Skip to main content
Log in

Measuring and Simulating Co(II) Sorption on Waste Calcite, Zeolite and Kaolinite

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Sorption of cobalt (CoII) ions from aqueous solution by waste calcite, kaolinite and zeolite was investigated in a series of batch experiments. The sorption capacity of the sorbents was a function of the initial solution pH, contact time and sorbent/sorbate ratio. For these three sorbents, the kinetic and isotherm experimental data were well fitted to pseudo-second-order and Langmuir equations, respectively. The maximum sorption capacity (mg g−1) of Co(II) was 4.67, 3.76 and 2.23 for waste calcite, zeolite and kaolinite, respectively. Desorption experiments showed that the desorption capacities were in the order of zeolite > kaolinite > waste calcite. The equilibrium and kinetic results indicated that waste calcite had the best performance for the removal of Co(II) compared to zeolite and kaolinite. To simulate and predict Co(II) sorption mechanisms, the surface complexation and cation exchange models in PHREEQC program were used. The model results suggested that the main mechanisms of Co(II) sorption on waste calcite and zeolite were surface complexation and cation exchange, respectively. In the case of kaolinite, the model predicted that both mechanisms were involved in the sorption of Co(II), but the surface complexation was the predominant mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Ahmadpour, A., Tahmasebi, M., Bastami, T. R., & Besharati, J. A. (2009). Rapid removal of cobalt ion from aqueous solutions by almond green hull. Journal of Hazardous Materials,166, 925–930.

    Article  Google Scholar 

  • Aljundi, I. H., & Al-Dawery, S. K. (2014). Equilibrium and thermodynamic study of cobalt adsorption on activated carbon derived from date seeds. Desalination and Water Treatment,52, 4830–4836.

    Article  Google Scholar 

  • Allison, J. D., Kevin, J., Gradac, N., & Brown, D. S. (1991). MINTEQA2: A Geochemical Assessment Model for Environmental Systems: Version 3.0 User’s Manual. National. Springfield: Technical Information Service.

    Google Scholar 

  • Angove, M. J., Johnson, B. B., & Wells, J. D. (1998). The influence of temperature on the adsorption of cadmium (II) and cobalt(II) on kaolinite. Journal of Colloid and Interface Science,204, 93–103.

    Article  Google Scholar 

  • ARC Working Group on the Evaluation of Carcinogenic Risks to Humans. (2006). Cobalt in hard metals and cobalt sulfate, gallium arsenide, indium phosphide and vanadium pentoxide. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans,86, 1–20.

    Google Scholar 

  • Benyahya, L., & Garnier, J. M. (1999). Effect of salicylic acid upon trace-metal sorption (CdII, ZnII, CoII and MnII) onto alumina, silica and kaolinite as a function of pH. Environmental Science and Technology,33, 1398–1407.

    Article  Google Scholar 

  • Bhattacharyya, K. G., & Gupta, S. S. (2007). Adsorption of Co(II) from aqueous medium on natural and acid activated kaolinite and montmorillonite. Separation Science and Technology,42, 3391–3418.

    Article  Google Scholar 

  • Bradbury, M. H., & Baeyens, B. (2005). Experimental measurements and modeling of sorption competition on montmorillonite. Geochimica et Cosmochimica Acta,69, 4187–4197.

    Article  Google Scholar 

  • Cheng, H., & Reinhard, M. (2006). Sorption of thrichloroethylene in hydrophobic micropores of dealuminated Y zeolites and natural minerals. Environmental Science and Technology,40, 7694–7701.

    Article  Google Scholar 

  • Covelo, E. F., Vega, F. A., & Andrade, M. L. (2007). Competitive sorption and desorption of heavy metals by individual soil components. Journal of Hazardous Materials,140, 308–315.

    Article  Google Scholar 

  • Delle Site, A. (2001). Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review. Journal of Physical and Chemical Reference Data,30, 187–439.

    Article  Google Scholar 

  • Deravanesiyan, M., Beheshti, M., & Malekpour, A. (2015). Alumina nanoparticles immobilization onto the NaX zeolite and the removal of Cr(III) and Co(II) ions from aqueous solutions. Journal of Industrial and Engineering Chemistry,21, 580–585.

    Article  Google Scholar 

  • Dzombak, D. A., & Morel, F. (1990). Surface complexation modeling: Hydrous ferric oxide. New York: Wiley.

    Google Scholar 

  • Erdem, E., Karapinar, N., & Donat, R. (2004). The removal of heavy metal cations by natural zeolite. Journal of Colloid and Interface Science,280, 309–314.

    Article  Google Scholar 

  • Ervanne, H., Puukko, E., & Hakanen, M. (2013). Modeling of sorption of Eu, Mo, Nb, Ni, Pa, Se, Sn, Th and U on kaolinite and illite in Olkiluoto groundwater simulants. Finland: Posiva Oy.

    Google Scholar 

  • Febrianto, J., Kosasih, A. N., Sunarso, J., Ju, Y. H., Indraswati, N., & Ismadji, S. (2009). Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. Journal of Hazardous Materials,162, 616–645.

    Article  Google Scholar 

  • Forstner, U., & Wittman, G. T. W. (1983). Metal pollution in the aquatic environment. Berlin: Springer.

    Google Scholar 

  • Goldberg, S. (1997). Reactions of boron with soils. Plant and Soil,193, 35–48.

    Article  Google Scholar 

  • Goldberg, S., Crisenti, L. J., Turner, D. R., Davis, J. A., & Cantrell, K. J. (2007). Adsorption-desorption processes in subsurface reactive modeling. Vadose Zone Journal,6, 407–435.

    Article  Google Scholar 

  • González-López, J., Fernández-González, Á., Jiménez, A., Godelitsas, A., Ladas, S., Provatas, G., et al. (2017). Dissolution and sorption processes on the surface of calcite in the presence of high Co2+ concentration. Minerals,7, 2-.23.

    Article  Google Scholar 

  • Hall, K. R., Eagleton, L. C., Acrivos, A., & Vermeulen, T. (1966). Pore and solid-diffusion kinetics in fixed-bed adsorption under constant pattern conditions. Industrial and Engineering Chemistry Fundamentals,5, 212–223.

    Article  Google Scholar 

  • Hamidpour, M., Kalbasi, M., Afyuni, M., Shariatmadari, H., & Furrer, G. (2011). Sorption of lead on Iranian bentonite and zeolite: Kinetics and isotherms. Environmental Earth Sciences,62, 559–568.

    Article  Google Scholar 

  • Ho, Y. S. (2006). Review of second-order models for adsorption systems. Journal of Hazardous Materials,B136, 681–689.

    Article  Google Scholar 

  • Huang, C. P., & Ostovic, F. B. (1978). Removal of cadmium(II) by activated carbon adsorption. Journal of Environmental Engineering,104, 863–878.

    Google Scholar 

  • Hui, K. S., Chao, C. Y. H., & Kot, S. C. (2005). Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash. Journal of Hazardous Materials,127, 89–101.

    Article  Google Scholar 

  • Imessaodene, D., Hanini, S., Bouzidi, A., & Ararem, A. (2015). Kinetic and thermodynamic study of cobalt adsorption by spent coffee. Desalination and Water Treatment,57, 6116–6123.

    Article  Google Scholar 

  • Islam, M. A., Morton, D. W., Johnson, B. B., Pramanik, B. K., Mainali, B., & Angove, M. J. (2018). Opportunities and constraints of using the innovative adsorbents for the removal of cobalt (II) from wastewater: A review. Environmental Nanotechnology, Monitoring and Management,10, 435–456.

    Article  Google Scholar 

  • Koretsky, C. (2000). The significance of surface complexation reactions in hydrologic systems: A geochemist’s perspective. Journal of Hydrology,230, 127–171.

    Article  Google Scholar 

  • Kudesia, V. P. (1990). Water pollution: Principles of disinfection of drinking water and its analysis. Meerut: Pragati Prakashan.

    Google Scholar 

  • Landry, C. J., Koretsky, C. M., Lund, T. J., Schaller, M., & Das, S. (2009). Surface complexation modeling of Co(II) adsorption on mixtures of hydrous ferric oxide, quartz and kaolinite. Geochimica et Cosmochimica Acta,73, 3723–3737.

    Article  Google Scholar 

  • Leinonen, H., & Lehto, J. (2001). Purification of metal finishing waste waters with zeolites and activated carbons. Waste Management and Research,19, 45–57.

    Article  Google Scholar 

  • Lin, C. Y., & Yang, D. H. (2002). Removal of pollutants from wastewater by coal bottom ash. Journal of Environmental Science and Health, Part A,37, 1509–1522.

    Article  Google Scholar 

  • Manohar, V. D. M., Noeline, B. F., & Anirudhan, T. S. (2006). Adsorption performance of Al-pillared bentonite clay for the removal of cobalt(II) from aqueous phase. Applied Clay Science,31, 194–206.

    Article  Google Scholar 

  • Marešová, J., Pipíška, M., Rozložník, M., Horník, M., Remenárová, L., & Augustín, J. (2011). Cobalt and strontium sorption by moss biosorbent: Modeling of single and binary metal systems. Desalination,266, 134–141.

    Article  Google Scholar 

  • Martin-Garin, A., Van Cappellen, P., & Charlet, L. (2003). Aqueous cadmium uptake by calcite: A stirred flow-through reactor study. Geochimica et Cosmochimica Acta,67, 2763–2774.

    Article  Google Scholar 

  • McBride, M. B. (2000). Chemisorption and precipitation reactions. In M. E. Sumner (Ed.), Handbook of soil science. Boca Raton: CRC Press.

    Google Scholar 

  • Merkel, B. J., & Planer-Friedrich, B. (2005). Groundwater geochemistry: A practical guide to modeling of natural and contaminated aquatic systems. Berlin: Springer.

    Google Scholar 

  • Merrikhpour, H., & Jalali, M. (2012). Waste calcite sludge as an adsorbent for the removal of cadmium, copper, lead and zinc from aqueous solutions. Clean Technologies and Environmental Policy,14, 845–855.

    Article  Google Scholar 

  • Moharami, S., & Jalali, M. (2013). Removal of phosphorus from aqueous solution by Iranian natural adsorbents. Chemical Engineering Journal,223, 328–339.

    Article  Google Scholar 

  • Olgun, A., & Atar, N. (2011). Removal of copper and cobalt from aqueous solution onto waste containing boron impurity. Chemical Engineering Journal,167, 140–147.

    Article  Google Scholar 

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). User’s guide to PHREEQC (version 2)—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. United States Geological Survey, Water Resources Investigation Report 99-4259.

  • Ranjbar, F., & Jalali, M. (2013). Measuring and modeling ammonium adsorption by calcareous soils. Environmental Monitoring and Assessment,185, 3191–3199.

    Article  Google Scholar 

  • Ranjbar, F., & Jalali, M. (2014). Surface complexation model of boron adsorption by calcareous soils. International Journal of Environmental Science and Technology,11, 1317–1326.

    Article  Google Scholar 

  • Ren, X., Yang, S., Tan, X., Chen, C., & Wang, X. (2012). Investigation of radionuclide 60Co(II) binding to TiO2 by batch technique, surface complexation model and DFT calculations. Science China Chemistry,55, 1752–1759.

    Article  Google Scholar 

  • Rowell, D. L. (1994). Soil science: Methods and applications. Harlow: Longman.

    Google Scholar 

  • Serrano, S., O’Day, P. A., Vlassopoulos, D., García-González, M. T., & Garrido, F. (2009). A surface complexation and ion exchange model of Pb and Cd competitive sorption on natural soils. Geochimica et Cosmochimica Acta,73, 543–558.

    Article  Google Scholar 

  • Shukla, A., Zhang, Y. H., Dubey, P., Margrave, J. L., & Shukla, S. S. (2002). The role of sawdust in the removal of unwanted materials from water. Journal of Hazardous Materials,95, 137–152.

    Article  Google Scholar 

  • Singh, D., Mclaren, R. G., & Cameron, K. C. (2006). Zinc sorption-desorption by soils: Effect of concentration and length of contact period. Geoderma,137, 117–125.

    Article  Google Scholar 

  • Sø, H. U., Postma, D., Jakobsen, R., & Larsen, F. (2011). Sorption of phosphate onto calcite; results from batch experiments and surface complexation modeling. Geochimica et Cosmochimica Acta,75, 2911–2923.

    Article  Google Scholar 

  • Sparks, D. L. (1998). Soil physical chemistry. Boca Raton: CRC Press.

    Google Scholar 

  • Sverjensky, D. A., & Sahai, N. (1996). Theoretical prediction of single-site surface-protonation equilibrium constant for oxides and silicates in water. Geochimica et Cosmochimica Acta,60, 3773–3797.

    Article  Google Scholar 

  • Wilkin, R. T., & Barnes, H. L. (1998). Solubility and stability of zeolites in aqueous solution. American Mineralogist,83, 746–761.

    Article  Google Scholar 

  • Yavuz, O., Altunkaynak, Y., & Guzel, F. (2003). Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Research,37, 948–952.

    Article  Google Scholar 

  • Yu, L. J., Shukla, S. S., Dorris, K. L., Shukla, A., & Margrave, J. L. (2003). Adsorption of chromium from aqueous solution by maple sawdust. Journal of Hazardous Materials,B100, 53–63.

    Article  Google Scholar 

  • Zachara, J. M., Cowan, C. E., & Resch, C. T. (1991). Sorption of divalent metals on calcite. Geochimica et Cosmochimica Acta,55, 1549–1562.

    Article  Google Scholar 

  • Zhang, H., & Selim, H. M. (2012). Equilibrium and kinetic modeling of competitive heavy metals sorption and transport in soils. In H. M. Selim (Ed.), Competitive sorption and transport of heavy metals in soils and geological media (pp. 49–75). Boca Raton: CRC Press.

    Chapter  Google Scholar 

  • Zhao, P., Guo, C., Zhang, Y., Xiao, Y., Wu, X., & Zhao, Y. (2016). Macroscopic and modeling evidence for competitive adsorption of Co(II) and Th(IV) on carbon nanofibers. Journal of Molecular Liquids,224, 1305–1310.

    Article  Google Scholar 

Download references

Acknowledgment

We would like to thank Dr. Clayton Butterly for his valuable remarks on the manuscript. We also are very grateful to the two anonymous reviewers and Editor-in-Chief (Professor John Carranza) for their constructive and insightful comments toward the improvement of this paper.

Funding

The funding was provided by Bu-Ali Sina University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Latifi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latifi, Z., Jalali, M. Measuring and Simulating Co(II) Sorption on Waste Calcite, Zeolite and Kaolinite. Nat Resour Res 29, 967–981 (2020). https://doi.org/10.1007/s11053-019-09475-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-019-09475-8

Keywords

Navigation