., Boser, B. E., & Vapnik, V. (1992). Automatic capacity tuning of very large VC-dimension classifiers. In Advances in neural information processing systems 5, (NIPS Conference) (pp. 147–155). San Francisco, CA: Morgan Kaufmann Publishers Inc.
Haralick, R. M., & Shanmugam, K. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, 6, 610–621.
Google Scholar
Huang, D., Shan, C., Ardabilian, M., Wang, Y., & Chen, L. (2011). Local binary patterns and its application to facial image analysis: A survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 41(6), 765–781.
Google Scholar
Jardine, M. A., Miller, J. A., & Becker, M. (2018). Coupled X-ray computed tomography and grey level co-occurrence matrices as a method for quantification of mineralogy and texture in 3D. Computers & Geosciences, 111, 105–117.
Google Scholar
Jordens, A., Marion, C., Grammatikopoulos, T., & Waters, K. E. (2016). Understanding the effect of mineralogy on muscovite flotation using QEMSCAN. International Journal of Mineral Processing, 155, 6–12.
Google Scholar
King, A., Reischig, P., Adrien, J., Peetermans, S., & Ludwig, W. (2014). Polychromatic diffraction contrast tomography. Materials Characterization, 97, 1–10.
Google Scholar
Koch, P.-H. H., Lund, C., & Rosenkranz, J. (2019). Automated drill core mineralogical characterization method for texture classification and modal mineralogy estimation for geometallurgy. Minerals Engineering, 136, 99–109.
Google Scholar
Lätti, D., & Adair, B. J. I. (2001). An assessment of stereological adjustment procedures. Minerals Engineering, 14(12), 1579–1587.
Google Scholar
Lin, C. L., & Miller, J. D. (2005). 3D characterization and analysis of particle shape using X-ray microtomography (XMT). Powder Technology. https://doi.org/10.1016/j.powtec.2005.04.031.
Article
Google Scholar
Lishchuk, V., Koch, P.-H., Ghorbani, Y., & Butcher, A. R. (2020). Towards integrated geometallurgical approach: Critical review of current practices and future trends. Minerals Engineering, 145, 106072.
Google Scholar
Lishchuk, V., Lund, C., Koch, P. H., Gustafsson, M., & Pålsson, B. I. (2019). Geometallurgical characterisation of Leveäniemi iron ore—Unlocking the patterns. Minerals Engineering. https://doi.org/10.1016/j.mineng.2018.11.034.
Article
Google Scholar
Little, L., Mainza, A. N., Becker, M., & Wiese, J. (2017). Fine grinding: How mill type affects particle shape characteristics and mineral liberation. Minerals Engineering, 111, 148–157.
Google Scholar
Little, L., Mainza, A. N., Becker, M., & Wiese, J. G. (2016). Using mineralogical and particle shape analysis to investigate enhanced mineral liberation through phase boundary fracture. Powder Technology, 301, 794–804.
Google Scholar
Lobos, R., Silva, J. F., Ortiz, J. M., Díaz, G., & Egaña, A. (2016). Analysis and classification of natural rock textures based on new transform-based features. Mathematical Geosciences, 48(7), 835–870.
Google Scholar
Lund, C., Lamberg, P., & Lindberg, T. (2013). Practical way to quantify minerals from chemical assays at Malmberget iron ore operations—An important tool for the geometallurgical program. Minerals Engineering, 49, 7–16.
Google Scholar
Lund, C., Lamberg, P., & Lindberg, T. (2015). Development of a geometallurgical framework to quantify mineral textures for process prediction. Minerals Engineering, 82, 61–77.
Google Scholar
Mäenpää, T., & Pietikäinen, M. (2005). Texture analysis with local binary patterns. In Handbook of pattern recognition and computer vision (pp. 197–216). World Scientific. https://doi.org/10.1142/9789812775320_0011.
Miller, J. D., Lin, C. L., Garcia, C., & Arias, H. (2003). Ultimate recovery in heap leaching operations as established from mineral exposure analysis by X-ray microtomography. International Journal of Mineral Processing, 72(1), 331–340.
Google Scholar
Montagne, C., Kodewitz, A., Vigneron, V., Giraud, V., & Lelandais, S. (2013). 3D local binary pattern for PET image classification by SVM: Application to early alzheimer disease diagnosis. In BIOSIGNALS 2013—Proceedings of the international conference on bio-inspired systems and signal processing (pp. 145–150).
Mwanga, A., Rosenkranz, J., & Lamberg, P. (2017). Development and experimental validation of the geometallurgical comminution test (GCT). Minerals Engineering, 108, 109–114.
Google Scholar
Nguyen, K. (2013). A new texture analysis technique for geometallurgy. In Proceedings of the second AusIMM international geometallurgy conference Brisbane, QLD, Australia (pp. 187–190).
Ojala, T., Pietikainen, M., & Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 971–987.
Google Scholar
Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66.
Google Scholar
Parian, M., Mwanga, A., Lamberg, P., & Rosenkranz, J. (2018). Ore texture breakage characterization and fragmentation into multiphase particles. Powder Technology, 327, 57–69.
Google Scholar
Paulhac, L., Makris, P., & Ramel, J.-Y. (2008). Comparison between 2D and 3D local binary pattern methods for characterisation of three-dimensional textures. In International conference image analysis and recognition (pp. 670–679). Springer.
Peng, R., Yang, Y., Ju, Y., Mao, L., & Yang, Y. (2011). Computation of fractal dimension of rock pores based on gray CT images. Chinese Science Bulletin, 56(31), 3346.
Google Scholar
Pérez-Barnuevo, L., Lévesque, S., & Bazin, C. (2018a). Drill core texture as geometallurgical indicator for the Mont-Wright iron ore deposit (Quebec, Canada). Minerals Engineering, 122, 130–141.
Google Scholar
Pérez-Barnuevo, L., Lévesque, S., & Bazin, C. (2018b). Automated recognition of drill core textures: A geometallurgical tool for mineral processing prediction. Minerals Engineering, 118, 87–96.
Google Scholar
Pérez-Barnuevo, L., Pirard, E., & Castroviejo, R. (2013). Automated characterisation of intergrowth textures in mineral particles. A case study. Minerals Engineering, 52, 136–142.
Google Scholar
Pirard, E., Lebichot, S., & Krier, W. (2007). Particle texture analysis using polarized light imaging and grey level intercepts. International Journal of Mineral Processing. https://doi.org/10.1016/j.minpro.2007.03.004.
Article
Google Scholar
Reyes, F., Lin, Q., Cilliers, J. J., & Neethling, S. J. (2018). Quantifying mineral liberation by particle grade and surface exposure using X-ray microCT. Minerals Engineering, 125, 75–82.
Google Scholar
Reyes, F., Lin, Q., Udoudo, O., Dodds, C., Lee, P. D., & Neethling, S. J. (2017). Calibrated X-ray micro-tomography for mineral ore quantification. Minerals Engineering, 110, 122–130.
Google Scholar
Shan, C., & Gritti, T. (2008). Learning discriminative LBP-histogram bins for facial expression recognition. In Proceedings of the British machine vision conference.
Sharma, G., & Martin, J. (2009). MATLAB®: A language for parallel computing. International Journal of Parallel Programming, 37(1), 3–36.
Google Scholar
Tiu, G., Jansson, N., Ghorbani, Y., & Wanhainen, C. (2020). Mineralogical assessment of the metamorphosed Lappberget Zn-Pb-Ag-(Cu-Au) ore body, Sweden: Implications for mineral processing. In Conference in minerals engineering. Luleå, Sweden.
Tiu, G., Jansson, N., Wanhainen, C., & Ghorbani, Y. (2019). Sulfide chemistry and trace element deportment at the metamorphosed Lappberget Zn-Pb-Ag-(Cu-Au) ore body, Sweden : Implications for mineral processing. In 15th SGA biennial meeting, 27–30 August 2019, Glasgow, Scotland. Geosciences and Environmental Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology. http://ltu.diva-portal.org/smash/get/diva2:1350374/FULLTEXT01.pdf.
Tungpalan, K., Wightman, E., & Manlapig, E. (2015). Relating mineralogical and textural characteristics to flotation behaviour. Minerals Engineering, 82, 136–140.
Google Scholar
Ueda, T. (2019). Experimental validation of a statistical reliability method for the liberation distribution measurement of ore particles. Minerals Engineering, 140, 105880. https://doi.org/10.1016/j.mineng.2019.105880.
Article
Google Scholar
Vapnik, V., Guyon, I., & Hastie, T. (1995). Support vector machines. Machine Learning, 20(3), 273–297.
Google Scholar
Vapnik, V., & Lerner, A. (1963). Pattern recognition using generalized portrait method. Automation and Remote Control, 24, 774–780.
Google Scholar
Vizcarra, T. G., Wightman, E. M., Johnson, N. W., & Manlapig, E. V. (2010). The effect of breakage mechanism on the mineral liberation properties of sulphide ores. Minerals Engineering, 23(5), 374–382.
Google Scholar
Voigt, M. J., Miller, J., Bbosa, L., Govender, R. A., Bradshaw, D., Mainza, A., et al. (2019). Developing a 3D mineral texture quantification method of drill core for geometallurgy. Journal of the Southern African Institute of Mining and Metallurgy, 119(4), 347–353.
Google Scholar
Vos, C. F. (2017). The effect of mineral grain textures at particle surfaces on flotation response.
Wang, Y., Lin, C. L., & Miller, J. D. (2017). Quantitative analysis of exposed grain surface area for multiphase particles using X-ray microtomography. Powder Technology, 308, 368–377.
Google Scholar