Skip to main content

Advertisement

Log in

Groundwater Quality Assessment in a Hyper-arid Region of Rajasthan, India

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Groundwater is an important source of livelihood in regions where rainfall is scanty, surface water sources are absent, and all domestic and agricultural needs are fulfilled with groundwater. This study deals with groundwater quality assessment in a hyper-arid region using multivariate statistical analysis. A total of 43 samples were collected and analyzed using principal component analysis and hierarchical cluster analysis to model the relationship and interdependence among the various physicochemical variables contributing to groundwater quality in the study area. The results of the statistical techniques showed that the variables are in strong correlation with each other. Cluster analysis proved to be a good tool to ascertain the spatial similarity between the contributing variables. The methodology adopted in the present study has been found to be effective and can be utilized to establish strong water quality monitoring network in similar areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Ahada, C. P. S., & Suthar, S. (2017). Hydrochemistry of groundwater in North Rajasthan, India: Chemical and multivariate analysis. Environmental Earth Sciences, 76(5), 203. https://doi.org/10.1007/s12665-017-6496-x.

    Article  Google Scholar 

  • Ahamad, A., Madhav, S., Singh, P., Pandey, J., & Khan, A. H. (2018). Assessment of groundwater quality with special emphasis on nitrate contamination in parts of Varanasi City, Uttar Pradesh, India. Applied Water Science, 8(4), 115. https://doi.org/10.1007/s13201-018-0759-x.

    Article  Google Scholar 

  • Arumugam, K., & Elangovan, K. (2009). Hydrochemical characteristics and groundwater quality assessment in Krishnagiri district, Tamilnadu, India. Environmental Geology, 58(7), 1509–1520. https://doi.org/10.1007/s00254-008-1652-y.

    Article  Google Scholar 

  • Avtar, R., Kumar, P., Singh, C. K., Sahu, N., Verma, R. L., Thakur, J. K., et al. (2013). Hydrogeochemical assessment of groundwater quality of Bundelkhand, India using statistical approach. Water Quality, Exposure and Health, 5(3), 105–115. https://doi.org/10.1007/s12403-013-0094-2.

    Article  Google Scholar 

  • Bhakar, V., Kumar, D. N. S. H., Sai, N. K., Sangwan, K. S., & Raghuvanshi, S. (2016). Life cycle assessment of filtration systems of reverse osmosis units: A case study of a University Campus. Procedia CIRP, 40, 268–273.

    Article  Google Scholar 

  • Bhakar, P., & Singh, A. P. (2018). Life cycle assessment of groundwater supply system in a hyper-arid region of India. Procedia CIRP, 69(May), 603–608. https://doi.org/10.1016/j.procir.2017.11.050.

    Article  Google Scholar 

  • Bhuiyan, C., & Ray, P. K. C. (2017). Groundwater quality zoning in the perspective of health hazards. Water Resources Management, 31(1), 251–267.

    Article  Google Scholar 

  • Bencer, S., Boudoukha, A., & Mouni, L. (2016). Multivariate statistical analysis of the groundwater of Ain Djacer area (Eastern of Algeria). Arabian Journal of Geosciences, 9(4), 248. https://doi.org/10.1007/s12517-015-2277-6.

    Article  Google Scholar 

  • Brandsegg, K. B., Hammer, E., & Sinding-Larsen, R. (2010). A comparison of unstructured and structured principal component analyses and their interpretation. Natural Resources Research, 19(1), 45–62. https://doi.org/10.1007/s11053-010-9110-4.

    Article  Google Scholar 

  • Cattell, R. B., & Jaspers, J. (1967). A general plasmode (No. 30-10-5-2) for factor analytic exercises and research. Multivariate Behavioral Research Monographs.

  • Chabukdhara, M., Gupta, S. K., Kotecha, Y., & Nema, A. K. (2017). Groundwater quality in Ghaziabad district, Uttar Pradesh, India: Multivariate and health risk assessment. Chemosphere, 179, 167–178. https://doi.org/10.1016/j.chemosphere.2017.03.086.

    Article  Google Scholar 

  • Chintalapudi, P., Pujari, P., Khadse, G., Sanam, R., & Labhasetwar, P. (2017). Groundwater quality assessment in emerging industrial cluster of alluvial aquifer near Jaipur, India. Environmental Earth Sciences, 76(1), 1–14. https://doi.org/10.1007/s12665-016-6300-3.

    Article  Google Scholar 

  • Clesceri, L., Greenberg, A. E., & Eaton, A. D. (1998). Standard methods for the examination of water and wastewater. APHA, AWWA, WEF, (twentietht.). Washington DC.

  • Das, M., Kumar, A., Mohapatra, M., & Muduli, S. D. (2010). Evaluation of drinking quality of groundwater through multivariate techniques in urban area. Environmental Monitoring and Assessment, 166(1–4), 149–157. https://doi.org/10.1007/s10661-009-0991-9.

    Article  Google Scholar 

  • Gautam, S. K., Maharana, C., Sharma, D., Singh, A. K., Tripathi, J. K., & Singh, S. K. (2015). Evaluation of groundwater quality in the Chotanagpur plateau region of the Subarnarekha river basin, Jharkhand State, India. Sustainability of Water Quality and Ecology (Vol. 6). https://doi.org/10.1016/j.swaqe.2015.06.001.

  • Getahun, E., & Keefer, L. (2016). Integrated modeling system for evaluating water quality benefits of agricultural watershed management practices: Case study in the Midwest. Sustainability of Water Quality and Ecology, 8, 14–29. https://doi.org/10.1016/j.swaqe.2016.06.002.

    Article  Google Scholar 

  • Helena, B. A., Vega, M., Barrado, E., Pardo, R., & Fernández, L. (1999). A case of hydrochemical characterization of an alluvial aquifer influenced by human activities. Water, Air, and Soil pollution, 112(3–4), 365–387.

    Article  Google Scholar 

  • Hosseinifard, S. J., & Aminiyan, M. M. (2015). Hydrochemical characterization of groundwater quality for drinking and agricultural purposes: A case study in Rafsanjan plain, Iran. Water Quality, Exposure and Health, 7(4), 531–544. https://doi.org/10.1007/s12403-015-0169-3.

    Article  Google Scholar 

  • Jain, C. K., & Vaid, U. (2018). Assessment of groundwater quality for drinking and irrigation purposes using hydrochemical studies in Nalbari district of Assam, India. Environmental Earth Sciences, 77(6), 254.

    Article  Google Scholar 

  • Jalali, M. (2012). Hydrochemical characteristics and sodification of groundwater in the Shirin Sou, Hamedan, Western Iran. Natural Resources Research, 21(1), 61–73. https://doi.org/10.1007/s11053-011-9152-2.

    Article  Google Scholar 

  • Jasrotia, A. S., Taloor, A. K., Andotra, U., & Bhagat, B. D. (2018). Geoinformatics based groundwater quality assessment for domestic and irrigation uses of the Western Doon valley, Uttarakhand, India. Groundwater for Sustainable Development, 6, 200–212. https://doi.org/10.1016/j.gsd.2018.01.003.

    Article  Google Scholar 

  • Kamra, S. K., Lal, K., Singh, O. P., & Boonstra, J. (2002). Effect of pumping on temporal changes in groundwater quality. Agricultural Water Management, 56(2), 169–178.

    Article  Google Scholar 

  • Karanth, K. R. (1987). Ground water assessment: Development and management. New York: Tata McGraw-Hill Education.

    Google Scholar 

  • Kumar, S., Ghosh, N. C., Singh, R. P., Singh, R., & Singh, S. (2016). Impact of canal recharge on groundwater quality of Kolayat area, district Bikaner, India. In Geostatistical and geospatial approaches for the characterization of natural resources in the environment (pp. 341–347). Cham: Springer. https://doi.org/10.1007/978-3-319-18663-4.

    Chapter  Google Scholar 

  • Kumar, R. P., Ranjan, R. K., Ramanathan, A. L., Singh, S. K., & Srivastava, P. K. (2015). Geochemical modeling to evaluate the mangrove forest water. Arabian Journal of Geosciences, 8(7), 4687–4702.

    Article  Google Scholar 

  • Lapworth, D. J., Krishan, G., MacDonald, A. M., & Rao, M. S. (2017). Groundwater quality in the alluvial aquifer system of northwest India: New evidence of the extent of anthropogenic and geogenic contamination. Science of the Total Environment, 599–600, 1433–1444. https://doi.org/10.1016/j.scitotenv.2017.04.223.

    Article  Google Scholar 

  • Li, P., Tian, R., Xue, C., & Wu, J. (2017). Progress, opportunities, and key fields for groundwater quality research under the impacts of human activities in China with a special focus on western China. Environmental Science and Pollution Research, 24(15), 13224–13234. https://doi.org/10.1007/s11356-017-8753-7.

    Article  Google Scholar 

  • Li, P., Wu, J., & Qian, H. (2016). Hydrochemical appraisal of groundwater quality for drinking and irrigation purposes and the major influencing factors: A case study in and around Hua County, China. Arabian Journal of Geosciences, 9(1), 1–17. https://doi.org/10.1007/s12517-015-2059-1.

    Article  Google Scholar 

  • Liu, C.-W., Lin, K.-H., & Kuo, Y.-M. (2003). Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Science of the Total Environment, 313(1), 77–89.

    Article  Google Scholar 

  • Ma, R., Shi, J., Liu, J., & Gui, C. (2014). Combined use of multivariate statistical analysis and hydrochemical analysis for groundwater quality evolution: A case study in north chain plain. Journal of Earth Science, 25(3), 587–597. https://doi.org/10.1007/s12583-014-0446-2.

    Article  Google Scholar 

  • Marghade, D., Malpe, D. B., & Rao, N. S. (2015). Identification of controlling processes of groundwater quality in a developing urban area using principal component analysis. Environmental Earth Sciences, 74(7), 5919–5933. https://doi.org/10.1007/s12665-015-4616-z.

    Article  Google Scholar 

  • Maroufpoor, S., Fakheri-Fard, A., & Shiri, J. (2017). Study of the spatial distribution of groundwater quality using soft computing and geostatistical models. ISH Journal of Hydraulic Engineering. https://doi.org/10.1080/09715010.2017.1408036.

    Article  Google Scholar 

  • Mondal, N. C., Tiwari, K. K., Sharma, K. C., & Ahmed, S. (2016). A diagnosis of groundwater quality from a semiarid region in Rajasthan, India. Arabian Journal of Geosciences, 9(12), 602. https://doi.org/10.1007/s12517-016-2619-z.

    Article  Google Scholar 

  • Nazzal, Y., Zaidi, F. K., Ahmed, I., Ghrefat, H., Naeem, M., Al-Arifi, N. S. N., et al. (2015). The combination of principal component analysis and geostatistics as a technique in assessment of groundwater hydrochemistry in arid environment. Current Science, 108(6), 1138–1145. https://doi.org/10.1002/bit.21025.35.

    Article  Google Scholar 

  • Patel, P., Raju, N. J., Reddy, B. C. S. R., Suresh, U., Gossel, W., & Wycisk, P. (2016). Geochemical processes and multivariate statistical analysis for the assessment of groundwater quality in the Swarnamukhi River basin, Andhra Pradesh, India. Environmental Earth Sciences, 75(7), 611. https://doi.org/10.1007/s12665-015-5108-x.

    Article  Google Scholar 

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Eos, Transactions American Geophysical Union, 25(6), 914–928.

    Article  Google Scholar 

  • Praveena, S. M., Lin, C. Y., Aris, A. Z., & Abdullah, M. H. (2010). Groundwater assessment at Manukan Island, Sabah: Multidisplinary approaches. Natural Resources Research, 19(4), 279–291. https://doi.org/10.1007/s11053-010-9124-y.

    Article  Google Scholar 

  • Raju, N. J. (2007). Hydrogeochemical parameters for assessment of groundwater quality in the upper Gunjanaeru River basin, Cuddapah District, Andhra Pradesh, South India. Environmental Geology, 52(6), 1067–1074. https://doi.org/10.1007/s00254-006-0546-0.

    Article  Google Scholar 

  • Ranjan, R. (2012). Natural resource sustainability versus livelihood resilience: Model of groundwater exploitation strategies in developing regions. Journal of Water Resources Planning and Management, 138(5), 512–522.

    Article  Google Scholar 

  • Ravindra, K., & Garg, V. K. (2006). Distribution of fluoride in groundwater and its suitability assessment for drinking purpose. International Journal of Environmental Health Research, 16(2), 163–166.

    Article  Google Scholar 

  • Sharma, P. K., Vijay, R., & Punia, M. (2015). Characterization of groundwater quality of Tonk District, Rajasthan, India using factor analysis. International Journal of Environmental Sciences, 6(4), 454–466. https://doi.org/10.6088/ijes.6051.

    Article  Google Scholar 

  • Schmoll, O., Howard, G., Chilton., G., & Chorus., I. (2006). Protecting ground water for health-managing the quality of drinking-water sources. http://www.who.int/water_sanitation_health/publications/protecting_groundwater/en/.

  • Shah, T. (2005). Groundwater and human development: Challenges and opportunities in livelihoods and environment. Water Science and Technology, 51(8), 27–37.

    Article  Google Scholar 

  • Sheikh, M. A., Azad, C., Mukherjee, S., & Rina, K. (2017). An assessment of groundwater salinization in Haryana state in India using hydrochemical tools in association with GIS. Environmental Earth Sciences, 76(13), 465. https://doi.org/10.1007/s12665-017-6789-0.

    Article  Google Scholar 

  • Shrestha, S., & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environmental Modelling and Software, 22(4), 464–475.

    Article  Google Scholar 

  • Singh, A. (2010). Decision support for on-farm water management and long-term agricultural sustainability in a semi-arid region of India. Journal of Hydrology, 391(1–2), 63–76. https://doi.org/10.1016/j.jhydrol.2010.07.006.

    Article  Google Scholar 

  • Singh, A. (2014). Conjunctive use of water resources for sustainable irrigated agriculture. Journal of Hydrology, 519(PB), 1688–1697. https://doi.org/10.1016/j.jhydrol.2014.09.049.

    Article  Google Scholar 

  • Singh, A. P. (2008). An integrated fuzzy approach to assess water resources’ potential in a watershed. ICFAI Journal of Computational Mathematics, 1(1), 7–23.

    Google Scholar 

  • Singh, A. P., & Ghosh S. K. (2003). Conceptual modeling and management of water quality in a River Basin. In Recent trends in hydrogeochemistry. New Delhi: Capital Books.

  • Singh, A. L., & Singh, V. K. (2018). Assessment of groundwater quality of Ballia district, Uttar Pradesh, India, with reference to arsenic contamination using multivariate statistical analysis. Applied Water Science, 8(3), 95. https://doi.org/10.1007/s13201-018-0737-3.

    Article  Google Scholar 

  • Singh, C. K., Kumar, A., Shashtri, S., Kumar, A., Kumar, P., & Mallick, J. (2017). Multivariate statistical analysis and geochemical modeling for geochemical assessment of groundwater of Delhi, India. Journal of Geochemical Exploration, 175, 59–71. https://doi.org/10.1016/j.gexplo.2017.01.001.

    Article  Google Scholar 

  • Singh, K. P., Malik, A., Singh, V. K., Mohan, D., & Sinha, S. (2005a). Chemometric analysis of groundwater quality data of alluvial aquifer of Gangetic plain, North India. Analytica Chimica Acta, 550(1–2), 82–91.

    Article  Google Scholar 

  • Singh, K. P., Malik, A., & Sinha, S. (2005b). Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques—A case study. Analytica Chimica Acta, 538(1–2), 355–374.

    Article  Google Scholar 

  • Singh, C. K., & Mukherjee, S. (2015). Aqueous geochemistry of fluoride enriched groundwater in arid part of Western India. Environmental Science and Pollution Research, 22(4), 2668–2678. https://doi.org/10.1007/s11356-014-3504-5.

    Article  Google Scholar 

  • Singh, C. K., Shashtri, S., & Mukherjee, S. (2011). Integrating multivariate statistical analysis with GIS for geochemical assessment of groundwater quality in Shiwaliks of Punjab, India. Environmental Earth Sciences, 62(7), 1387–1405. https://doi.org/10.1007/s12665-010-0625-0.

    Article  Google Scholar 

  • Singh, R. V., Sinha, R. M., Bisht, B. S., & Banerjee, D. C. (2002). Hydrogeochemical exploration for unconformity-related uranium mineralization: example from Palnadu sub-basin, Cuddapah Basin, Andhra Pradesh, India. Journal of Geochemical Exploration, 76(2), 71–92.

    Article  Google Scholar 

  • Srinivas, R., Bhakar, P., & Pratap, A. (2015). Groundwater quality assessment in some selected area of Rajasthan, India using fuzzy multi-criteria decision making tool. Aquatic Procedia, 4, 1023–1030.

    Article  Google Scholar 

  • Srivastava, S. K., & Ramanathan, A. L. (2008). Geochemical assessment of groundwater quality in vicinity of Bhalswa landfill, Delhi, India, using graphical and multivariate statistical methods. Environmental Geology, 53(7), 1509–1528. https://doi.org/10.1007/s00254-007-0762-2.

    Article  Google Scholar 

  • Subba Rao, N., Devadas, D. J., & Srinivasa Rao, K. V. (2006). Interpretation of groundwater quality using principal component analysis from Anantapur district, Andhra Pradesh, India. Environmental Geosciences, 13, 239–259.

    Article  Google Scholar 

  • Swain, R., & Sahoo, B. (2017). Improving river water quality monitoring using satellite data products and a genetic algorithm processing approach. Sustainability of Water Quality and Ecology, 9, 88–114. https://doi.org/10.1016/j.swaqe.2017.09.001.

    Article  Google Scholar 

  • Tirkey, P., Bhattacharya, T., Chakraborty, S., & Baraik, S. (2017). Assessment of groundwater quality and associated health risks: A case study of Ranchi city, Jharkhand, India. Groundwater for Sustainable Development, 5, 85–100. https://doi.org/10.1016/j.gsd.2017.05.002.

    Article  Google Scholar 

  • Tiwari, K., Goyal, R., & Sarkar, A. (2017). GIS-based spatial distribution of groundwater quality and regional suitability evaluation for drinking water. Environmental Processes, 4(3), 645–662. https://doi.org/10.1007/s40710-017-0257-4.

    Article  Google Scholar 

  • Vasanthavigar, M., Srinivasamoorthy, K., Vijayaragavan, K., Rajiv Ganthi, R., Chidambaram, S., Anandhan, P., et al. (2010). Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu, India. Environmental Monitoring and Assessment, 171(1–4), 595–609. https://doi.org/10.1007/s10661-009-1302-1.

    Article  Google Scholar 

  • Vijay, R., Khobragade, P., & Mohapatra, P. K. (2011). Assessment of groundwater quality in Puri City, India: An impact of anthropogenic activities. Environmental Monitoring and Assessment, 177(1–4), 409–418. https://doi.org/10.1007/s10661-010-1643-9.

    Article  Google Scholar 

  • Voudouris, K., Panagopoulos, A., & Koumantakis, J. (2000). Multivariate statistical analysis in the assessment of hydrochemistry of the Northern Korinthia prefecture alluvial aquifer system (Peloponnese, Greece). Natural Resources Research, 9(2), 135–146.

    Article  Google Scholar 

  • Wilcox, L. V. (1955). Classification and use of irrigation waters, (969), 1–19.

  • Yang, Q., Li, Z., Ma, H., Wang, L., & Martín, J. D. (2016). Identification of the hydrogeochemical processes and assessment of groundwater quality using classic integrated geochemical methods in the Southeastern part of Ordos basin, China. Environmental Pollution, 218, 879–888. https://doi.org/10.1016/j.envpol.2016.08.017.

    Article  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to the State Ground Water Board, Government of Rajasthan, for providing valuable inputs and support to carry out the study. Authors are extremely thankful to the Editor-in-Chief, anonymous reviewers, and production team, for excellent support from receipt of manuscript till final publication. We are greatly thankful to the reviewers for providing valuable and timely input, which helped us to improve the quality of paper significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Bhakar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhakar, P., Singh, A.P. Groundwater Quality Assessment in a Hyper-arid Region of Rajasthan, India. Nat Resour Res 28, 505–522 (2019). https://doi.org/10.1007/s11053-018-9405-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-018-9405-4

Keywords

Navigation