Skip to main content
Log in

Hydrochemical Characteristics and Sodification of Groundwater in the Shirin Sou, Hamedan, Western Iran

  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Salinity and sodicity of groundwater are the principal water quality concerns in irrigated areas of arid and semi-arid regions. The hydrochemical characteristics and sodicity of groundwater in the Shirin Sou area, western Iran were investigated in this study by chemical analyses of groundwater samples from 49 wells. Chemical analysis of the groundwater showed that the mean concentration of the cations was in the order: Na+ > Ca2+ > Mg2+ > K+, while that for anions was SO3 2− > Cl > HCO3  > NO3 . The most prevalent water type is Na–SO4 followed by water types Na–Cl and Ca–SO4. The chemical evolution of groundwater is primarily controlled by water–rock interactions: mainly weathering of aluminosilicates, dissolution of sulfate minerals, and cation exchange reactions. Sulfate dissolution and pyrite weathering may both contribute to the SO4 2− load of the groundwater. High Na+ concentrations in groundwater participate in ion-exchange processes, resulting in the displacement of base cations into solution and raised concentrations in groundwater. The principal component analysis (PCA) performed on groundwater identified three principal components controlling variability of groundwater chemistry. Electrical conductivity, Ca2+, Mg2+, Na+, SO4 2−, and Cl content were associated in the same component (PC1) (salinity), most likely linked to anthropogenic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Appelo, G. A. J., & Postma, D. (1994). Geochemistry, groundwater and pollution. Rotterdam: A.A. Balkema.

    Google Scholar 

  • Ayars, J. E., & Tanji, K. K. (1999). Effects of drainage on water quality in arid and semiarid lands. In R. W. Skaggs & J. van Schilfgaarde (Eds.), Agricultural drainage (pp. 831–867). Madison, WI: ASA-CSSA-SSSA.

    Google Scholar 

  • Baharifar, A., Moinevaziri, H., Bellon, H., & Pique, A. (2004). The crystalline complexes of Hamedan (Sanandaj-Sirjan zone, western Iran): metasedimentary Mezoic sequences affected by Late Cretaceous tectono-metamorphic and plutonic events. Comptes Rendus Geoscience, 336, 1443–1452.

    Article  Google Scholar 

  • Beltran, J. M. (1999). Irrigation with saline water: benefits and environmental impact. Agricultural Water Management, 40, 183–194.

    Article  Google Scholar 

  • Dalai, T. K., Krishnaswami, S., & Sarin, M. M. (2002). Barium in the Yamuna River System in the Himalaya: Sources, fluxes, and its behavior during weathering and transport. Geochemistry Geophysics Geosystems, 3, 1076.

  • Di, H. J., & Cameron, K. C. (2004). Effects of the nitrification inhibitor dicyandiamide on potassium, magnesium and calcium leaching in grazed grassland. Soil Use Management, 20, 2–7.

    Article  Google Scholar 

  • Dragon, K. (2006). Application of factor analysis to study contamination of a semi-confined aquifer (Wielkopolska Buried Valley aquifer, Poland). Journal of Hydrology, 331, 272–279.

    Article  Google Scholar 

  • Drever, J. I. (1997). The geochemistry of natural waters (3rd ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Frapporti, G., Hoogendoorn, J. H., & Vriend, S. P. (1995). Detailed hydrochemical studies as a useful extension of national groundwater monitoring networks. Groundwater, 33, 817–828.

    Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater (p. 604). New Jersey: Prentice-Hall.

  • Garcia, M. G., Hidalgo, M. D., & Blessa, M. A. (2001). Geochemistry of groundwater in the alluvial plain of Tucuman Province, Argentina. Hydrogeology Journal, 9, 597–610.

    Article  Google Scholar 

  • Gibbs, R. J. (1970). Mechanism controlling world water chemistry. Science, 170, 1088–1090.

    Article  Google Scholar 

  • Gupta, L. P., & Subramanian, V. (1998). Geochemical factors controlling the chemical nature of water and sediments in the Gomti River, India. Environmental Geology, 36, 102–108.

    Article  Google Scholar 

  • Hao, X., & Change, C. (2002). Does long-term heavy cattle manure application increase salinity of a clay loam soil in semi-arid southern Alberta? Agriculture, Ecosystems & Environment, 1934, 1–16.

    Google Scholar 

  • Herczeg, A. (2001). Can major ion chemistry be used estimate groundwater residence time in basaltic aquifer. In R. Cidu (Ed.), Proceeding of the ninth international symposium water–rock interaction (pp. 529–532). Rotterdam: A.A. Balkema.

  • Hidalgo, M. C., & Cruz-Sanjulian, J. (2001). Groundwater composition, hydrochemical evolution and mass transfer in a regional detrital aquifer (Baza Basin, southern Spain). Applied Geochemistry, 16, 745–758.

    Article  Google Scholar 

  • Jalali, M. (2005a). Nitrates leaching from agricultural land in Hamedan, western Iran. Agriculture, Ecosystems & Environment, 110, 210–218.

    Article  Google Scholar 

  • Jalali, M. (2005b). Major ion chemistry in the Bahar area, Hamedan, western Iran. Environmental Geology, 47, 763–772.

    Article  Google Scholar 

  • Jalali, M. (2006). Chemical characteristics of groundwater in parts of mountainous region, Alvand, Hamedan, Iran. Environmental Geology, 51, 433–446.

    Article  Google Scholar 

  • Jalali, M. (2007). Salinization of groundwater in arid and semi-arid zones: an example from Tajarak, western Iran. Environmental Geology, 52, 1133–1149.

    Article  Google Scholar 

  • Jalali, M., & Khanlari, Z. V. (2008). Major ion chemistry of groundwaters in the Damagh area, Hamedan, western Iran. Environmental Geology, 54, 87–93.

    Article  Google Scholar 

  • Jalali, M., Merikhpour, H., Kaledhonkar, M. J., & Van Der Zee, S. E. A. T. M. (2008). Effects of wastewater irrigation on soil sodicity and nutrient leaching in calcareous soils. Agricultural Water Management, 95, 143–153.

    Article  Google Scholar 

  • Jalali, M., & Merrikhpour, H. (2008). Effects of poor quality irrigation waters on the nutrient leaching and groundwater quality from sandy soil. Environmental Geology, 53, 1289–1298.

    Article  Google Scholar 

  • Jalali, M., & Rowell, D. L. (2003). The role of calcite and gypsum in the leaching of potassium in a sandy soil. Experimental Agriculture, 39, 379–394.

    Article  Google Scholar 

  • Jalali, M., & Rowell, D. L. (2008). Prediction leaching of potassium using the convective-dispersive and the convective log-normal transfer function models. Environmental Geology, 55, 863–874.

    Article  Google Scholar 

  • Kolahchi, Z., & Jalali, M. (2007). Effect of water quality on the leaching of potassium from sandy soil. Journal of Arid Environments, 68, 624–639.

    Article  Google Scholar 

  • McLean, W., Jankowski, J., & Lavitt, N. (2000). Groundwater quality and sustainability in an alluvial aquifer, Australia. In O. Sililo, et al. (Eds.), Groundwater, past achievements and future challenges (pp. 567–573). Rotterdam: A.A. Balkema.

    Google Scholar 

  • Meybeck, M. (1987). Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 287, 401–428.

    Article  Google Scholar 

  • Miller, N. J., & Miller, J. C. (2000). Statistics and chemometrics for analytical chemistry (4th ed.). Englewood Cliffs, NJ: Pearson Education.

    Google Scholar 

  • Njitchoua, R., Dever, L., Fontes, J. Ch., & Naah, E. (1997). Geochemistry, origin and recharge mechanisms of groundwaters from the Garoua Sandstone aquifer, northern Cameroom. Journal of Hydrology, 190, 123–140.

    Article  Google Scholar 

  • Oetting, G. C., Banner, J. L., & Sharp, J. M. (1996). Regional controls on the geochemical evolution of saline groundwaters in the Edward aquifers, Central Texas. Journal of Hydrology, 181, 251–283.

    Article  Google Scholar 

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). Users guide to PHREEQC (version 2)—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Water Resources Investigations Report 99-4259.

  • Richter, B. C., & Kreitler, W. C. (1993). Geochemical techniques for identifying sources of groundwater salinization. New York: CRC Press. ISBN 1-56670-000-0.

  • Ronen, D., Kanfi, Y., & Magaritz, M. (1983). Sources of nitrates in groundwater of the Coastal Plain of Israel- evolution of ideas. Water Research, 17, 1499–1503.

    Article  Google Scholar 

  • Rowell, D. L. (1994). Soil science: methods and applications. Harlow: Longman and Scientific Technical.

    Google Scholar 

  • Saleh, A., Al-Ruwiah, F. M., & Shehata, M. (2001). Ground-water quality of the Nile west bank related to soil characteristics and geological setting. Journal of Arid Environments, 49, 761–784.

    Article  Google Scholar 

  • Sami, K. (1992). Recharge mechanisms and geochemical processes in a semi-arid sedimentary basin, Eastern Cape, South Africa. Journal of Hydrology, 139, 27–48.

    Article  Google Scholar 

  • Sepahi, A. (1999). Petrology of the Alvand plutonic complex with special reference on granitoids. Ph.D. thesis, Tarbiat-Moallem University, Tehran, Iran (in Persian).

  • Sharpley, A. N., & Smith, S. J. (1989). Prediction of soluble phosphorus transport in agricultural runoff. Journal of Environment Quality, 18, 313–316.

    Google Scholar 

  • Škrbić, B., & Čupić, S. (2004). Trace metal distribution in surface soils of Novi Sad and Bank Sediment of the Danube River. Journal of Environmental Science and Health, Part A, 39, 1547–1558.

    Article  Google Scholar 

  • Smolders, A. J. P., Hudson-Edwards, K. A., Van der Velde, G., & Roelofs, J. G. M. (2004). Controls on water chemistry of the Pilcomayo River (Bolivia, South-America). Applied Geochemistry, 19, 1745–1758.

    Article  Google Scholar 

  • Stallard, R. F., & Edmond, J. M. (1987). Geochemistry of the Amazon 3 Weathering chemistry and limits to dissolved inputs. Journal of Geophysical Research, 92, 8293–8302.

    Article  Google Scholar 

  • Stimson, J., Frape, S., Drimmie, R., & Rudolph, D. (2001). Isotopic and geochemical evidence of regional-scale anisotropy and interconnectivity of an alluvial fan system, Cochabamba Valley, Bolivia. Applied Geochemistry, 16, 1097–1114.

    Article  Google Scholar 

  • Umar, A., Umar, R., & Ahmad, M. S. (2001). Hydrogeological and hydrochemical framework of regional aquifer system in Kali-Ganga sub-basin, India. Environmental Geology, 40(4–5), 602–611.

    Article  Google Scholar 

  • Wilcox, L. V. (1955). Classification and use of irrigation waters. Washington, DC: US Dept. Agric. Circ.

    Google Scholar 

Download references

Acknowledgments

The author is especially grateful to two anonymous reviewers for critical review, perceptive comments, and editing on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Jalali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jalali, M. Hydrochemical Characteristics and Sodification of Groundwater in the Shirin Sou, Hamedan, Western Iran. Nat Resour Res 21, 61–73 (2012). https://doi.org/10.1007/s11053-011-9152-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-011-9152-2

Keywords

Navigation